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Abstract

Evidence suggests that selenium has cancer preventive properties that are largely mediated through selenoproteins. Our
previous observations demonstrated that targeted down-regulation of the 15 kDa selenoprotein (Sep15) in murine colon
cancer cells resulted in the reversal of the cancer phenotype. The present study investigated the effect of Sep15 knockout in
mice using a chemically-induced colon cancer model. Homozygous Sep15 knockout mice, and wild type littermate controls
were given four weekly subcutaneous injections of azoxymethane (10 mg/kg). Sep15 knockout mice developed significantly
(p,0.001) fewer aberrant crypt foci than controls demonstrating that loss of Sep15 protects against aberrant crypt foci
formation. Dietary selenium above adequate levels did not significantly affect aberrant crypt foci formation in Sep15
knockout mice. To investigate molecular targets affected by loss of Sep15, gene expression patterns in colonic mucosal cells
of knockout and wild type mice were examined using microarray analysis. Subsequent analyses verified that guanylate
binding protein-1 (GBP-1) mRNA and protein expression were strongly upregulated in Sep15 knockout mice. GBP-1, which is
expressed in response to interferon-c, is considered to be an activation marker during inflammatory diseases, and up-
regulation of GBP-1 in humans has been associated with a highly significant, increased five-year survival rate in colorectal
cancer patients. In agreement with these studies, we observed a higher level of interferon-c in plasma of Sep15 knockout
mice. Overall, our results demonstrate for the first time, that Sep15 knockout mice are protected against chemically-induced
aberrant crypt foci formation and that Sep15 appears to have oncogenic properties in colon carcinogenesis in vivo.
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Introduction

Colorectal cancer remains the second leading cause of cancer-

related deaths in the United States with an estimated 51,690

deaths (26,470 in men and 25,220 in women) during 2012 [1].

Aberrant colonic crypts and aberrant crypt foci are putative pre-

neoplastic colon lesions, and are considered good biomarkers for

determining colorectal cancer risk, as the number of pre-neoplastic

lesions is statistically associated with the number of tumors that

ultimately develop [2,3]. There is evidence from epidemiologic,

clinical and preclinical studies that dietary supplementation with

the essential trace mineral selenium reduces the incidence and

mortality of colon cancer in humans [4,5]. Previous animal studies

have demonstrated protective effects of selenium fortification

against aberrant crypt formation and colon tumor development

[5–8]. Recent studies indicate that both low molecular weight

selenocompounds and selenium-containing proteins (selenopro-

teins) can mediate the cancer-protective effects of selenium in the

colon [9].

Selenium is incorporated into selenoproteins as the 21st amino

acid selenocysteine [10], and there are 24 known selenoprotein

genes in mice [11]. One of the more abundant selenoproteins in

mammals is the 15 kDa selenoprotein (Sep15) [12]. The product

of the Sep15 gene belongs to the class of thiol oxidoreductase

selenoproteins and is characterized by the thioredoxin-like fold

[13,14]. Sep15 has been suggested to take part in the process of

quality control of oxidative protein folding either through

rearrangement of disulfide bonds (isomerase function) or reduction

of incorrectly formed disulfide bonds (reductase function) in

misfolded glycoproteins bound to UDP-glucose:glycoprotein

glucosyltransferase (UGGT) [13,15]. The functional role of

Sep15 in cancer remains unclear. In humans, Sep15 is located

on chromosome 1p31 [12], a locus commonly mutated in human

cancer [16], and decreased expression of Sep15 has been observed

in liver, prostate and lung cancer [14]. Previous observations have

suggested that a lower expression of Sep15 may be important in

promoting carcinogenesis in liver [14] and breast tissue [16], and

in approximately 60% of human malignant mesothelioma cell

lines and tumors [17]. Most recently, a single nucleotide poly-

morphism in the Sep15 gene with carriage of a variant allele has

also been associated with an increased risk of rectal cancer in

Korean men [18].
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Our previously published study demonstrated that targeted

down-regulation of Sep15 using shRNA (.90% reduction of

Sep15 mRNA and protein levels) reversed many of the character-

istics typical of cancer cells, including inhibiting anchorage-

dependent and anchorage-independent cell growth as well as

tumor growth and lung metastasis in mouse colon carcinoma CT-

26 but not in mouse Lewis lung carcinoma LLC-1 cells. Targeted

down-regulation of Sep15 also inhibited growth of HCT-116 and

HT-29 human colon cancer cells [19]. Thus, Sep15 appears to

have a tissue-specific role in colon cancer [20].

The purpose of this study was to assess the role of Sep15

knockout on colon cancer risk in vivo. Specifically, utilizing a Sep15

knockout mouse model [21], we sought to determine the effects of

Sep15 removal on chemically-induced aberrant crypt foci as

a measure of pre-neoplastic colon lesions.

Materials and Methods

Materials
NuPageH 4–12% polyacrylamide gels, LDS sample buffer, See-

Blue Plus2 protein markers, polyvinylidene difluoride membranes

and TRIzolH reagent were purchased from Invitrogen (Carlsbad,

CA) and 5,59-dithio-bis(2-nitrobenzoic acid) and aurothioglucose

(ATG) from Sigma-Aldrich (St. Louis, MO). Antibodies against

Sep15, selenoprotein M (SelM) and thioredoxin reductase 1 (TR1)

were generated in our laboratories using recombinant Sep15,

SelM or TR1 as antigens. Rabbit polyclonal glutathione

peroxidase 1 (GPx1) antibody was purchased from Abcam

(Cambridge, MA). Monoclonal antibody against b-catenin was

obtained from Cell Signaling Technology, Inc. (Danvers, MA).

Rabbit anti-GPx2 antibodies were generated by Dr. Paul

Goldsmith, National Cancer Institute, National Institutes of

Health (Bethesda, MD) and validated in our laboratory.

Goat polyclonal actin and guanylate binding protein-1 (GBP-1)

primary antibodies, and horseradish peroxidase-conjugated sec-

ondary antibody were obtained from Santa Cruz Biotechnology

(Santa Cruz, CA), SuperSignal West Dura substrate from Pierce

(Rockford, IL). iScriptTM cDNA synthesis Kit and SYBRH green

supermix were purchased from Bio-Rad Laboratories (Philadel-

phia, PA). Primers for real-time RT-PCR were purchased from

Sigma-Genosys (St. Louis, MO). A mouse TH1/TH2 9-Plex assay

kit was purchased from MesoScale Discovery (Gaithersburg, MD).

Other reagents used were commercially available and were of the

highest available quality.

Animal Studies
Ethics statement. Mice were handled and humanely sacri-

ficed in strict accordance with the National Institutes of Health

Institutional Guidelines under the expert direction of Dr. John

Dennis (NCI, NIH, Bethesda, MD, USA) and all mouse

experiments were approved by the Animal Ethics Committee at

the National Institutes of Health.

Sep15 knockout mice lacking exon 2 of the gene, and thus lack

the functional Sep15 protein, have been generated as described

[21]. Mice were bred in-house and maintained in a temperature-

and humidity-controlled animal facility with a 12-h light/dark

cycle. Animals were given free access to de-ionized water, and

were monitored closely for any clinical signs of poor health

throughout the study. Male weanling homozygous Sep15 knock-

out mice (Sep152/2), heterozygous (Sep15+/2) and wild type

(Sep15+/+) littermate controls were maintained on a selenium-

deficient Torula yeast-based diet that was supplemented with

0 mg, 0.1 mg or 2.0 mg selenium/g diet as sodium selenite (Teklad,

Harlan Laboratories, Madison, WI). Genotypes of the animals

were verified by PCR using the following primers:

Wild type allele detection (250 bp): 59-CAGAGTTTGCGT-

CAGAGGCATGCAGAG-39 and 59-CTGAAACTCG-

TAAAGTCAGAGACTACTGG-39; knockout allele detection

(312 bp): 59-GGTGTGTTTGCAGATAAGCTAATGC-39 and

59-TACCCGGTAGAATTGACCTGCAG-39.

Aberrant Crypt Foci Analysis
Male Sep15 knockoutmice (Sep152/2), heterozygous (Sep15+/2)

andwild type (Sep15+/+) littermate controls (N= 12/genotype) were

maintained on selenium-adequate diet (0.1 mg selenium/g diet) for

three weeks, then given four weekly subcutaneous injections of

azoxymethane (AOM, 10 mg/kg). In a parallel study, Sep15

knockout mice (N= 8–11/diet) were maintained on selenium-

deficient, adequate, or supranutritionally supplemented diets (0, 0.1

or 2.0 mg selenium/g diet, respectively) for three weeks before

injectionswithAOMand for the remainder of the study. Eightweeks

after the last treatment, all animals were sacrificed, and tissues

harvested. Livers were excised, snap frozen and stored at280uC for

future analyses. Colons were excised from anus to caecum, rinsed

with PBS, opened longitudinally, fixed and stored in 70%ethanol for

a minimum of 48 hours. Colons were stained with methylene blue

(1 g/L in PBS, pH 7.4), and aberrant crypts and foci were counted

using a dissecting microscope by a trained scientist who was blinded

to genotype and dietary treatment.

Tissue Collection
Sep152/2, Sep15+/2 and Sep15+/+ littermate controls (N= 10/

genotype) were maintained on selenium-deficient, adequate, or

supranutritionally supplemented diets (0, 0.1 or 2.0 mg selenium/g

diet, respectively) for six weeks, sacrificed, and tissues were

harvested. Livers were excised, snap frozen and stored at 280uC
for future analyses. Blood was collected by cardiac puncture,

centrifuged in heparinized tubes at 6,000 rpm for 5 min, and

plasma was snap frozen and stored at 280uC for further analysis

of cytokines. Colons were excised from anus to caecum, rinsed

with cold PBS, opened and colonic epithelia were scraped for

further analysis of mRNA and protein expression.

Real time RT-PCR Analysis
Total RNA was extracted from colonic epithelia using TRIzolH

Reagent. cDNA was synthesized using an iScriptTM cDNA

synthesis kit with 1 mg of total RNA. For real-time RT-PCR,

1.5 ml of cDNA was used in 20 ml reactions using the DNA Engine

OpticonH 2 Real-Time RT-PCR Detection System (MJ-Re-

search/BioRad Laboratories, Hercules, CA). The primers used

for real-time RT-PCR are shown in Table S1. The mRNA levels

of selenoproteins were calculated relative to the expression of

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which was

utilized as the internal control.

Western Blot Analysis
Colonic epithelia were scraped and homogenized in lysis buffer.

Extracted proteins were electrophoresed at 40–100 mg/lane on

NuPAGEH 4–12% polyacrylamide gels followed by transferring to

polyvinylidene difluoride membranes. The membranes were

blocked in 5% non-fat dry milk in Tris-buffered saline with

0.1% Tween 20 (TBST) for a minimum of 1 hour and incubated

with primary antibodies against murine Sep15, TR1, SelM, GPx1,

b-catenin, or GBP-1 overnight (1:500 in 5% non-fat dry milk/

TBST). Horseradish peroxidase-conjugated secondary antibody

(1:10,000) was applied for 1–2 hours, and the membranes were

Sep15 Knockout Protects against Colon Cancer
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Figure 1. Aberrant crypt foci formation in AOM-treated wild type allelic (Sep15+/+), heterozygous (Sep15+/2) and Sep15 knockout
(Sep152/2) mice. (A) Number of ACF per colon in mice fed 0.1 mg selenium/g diet (mean6SEM; N= 12 per genotype); (B) number of aberrant crypts
per focus in mice fed 0.1 mg selenium/g diet (mean6SEM; N= 12 per genotype); (C) numbers of ACF in Sep15 knockout mice on 0, 0.1 or 2.0 mg
selenium/g diet (mean6SEM, N= 8–10).
doi:10.1371/journal.pone.0050574.g001
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incubated in chemiluminescent substrate and exposed to X-ray

film. For detection of GBP-1, the more sensitive OdysseyH
Infrared Imaging System was employed, for which the membrane

was incubated for one hour in the dark with a LI-COR

IRDyeH680 secondary antibody (1:4,000). The membrane was

then washed with TBST, dried for at least 2 hours and then

exposed to the LI-COR Odyssey Infrared Imager (model 9120,

LI-COR Biosciences, Lincoln, NE). For both types of Western

analysis methods, b-actin was used as an internal loading control.

Microarray Analysis
mRNA was isolated from colonic epithelia of wild type (Sep15+/

+) and Sep15 knockout (Sep152/2) mice maintained on an

adequate selenium diet (0.1 mg Selenium/g diet; N= 4/genotype).

Microarray analysis was performed on Affymetrix Mouse 430 2.0

gene chips containing 45,000 gene probes. Four arrays were

analyzed per genotype, each containing an mRNA sample from

an individual mouse. Results per genotype were grouped and

compared by ANOVA and those genes significantly different from

the wild type mice (p,0.001) were subjected to Ingenuity Pathway

Analysis (IPA v. 7.5, Redwood City, CA), which significantly

linked genes according to the biological processes in which they

function.

Cytokine Analyses
Mouse blood was collected by cardiac puncture from mice

(N= 5/genotype), centrifuged for 5 min (6,000 rpm) in hepar-

anized tubes, and plasma was snap-frozen and stored at 280uC.
Using the mouse TH1/TH2 9-Plex assay kit, protein levels of

interferon-c, interleukin-1b, interleukin-2, interleukin-4, interleu-
kin-5, KC/GRO, interleukin-10, interleukin-12p70 and tumor

necrosis factor-a were assessed in a sandwich immunoassay format

using a SECTORH Imager 2400 according to the manufacturer’s

instructions (MesoScale Discovery, Gaithersburg, MD). An eight-

point standard curve was used to calculate the concentration of

analytes in the plasma samples. Samples and standards were

assayed in duplicates.

Statistical Analyses
Data are presented as means 6 SEM. Data were analyzed by

ANOVA followed by Tukey’s Multiple Comparison post-hoc test

using GraphPad Prism (v.4; La Jolla, CA). The level of significance

was set at p,0.05.

Results

Animal Weights and Aberrant Crypt Foci Analysis
Male Sep15 knockout (Sep152/2), heterozygote (Sep15+/2) and

wild type (Sep15+/+) mice were maintained on a diet containing

adequate selenium levels at 0.1 mg selenium/g diet, and were

injected subcutaneously with azoxymethane (AOM). Tissues were

collected eight weeks after the final dose, and colons were

inspected for aberrant crypt foci as putative pre-neoplastic colon

lesions. Animals were monitored closely throughout the study. No

significant differences were observed in animal weight at the end of

the study or weight gain over the course of AOM treatment

among Sep152/2, Sep15+/2 or Sep15+/+ mice. The final weights

in grams were 27.060.85, 28.160.79 and 29.060.54 (mean6-

SEM, N=12), respectively.

The total number of aberrant crypt foci per colon was

dramatically reduced in AOM-treated Sep152/2 mice

(2.5860.50; p,0.001) compared to AOM-treated Sep15+/2 or

Sep15+/+ littermate controls (14.2561.67 and 13.6761.60, re-

spectively (Fig. 1A)). The average number of aberrant crypts per

focus was also significantly lower in Sep152/2 mice (1.7160.18;

mean6SEM; p,0.001) compared to Sep15+/+ mice (2.7860.18;

mean6SEM; Fig. 1B).

Dietary selenium did not significantly affect weight gain in

Sep15 knockout mice over the course of the study, though growth

appeared better in mice maintained on diets with levels of

selenium near or above the recommended dietary allowance for

rodents (0.15 mg selenium/g diet) [22]. This is reflected in the final

weights at harvest for Sep15 knockout mice maintained on 0, 0.1

or 2.0 mg selenium/g diet, which were 25.860.36 g, 27.360.43 g

and 26.660.57 g (mean6SEM, N=8–10), respectively. A small

but not statistically significant increase in the number of ACF was

observed in AOM-treated Sep15 knockout mice fed a selenium-

deficient diet (4.0061.20) compared to adequate (2.2060.59) or

supranutritionally supplemented (2.4560.56) selenium diets

(Fig. 1C). Thus, Sep15 knockout mice were protected against

chemically-induced aberrant crypt formation, which appeared to

be largely independent of dietary selenium levels.

Selenoprotein Expression
The effect of genotype and dietary selenium on the expression of

various selenoproteins was assessed using real-time RT-PCR

(Fig. 2) and Western blot analyses (Fig. 3). No statistical significant

differences (two-way ANOVA, p.0.05) were observed in mRNA

levels between Sep152/2 mice and Sep15+/+ littermate controls

for TR1, GPx1, GPx2, SelW, or SelM, a Sep15 homolog. A

statistically significant diet effect with increasing dietary selenium

was observed for GPx1 (ANOVA, p=0.0002) and SelW

(ANOVA, p,0.0001) for mice regardless of genotype. Sep15

mRNA expression is difficult to evaluate, as Sep15 knockout mice

continue to synthesize a shortened albeit non-functional mRNA

form [21]. Protein expression of Sep15 was detectable only in

colonic epithelia of Sep15+/+ and Sep15+/2 mice (Fig. 3A) and

absent in Sep15 knockout mice. Protein expression of other

selenoproteins, such as the Sep15 homolog SelM (Fig. 3B), TR1

(Fig. 3C), and GPx1 (Fig. 3D), in mice maintained on adequate

selenium diets did not differ among the three genotypes, as

determined by Western blotting. Protein expression of Sep15 and

GPx2 in Sep15+/+ mice (Fig. 3E), as well as SelM in Sep152/2

mice (Fig. 3F), were nearly absent in animals on selenium-deficient

diets. GPx2 expression in Sep152/2 mice, on the other hand,

seemed less susceptible to dietary selenium (Fig. 3G).

Microarray Analyses
The expression of 281 genes were significantly different

(ANOVA, p,0.001) between Sep15 knockout mice and wild type

littermate controls as assessed by microarray analyses (Table S2).

The gene whose expression changed the most was guanylate

binding protein 1 (GBP-1), which was about 20-fold higher in

colonic epithelia of Sep15 knockout mice compared to controls.

Other GBP isoforms were not among the statistically significant

genes (at p,0.001). The strongest down-regulated genes were the

apolipoprotein A isoforms I (Apoa1) and IV (Apoa4). Other highly

upregulated genes included polyamine-modulated factor 1 (Pmf1),

a co-transcription partner of the Nuclear factor (erythroid-derived

2)-like 2 (Nrf2).

Subsequent analysis using Ingenuity Pathway Analysis (IPA)

demonstrated that the top five associated ontology networks were

‘Cellular development, growth, proliferation’ (see Fig. 4A), ‘Cel-

lular assembly, cell cycle’, ‘Carbohydrate metabolism, cellular

assembly’, ‘Cell cycle, cellular development’, and ‘Cancer, gene

expression’. These networks were related to biological functions

that included ‘‘developmental disorders’’, ‘‘dermatological dis-

eases’’ and ‘‘cancer.’’

Sep15 Knockout Protects against Colon Cancer
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GBP-1 Expression in Mouse Colonic Epithelia
Quantitative RT-PCR was utilized to validate the result of

increased expression of the GBP-1 mRNA in the microarray

analysis. Comparison of real-time RT-PCR and microarray data

demonstrated a similar direction of the response in the GBP-

1 mRNA expression, with Sep152/2 mice demonstrating a 45-

fold increased up-regulation (p,0.0001) compared to Sep15+/+

littermate controls (Fig. 4B), especially at adequate and supple-

mented dietary selenium levels. Additionally, quantitative RT-

PCR was utilized to examine GBP-1 mRNA levels in our

established murine CT-26 colon cancer cell line [20], in which

Sep15 was down-regulated using RNAi technology. shSep15 cells

demonstrated a greater than 30-fold increase of GPB-1 mRNA

(p,0.001) compared to plasmid-transfected control cells (Fig. 4C).

Subsequently, GBP-1 protein expression in colonic epithelia was

assessed using Western blotting, which demonstrated that GBP-1

protein was strongly expressed in Sep152/2 mice, but only very

weakly expressed in Sep15+/2 or Sep15+/+ littermate controls

(Fig. 5A). Although selenium deficiency seemed to demonstrate

a reduction in GBP-1 mRNA expression (Fig. 4B), dietary

selenium did not have an effect on the protein expression of

GBP-1 in Sep152/2 mice (Fig. 5B) or Sep15+/+ littermate controls

(Fig. 5C).

Cytokine Analysis
Protein levels of interferon-c, interleukin-1b, interleukin-2,

interleukin-4, interleukin-5, KC/GRO, interleukin-10, interleu-

kin-12p70 and tumor necrosis factor-a were assessed in a sandwich

immunoassay format using mouse plasma samples from Sep152/

2, Sep15+/2 and Sep15+/+ littermate control mice on adequate

selenium diets. Although not statistically significant, interferon-c
levels were elevated in plasma of Sep152/2 mice (5.7161.38 pg/

ml) compared to Sep15+/2 (3.2760.28 pg/ml) and Sep15+/+

(3.4260.42 pg/ml) littermate controls (Fig. 6A). Similarly, in-

terferon-c mRNA levels appeared to be elevated in colonic

epithelium of Sep15 knockout mice, compared to littermate

controls (Fig. 6B). Interestingly, albeit only detectable at very low

levels using real-time RT-PCR, a statistically significant increase in

interferon-c mRNA levels was observed in shSep15 CT26 murine

colon cancer cells (p,0.05) compared to plasmid-transfected

controls (Fig. 6C).

b-catenin Expression in Mouse Colonic Epithelia
Protein expression of b-catenin in colon epithelia of mice that

had been maintained on a selenium-adequate diet was assessed

using Western blotting. Although somewhat variable among

individual mice, the overall b-catenin expression was similar in

colon epithelial cell lysates of Sep152/2, Sep15+/2 and Sep15+/+

mice (Fig. 7).

Discussion

Our previous study demonstrated that targeted down-regulation

of Sep15 in a murine colon cancer cell line resulted in the reversal

Figure 2. Analysis of selenoprotein mRNA expression in colonic epithelia of wild type allelic (Sep15+/+) and Sep15 knockout
(Sep152/2) mice. Mice were maintained on 0, 0.1 or 2.0 mg selenium/g diet and mRNA levels were measured using real-time RT-PCR. Values are
means6SEM; N= 4 per genotype per diet. Letters indicate statistically significant differences (two-way ANOVA).
doi:10.1371/journal.pone.0050574.g002
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of many characteristics typical of malignant cells [20]. It indicated

that Sep15 might play an important role in the early steps of colon

tumorigenesis. This stands in stark contrast to observations in lung

cancer, that indicated lowered Sep15 expression to correlate with

higher cancer incidence [23], and, while exactly why this

discrepancy exists is subject to further study, it points to a possibly

strong tissue-specificity in terms of the role of Sep15. The aim of

the present study was to further investigate the role of Sep15 in

colon cancer by assessing the role of Sep15 loss on carcinogen-

induced ACF formation in vivo. The total number of ACF per

colon and the number of aberrant crypts per focus were

significantly lower in Sep15 knockout (Sep152/2) mice compared

to wild type (Sep15+/+) and heterozygous (Sep15+/2) littermate

controls. As ACF serve as a surrogate biomarker for colon cancer

risk in humans [24], these results indicate that a lack of Sep15

expression may be protective. Increased numbers of ACF have

been reported in rats [6,8] and mice [9] on selenium-deficient

diets, but these conditions decrease expression of many seleno-

proteins. In our study, because the number of ACF was very low in

Sep15 knockout mice overall, neither dietary selenium supple-

mentation above adequate levels nor its deficit significantly

affected the number of ACF. A larger number of animals or

a prolonged duration of the study might have resulted in more

distinct differences among the groups. Comparisons of supple-

mental dietary selenium including wild type/normal mice and rats

are readily available in already published articles (e.g., [6–9]), and

thus were not included in our experimental set up. Given that mice

heterozygous for Sep15 did not show a reduction in aberrant crypt

foci formation compared to wild type mice, we suspect that these

heterozygous mice would behave similarly to wild type mice in

response to dietary selenium levels. Nevertheless, a small increase

in the number of ACF was observed in Sep15 knockout mice fed

a selenium-deficient diet, suggesting the importance of dietary

selenium in cancer prevention, as has been described previously

[6,9].

To investigate the possible effects of Sep15 loss on other

selenoproteins in vivo, we measured the expression of several other

selenoproteins in colonic epithelia. mRNA transcripts of TR1,

GPx1, GPx2, SelW and SelM, a Sep15 homolog, did not respond

with significant changes to deletion of Sep15 in vivo as measured by

real-time RT-PCR. Statistically significant responses to dietary

selenium on the mRNA and/or protein level were observed for

GPx1, SelM, GPx2 and SelW, which is also consistent with

previous observations [25,26]. Protein expression of TR1 and

SelM were similar among the three genotypes, indicating that the

differences in the response to the chemical colon carcinogen

azoxymethane were not because of differential expression of other

selenoproteins.

We utilized microarray technology to determine the genes

whose expression was modified by complete loss of Sep15.

Interestingly, Gbp1 was the highest up-regulated gene in Sep15

knockout animals compared to littermate controls, and this finding

was validated by quantitative RT-PCR. On the other side of the

spectrum, Apolipoprotein A-I and A-IV (Apoa1 and Apoa4) were

the most down-regulated genes in Sep15 knockout mice compared

to controls.

Western analyses confirmed an up-regulation of GBP-1 on the

protein level in Sep152/2 mice compared to Sep15+/2 and

Sep15+/+ controls. Even at a higher protein loading, GBP-1 is

barely detectable in wild type mice, and does not respond to

increased or decreased dietary selenium. These results were

strengthened by a follow up study with our established shSep15

murine colon cancer cell line, which demonstrated that GBP-

1 mRNA is also inducible through targeted down-regulation of

Sep15 in vitro. Furthermore, in the NCI-60, a collection of 60

human cancer cell lines routinely used for screening and

comparative analyses, the Sep15 gene is significantly correlated

with GBP-1 (Pearson’s correlation, p,0.05), and also with its

isoforms GBP-2, GBP-3 and GBP-4 (http://discover.nci.nih.gov/

cellminer6 database version 0.9). Thus, a significant link between

Sep15 and GBP-1 and possibly other GBP-isoforms may be

important in human cancers, possibly beyond colonic epithelia.

The GBP-1 gene encodes guanylate binding protein 1, a large

GTPase thought to function as an anti-apoptotic protein [27] and

may contribute to anti-tumorigenic activities [28]. It is of interest

to note that Sep15 and Gbp-1 are both located on chromosome 3 (3

H3 and 3 H1, respectively) in mice, but it is unlikely that these two

genes have any interplay at the chromosomal level as they are

separated by almost two million nucleotides. GBP-1 is considered

to be an activation marker of endothelial cells during inflamma-

tory diseases, and its function includes the inhibition of spreading

and migration of endothelial cells through induction of integrin

expression, a known key process during angiogenesis.

Interestingly, up-regulation of GBP-1 in humans also has been

associated with a highly significant (p,0.001) increase in five-year

survival rate in colorectal cancer patients [29]. Because guanylate-

binding proteins are among the most abundant cellular proteins

expressed in response to interferon-c and other cytokines [30,31],

we analyzed the expression of various cytokines in plasma of

Sep15 knockout mice compared to controls. Even though only

a less than two-fold higher protein expression of interferon-c was

observed in plasma of Sep15 knockout mice, the result was

intriguing in light of the fact that these mice were not treated with

azoxymethane or any other stressors, and had been fed a diet with

adequate selenium levels. This finding is further strengthened by

the fact that we were also able to observe slightly elevated mRNA

levels of interferon-c in colonic epithelia of Sep15 knockout mice.

It is possible that Sep15 knockout mice exhibit elevated

interferon-c levels, thus resulting in a persistently increased

GBP-1 mRNA and protein expression. Naschberger et al. have

found that an interferon-c-dominated reaction may counteract

tumor progression in colorectal cancer [29]. Because our study

investigated ACF as putative pre-neoplastic lesions, our results

show that the absence of Sep15 and subsequent up-regulation of

GBP-1coincided with a decreased ability to develop aberrant

crypts upon chemical insult with a colon carcinogen. A recent

study [32] demonstrated that GBP-1 is a potent suppressor of b-
catenin levels and restricts epithelial cell proliferation in the

intestine. Cytoplasmic b-catenin protein levels appeared largely

unaffected in our study. However, activated (translocated) nuclear

b-catenin levels may differ, as has been reported by Capaldo et al.

[32]. Our observed strong increase in GBP-1 expression in Sep15-

deficient animals would lend support to the argument that the

Figure 3. Protein expression of selenoproteins in colonic epithelia. Wild type allelic (Sep15+/+), heterozygous (Sep15+/2) and Sep15
knockout (Sep152/2) mice were maintained on an 0.1 mg selenium/g diet. (A) Sep15 (80 mg protein/lane); (B) the Sep15 homolog SelM (40 mg
protein/lane); and (C) TR1 (40 mg protein/lane); (D) GPx1 (40 mg protein/lane). Sep15+/+ and Sep152/2 mice maintained on diets with 0, 0.1 or 2.0 mg
selenium/g diet: (E) Sep15+/+ mice, Sep15 & GPx2 (75 mg protein/lane); (F) Sep152/2 mice, SelM (75 mg protein/lane); (G) Sep152/2 mice, GPx2 (75 mg
protein/lane). b-actin was used as a loading control. All experiments were carried out in triplicate.
doi:10.1371/journal.pone.0050574.g003
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Figure 4. Ingenuity network analysis of genes regulated by knockout of Sep15 in mice and validation of GBP-1 mRNA expression in
colonic epithelia of Sep15 knockout mice. (A) ‘‘Cellular development, growth and proliferation’’ was identified as the top affected network.
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intestinal epithelia in knockout animals were resistant to cell

proliferation which would be necessary for ACF formation.

Furthermore, according to the microarray analysis, the mRNA

expression of Apoa1 and Apoa4 was strongly reduced in Sep15

knockout animals. Apoa1 is increased in progressive stages of

colonic adenocarcinoma with higher expression in carcinomas

than in normal mucosal epithelial cells [33]. Apoa4 is a gene coding

for an anti-inflammatory protein in intestinal epithelium [34], and

its expression has been linked with a more differentiated cancer

phenotype. These apolipoproteins are also affecting both a- and b-
catenins, integral components in the Wnt signaling pathway [35].

Kipp et al. recently established that the expression of the

selenoproteins GPx2, TR2 and TR3 are regulated by Wnt

signaling [36]. In our study, GPx2 levels were not different

between Sep15 knockout mice and wild type controls. Thus, any

dysregulation in the Wnt signaling pathway may have resulted

because of lack of Sep15, not because of changes to GPx2. The

decreased expression of both apolipoproteins paralleling the strong

increase of GBP-1 in colonic epithelium suggests that loss of Sep15

may also be influenced by the Wnt signaling pathway thus

resulting in downregulation of oncogenes and thus a protection

against chemically-induced tumor initiation.

We intend to further investigate whether the link between GBP-

1 and Sep15 indeed functions via interferon-c directly through the

apolipoprotein-catenin-Wnt-pathway regulation or other inflam-

mation-associated pathways. To elucidate this possible functional

link, we are also using human and mouse colon cancer cell lines to

investigate whether any, and which, regulatory elements in the

promoter region of GBP-1 may be affected by Sep15 expression.

Other cytokines, such as interleukin-1b and tumor necrosis factor-

a, are also thought to induce GPB-1 expression, albeit through

a pathway that includes an interferon-a-stimulated response

element and a NF-kB-binding motif [37]. Plasma expression of

interleukin-1b and tumor necrosis factor-a did not appear to be

different in Sep15 knockout mice compared to control mice.

In conclusion, the current investigation conclusively demon-

strated that loss of Sep15 protects against formation of aberrant

crypt foci in colonic epithelia in vivo. Consistent with these

observations, an increased mRNA and protein expression of

GBP-1 and decreased mRNA levels of Apoa1 and Apoa4 were

observed in Sep15 knockout animals. Thus, Sep 15 appears to play

a stimulatory role (possible oncogene) in cancer etiology in colonic

tissue, whereas the possible links to GBP-1 and the apolipoproteins

A-I and IV remain to be elucidated further. Given the recent

Genes depicted in red have up-regulated expression and genes in green have down-regulated expression in Sep15 knockout animals compared to
wild type littermate controls. Molecules that are not user specified, but are incorporated into the network through relationships with other molecules,
are shown in white. Relative GBP-1 mRNA expression in (B) mouse colonic epithelia of Sep152/2 and Sep15+/+ littermate control mice fed 0, 0.1 or
2.0 mg selenium/g diet (N = 8/genotype); and (C) in murine colon cancer CT-26 cells as determined by quantitative RT-PCR analysis. Means not sharing
a common letter are statistically significant (p,0.0001).
doi:10.1371/journal.pone.0050574.g004

Figure 5. GBP-1 expression in mouse colonic epithelia. GBP-1
expression was examined by Western blots in colonic epithelia of (A)
Sep15 knockout (Sep152/2), heterozygous (Sep15+/2) and wild type
allelic (Sep15+/+) littermate control mice on 0.1 mg selenium/g diet, (B)
Sep152/2 mice on 0, 0.1 or 2.0 mg selenium/g diet, and (C) Sep15+/+

litter mate controls on 0, 0.1 or 2.0 mg selenium/g diet. Protein extracts
were loaded at 40 (A, B) or 60 mg (C) per lane. b-actin was used as the
loading control. All experiments were carried out in triplicate.
doi:10.1371/journal.pone.0050574.g005

Figure 6. Interferon-c levels. (A) Interferon-c levels in serum of
Sep15 knockout mice (Sep152/2) compared to heterozygous (Sep15+/
2) and wild type (Sep15+/+) litter mate controls (N= 5 per genotype) on
0.1 mg selenium/g diet as measured by ELISA. (B) Interferon-c levels in
colonic epithelia of Sep152/2 mice compared to Sep15+/2 and Sep15+/+

litter mate controls (N = 5 per genotype) on 0.1 mg selenium/g diet as
measured by quantitative real-time PCR. (C) Interferon- cmRNA levels in
murine colon cancer CT26 cells with targeted down-regulation of Sep15
(shSep15) compared to plasmid-transfected control cells as measured
by real time RT-PCR.
doi:10.1371/journal.pone.0050574.g006
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findings in the SELECT human clinical trial compared to the

earlier NPC trial [38], where a reduction in colon cancer risk was

observed, it may be beneficial for future studies, if colon biopsies

are possible, to include investigations into examining the levels of

participants’ Sep15 and GPB-1 expressions, as this may affect their

cancer risk, especially for colorectal cancer.
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Nuclear factor-kappaB motif and interferon-alpha-stimulated response element

co-operate in the activation of guanylate-binding protein-1 expression by

inflammatory cytokines in endothelial cells. Biochem J 15: 409–420.

38. Hatfield DL, Gladyshev VN (2009) The Outcome of Selenium and Vitamin E

Cancer Prevention Trial (SELECT) reveals the need for better understanding of

selenium biology. Mol Interv 9: 18–21.

Sep15 Knockout Protects against Colon Cancer

PLOS ONE | www.plosone.org 11 December 2012 | Volume 7 | Issue 12 | e50574


