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BACKGROUND AND AIMS: Capsule endoscopy (CE) revolu-
tionized the study of the small intestine, overcoming the limi-
tations of conventional endoscopy. Nevertheless, reviewing CE
images is time-consuming. Convolutional Neural Networks
(CNNs) are an artificial intelligence architecture with high
performance levels for image analysis. Protruding lesions of the
small intestine exhibit enormous morphologic diversity in CE
images. We aimed to develop a CNN-based algorithm for
automatic detection of varied small-bowel protruding lesions.
METHODS: A CNN was developed using a pool of CE images
containing protruding lesions or normal mucosa/other find-
ings. A total of 2565 patients were included. These images were
inserted into a CNN model with transfer learning. We evaluated
the performance of the network by calculating its sensitivity,
specificity, accuracy, positive predictive value, and negative
predictive value. RESULTS: A CNN was developed based on a
total of 21,320 CE images. Training and validation data sets
comprising 80% and 20% of the total pool of images, respec-
tively, were constructed for development and testing of the
network. The algorithm automatically detected small-bowel
protruding lesions with an accuracy of 97.1%. Our CNN had a
sensitivity, specificity, positive, and negative predictive values
of 95.9%, 97.1%, 83.0%, and 95.7%, respectively. The CNN
operated at a rate of approximately 355 frames per second.
CONCLUSION: We developed an accurate CNN for automatic
detection of enteric protruding lesions with a wide range of
morphologies. The development of these tools may enhance the
diagnostic efficiency of CE.
*Authors share co-first authorship.
Keywords: Capsule Endoscopy; Artificial Intelligence; Polyps;
Gastrointestinal Hemorrhage
Abbreviations used in this paper: AI, artificial intelligencem; AUROC, area
under the receiver operating characteristic curve; CE, capsule endoscopy;
CNN, convolutional neural network; OGIB, obscure gastrointestinal
bleeding; ROC, receiver operating characteristic.
Introduction
mall-bowel tumors represent 5% of all tumors of the
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Sgastrointestinal tract. The exploration of the small
bowel has always been difficult due to its inaccessibility to
conventional endoscopic methods. Capsule endoscopy (CE)
has revolutionized the approach to patients with suspected
small-bowel disease, allowing minimally invasive visual
inspection of its full length. CE has shown great clinical
value in several distinct clinical settings, including obscure
gastrointestinal bleeding (OGIB) and the diagnosis and
monitoring of patients with Crohn’s disease.1,2 Additionally,
this technique is also indicated for the workup of patients
with clinical or imaging suspicion of small-bowel tumors
and patients with inherited polyposis syndromes.3,4

The identification of enteric protruding lesions by CE is
often difficult as these lesions have significant pleomor-
phism.5 Moreover, these lesions frequently have a covert
clinical progression, with patients frequently demonstrating
nonspecific symptoms. OGIB, although not specific, is a
cardinal feature in patients presenting with small-bowel
protruding lesions of diverse etiology.4 In fact, small-
bowel tumors are responsible for up to 5% of all cases of
OGIB.6

The bleeding potential varies significantly between
different lesions, and its assessment is a cornerstone for an
accurate interpretation of CE findings. Saurin et al7 have
proposed a classification for ascertainment of the bleeding
potential of several CE findings. This classification divides
CE findings into 3 distinct categories according to their
bleeding potential: no bleeding potential (P0), uncertain
bleeding potential (P1), or high bleeding potential (P2).
Lesions with high bleeding potential include vascular le-
sions (eg, angiectasia), large ulcers, and small-bowel tumors.
Their prompt identification is essential for adequate acute
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and long-term patient management.7 Nevertheless, the
evaluation of CE exams can be a burdensome task for a
gastroenterologist. Indeed, each CE exam produces approxi-
mately 50,000 images, which requires approximately 30–120
minutes for reading.8 Moreover, CE exams are susceptible for
overlooking significant lesions due to the significant pleo-
morphism of its findings adding to the fact that lesions may be
restricted to a very small number of frames.

Large databases of CE images have potentiated the
development of computational tools for assistance in reading
CE exams. Most notably, the simultaneous increase in
computational power has enabled the development of artifi-
cial intelligence (AI) tools for automated analysis of medical
imaging. Recent evidence has delivered promising results
regarding the application of these tools across distinct medical
specialties.9–11 The implementation of these tools in gastro-
intestinal endoscopy has suggested that these technological
advances may lead to an increase in their diagnostic yield.12

CE is expected to benefit significantly from the adoption of
these tools as they may allow to overcome significant CE
drawbacks, particularly the time required for reading CE
exams. To date, no AI algorithm has been developed for the
detection and characterization of the bleeding potential of
small-bowel protruding lesions. Thus, we aimed to develop a
Convolutional Neural Networks (CNN)-based model for
automatic detection and assessment of the bleeding potential
of small-bowel protruding lesions in CE images.
Methods
Study Design

A multicentric proof-of-concept study was designed for
development and validation of a CNN model for automatic
detection of protruding lesions and characterization of their
bleeding potential. CE exams from 2 different institutions, São
João University Hospital (Porto, Portugal) and ManopH Gastro-
enterology Clinic (Porto, Portugal), were retrospectively
reviewed. A total of 2565 CE exams (1483 from São João Uni-
versity Hospital and 1082 from ManopH Gastroenterology Clinic)
were performed in 2311 patients. The full-length CE video of all
participants was reviewed. Inclusion and labelling of frames were
performed by 3 gastroenterologists with experience in CE (M.M.,
H.C., and M.M.S., each with over 1500 CE exams prior to this
study). The inclusion and final labelling of the frames was
dependent on agreement of at least 2 of the 3 researchers.

The protocol of this study was approved by the ethics
committee of São João University Hospital/Faculty of Medicine
of the University of Porto (No. CE 407/2020). This study is of
retrospective nature and was conducted in respect to the
original and subsequent versions of the Declaration of Helsinki.
Thus, there was no interference in the conventional clinical
management of each included patient. Any information deemed
to potentially identify the subjects was omitted, and each pa-
tient was assigned a random number to guarantee effective
data anonymization for researchers involved in CNN network
development. A team with Data Protection Officer certification
(Maastricht University) confirmed the nontraceability of data
and conformity with the general data protection regulation.
CE Protocol
All CE procedures used the PillCam SB3 system (Medtronic,

Minneapolis, MN). This system incorporates 3 major components:
the endoscopic capsule, a sensor belt connected to a data
recorder, and a software program for image revision. The capsule
measures 26.2 mm in length and 11.4 mm in width. It has a high-
resolution camera with a 156� field of view. The automatically
adjustable frame rate oscillates between 2 and 6 frames per
second, depending on the speed of progression of the endoscopic
capsule. The battery of the endoscopic capsule has an estimated
life of �8 hours. The images were reviewed using the PillCam
Software version 9.0 (Medtronic, Minneapolis, MN). Images were
processed to remove possible patient-identifying information
(name, operating number, date of procedure). Each extracted
frame was stored and assigned a consecutive number. Fasting
and bowel preparation before the CE exam were performed ac-
cording to previously issued recommendations.13

Classification of Lesions
Each frame was evaluated for the presence of enteric

protruding lesions (polyps, epithelial tumors, subepithelial
lesions and nodules).5 The hemorrhagic potential of these
lesions was estimated according to Saurin’s classification7:
P0, no hemorrhagic potential; P1, uncertain/intermediate
hemorrhagic potential; P2, high hemorrhagic potential. Pro-
truding lesions were considered as P2 when large (�10 mm),
ulcerated, or when hemorrhagic stigmata were present. These
lesions were classified as P1 when small (<10 mm) and with
intact overlying mucosa (eg, subepithelial lesions). CE images
were included regardless of bowel preparation quality (ie,
images with both good and poor bowel preparation quality
were selected).
Development of the CNN
From the collected pool of images (n ¼ 21,320), 2945

showed protruding lesions (P1, 1860 frames; P2, 1085 frames).
The remaining images displayed normal small-bowel mucosa.
The full image data set was split into 2 distinct sets, for
constitution of training and validation data sets. The training
data set comprised 80% of the consecutively extracted images
(n ¼ 17,056). The remaining 20% were used as the validation
data set (n ¼ 4264). The validation data set was used for
assessing the performance of the CNN. A flowchart summari-
zing the study design and image selection for the development
(training and validation) of the CNN is presented in Figure 1.

To create the CNN, we used the Xception model14 with its
weights trained on ImageNet (a large-scale image data set
aimed for use in development of object recognition software).15

To transfer this learning to our data, we kept the convolutional
layers of the model. We removed the last fully connected layers
and attached fully connected layers based on the number of
classes we used to classify our endoscopic images. We used 2
blocks, each having a fully connected layer followed by a
Dropout layer of 0.3 drop rate. Following these 2 blocks, we
added a Dense layer with a size defined as the number of cat-
egories (4) to classify. The learning rate of 0.0001, batch size of
22, and the number of epochs of 100 were set by trial and
error. We used Tensorflow 2.3 and Keras libraries to prepare
the data and run the model.16 To minimize bias toward the
most prominent class (Normal), we have applied data



Figure 1. Study flow chart for the training and validation phases. AUROC, area under the receiver operating characteristic
curve; CE, capsule endoscopy; CNN, convolutional neural network; N, normal small-bowel mucosa; P1P, protruding lesions
with uncertain hemorrhagic potential (P1); P2P, protruding lesions with high hemorrhagic potential (P2).
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augmentation techniques on the images of the P1 and P2 cat-
egories, and we used class-weighted gradients. The analyses
were performed with a computer equipped with a 2.1 GHz Intel
Xeon Gold 6130 processor (Intel, Santa Clara, CA) and a double
NVIDIA Quadro RTX 4000 graphic processing unit (NVIDIA
Corporate, Santa Clara, CA).



Figure 2. Heatmaps obtained from the application of the convolutional neural network. (A) Example of heatmap showing a P1P
lesion as identified by the CNN. (B) Example of heatmap showing a P2P lesion. CNN, convolutional neural network; P1P,
protruding lesions with uncertain hemorrhagic potential (P1); P2P, protruding lesions with high hemorrhagic potential (P2).

838 Afonso et al Gastro Hep Advances Vol. 1, No. 5
To create the CNN, we used the Xception model with its
weights trained on ImageNet. We used Tensorflow 2.3 and
Keras libraries to prepare the data and run the model. For each
image, the CNN calculated the probability for each category.

Model Performance and Statistical Analysis
The primary outcome measures included sensitivity, spec-

ificity, precision, and the accuracy in differentiating between
images containing normal mucosa and enteric protruding le-
sions with distinct bleeding potential. Moreover, we used
receiver operating characteristic (ROC) curves analysis and
area under the ROC curves to measure the performance of our
model in the distinction between the categories. The network’s
classification was compared to the diagnosis provided by spe-
cialists’ analysis, the latter being considered the gold standard.

In addition to its diagnostic performance, the algorithm’s
computational speed was determined using the validation im-
age data set by calculating the time required for the CNN to
provide output for all images.

For each image, the CNN calculated the probability for each
of the 3 categories (normal mucosa, P1 protruding lesions, and
P2 protruding lesions). The software generated heatmaps that
localized features originating a class probability, helping in the
identification of morphological features, that lead to the lesion
detection and differentiation by the CNN (Figure 2). A higher
probability value translated into a greater confidence in the
CNN prediction. The category with the highest probability score
was given as the CNN’s predicted classification (Figure 3).
Sensitivities, specificities, and precisions are presented as
means � standard deviation. ROC curves were graphically
represented, and area under the receiver operating character-
istic curves (AUROCs) were calculated. A statistical analysis
was performed using the Scikit-learn v0.22.2 (Scikit).17
Results
Construction and Development of the Network

We developed a CNN based on a total of 2565 CE exams
performed between 2015 and 2020. From these exams,
21,320 images were extracted: 2945 showing protruding
lesions (P1, 1860 frames; P2, 1085 frames; and the



Figure 3.Output obtained from the application of the convolutional neural network. The bars represent the probability esti-
mated by the network. The finding with the highest probability was outputted as the predicted classification. A blue bar
represents a correct prediction. Red bars represent an incorrect prediction. N, normal small-bowel mucosa; P1P, protruding
lesions with uncertain hemorrhagic potential (P1); P2P, protruding lesions with high hemorrhagic potential (P2).
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remaining showing normal mucosa). The training data set
comprised 80% of the total image pool (n ¼ 17,056). The
remaining 20% (n ¼ 4264) were used for testing the model.
The latter subset of images comprised 372 and 217 frames
showing P1 and P2 protruding lesions, respectively, and
3675 images with normal mucosa. Each image was evalu-
ated by the CNN, which predicted a classification, subse-
quently compared with the classification provided by the
specialists. With repeated data inputs, the overall accuracy
of the multilayer CNN increased, in both training and vali-
dation environments (Figure 4).
Overall Performance of the Convolutional Neural
Network

The distribution of results is displayed in Table 1.
Overall, the CNN had a mean sensitivity of 95.9% � 3.3%
and specificity of 97.1% � 1.1%. The accuracy of the CNN
was 97.1% � 1.2%. The positive predictive value and
negative predictive value were 83.0% � 11.0% and 95.7%
� 9.2%, respectively.
Figure 4. Evolution of the accuracy of the convolutional
neural network. Progress of the overall performance of the
CNN during training and validation phases, as images were
repeatedly fed into the neural network. CNN, convolutional
neural network.
CNN Performance for the Detection and Distinc-
tion of Normal Mucosa or Enteric Protruding
Lesions

We aimed to evaluate the performance of the algorithm
for the detection and distinction of enteric protruding le-
sions with different hemorrhagic potential. The summary of
results is shown in Table 2. The trained network had a
sensitivity of 90.6%, a specificity of 96.9%, and an overall
accuracy of 96.4% for the detection of protruding lesions
with uncertain/intermediate bleeding potential (P1 lesions).
The AUROC was 0.98. The network identified P2 protruding
lesions (high hemorrhagic potential) with a sensitivity,
specificity, and accuracy of 97.7%, 98.4%, and 98.3%,
respectively. The AUROC was 1.00. The CNN differentiated
P2 protruding lesions from P1 protruding lesions with a



Table 1. Confusion Matrix of the Automatic Detection vs
Expert Classification

Expert classification

Normal P1 P2

C
N
N

cl
as

si
fic

at
io
n Normal 254 9 3

P1 14 209 9

P2 15 10 190

Normal, normal mucosa; P1, lesions with uncertain/inter-
mediate hemorrhagic risk (red spots); P2, high-bleeding-risk
lesions (angiectasia/varices).
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sensitivity of 98.6%, a specificity of 96.3%, and an accuracy
of 97.2%. Normal mucosa was detected with a sensitivity of
95.4%, specificity of 95.9%, and accuracy of 95.5%. The ROC
curves and respective AUROCs for detection of normal
mucosa and P1 and P2 protruding lesions are represented
in Figure 5.

Computational Performance of the Convolutional
Neural Network

The CNN required 12 seconds to complete the reading of
the entire validation data set. This translates into an
approximated reading rate of 355 frames per second (3 ms/
image).

Discussion
This proof-of-concept study documents the development

of an accurate deep learning algorithm for automatic
detection and classification of the hemorrhagic potential of
enteric protruding lesions in CE. The CNN detected pro-
truding lesions of the small bowel with a sensitivity of
approximately 96% and a specificity and accuracy of 97%.
To the best of our knowledge, this is the first study to
evaluate the performance of a CNN, simultaneously aiding in
automatic detection of small-bowel protruding lesions and
characterization of their bleeding potential. Our network
reached high levels of image processing performance, with
each image being read by the CNN in 0.003 seconds.
Table 2. Convolutional Neural Network Performance for Detec

CNN�s diagnostic performance marks Sensitivity S

Overall, mean % � SD 95.9 � 3.3 9

P1P vs all, % 90.6

P2P vs all, % 97.7

Normal vs all, % 95.4

P1 vs Normal, % 93.9

P2 vs Normal, % 99.1

P2 vs P1, % 98.6

Normal, normal mucosa; NPV, negative predictive value; P1P,
risk; P2P, protruding lesions with high bleeding risk; PPV, pos
Most patients in whom a small-bowel tumor is ulti-
mately diagnosed present with OGIB or iron-deficient ane-
mia.18 Therefore, CE is performed during the workup of
these problems, and therefore, most small-bowel tumors are
initially diagnosed by CE. The diagnosis of small-bowel tu-
mors by CE is difficult as these lesions have significant
pleomorphism. Morphologic scores have been developed for
the diagnosis of small-bowel protruding lesions. Although
reaching good interobserver agreement, such tools have
suboptimal sensitivity and specificity.19 Moreover, the
assessment of the bleeding potential of these lesions may
have significant impact in both the etiologic diagnosis and
therapeutic approach to these patients. In our study, we
included several types of enteric protruding lesion with
distinct morphology. The inclusion of lesions across a large
morphologic spectrum increases the difficulty in automatic
detection.

The evaluation of CE exams is time-consuming, and le-
sions may be restricted to a small number of frames, thus
increasing the risk of overlooking significant lesions.20 The
development of AI algorithms has shown promising results
in overcoming these drawbacks.21–23 The multilayer archi-
tecture of CNNs resembles the organization of the animal
visual cortex and are primed for the automatic interpreta-
tion of images. Recent studies have suggested the high
diagnostic performance of CNN-based models for small-
bowel CE, including for the detection of ulcers and ero-
sions, celiac disease, luminal blood content, angiectasia, as
well as small-bowel protruding lesions.8,24–28 A common
conclusion across most studies focusing on the development
of AI models for automatic detection of lesions in CE is the
potential of these technologies to improve the time required
for reading full-length CE exams, as well as the lesion
detection rate.21,23 In line with this, in our study, a CNN
provided accurate detection and differentiation of the
bleeding potential of enteric protruding lesions. Moreover,
the algorithm had a high image-processing capacity (speed
of processing: 0.003 seconds/image), which is expected to
translate into shorter reading times.

Saito et al28 recently published a multicenter retro-
spective study reporting the development of a deep learning
algorithm based on a CNN for automatic detection of enteric
protruding lesions. Their model achieved a sensitivity of
tion and Differentiation P1 and P2 Protruding Lesions

pecificity PPV NPV Accuracy

7.1 � 1.1 83.0 � 11.0 95.7 � 9.2 97.1 � 1.2

96.9 73.9 99.1 96.4

98.4 76.3 99.9 98.3

95.9 99.3 77.0 95.5

96.8 74.4 99.4 96.5

98.5 80.0 99.9 98.5

96.3 94.2 99.1 97.2

protruding lesions with uncertain/intermediate hemorrhagic
itive predictive value; SD, standard deviation.



Figure 5. ROC analyses of the network’s performance in the detection of normal mucosa, P1 protruding lesions, and P2
protruding lesions. AUROC, area under the receiver operating characteristic curve; N, normal small-bowel mucosa; P1P,
protruding lesions with uncertain hemorrhagic potential (P1); P2P, protruding lesions with high hemorrhagic potential (P2).
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91% and a specificity of 80%. The overall accuracy of their
CNN was 85%. In this study, OGIB was the most frequent
indication in patients for whom a protruding lesion was
ultimately found. Nevertheless, the authors do not provide a
classification of the hemorrhagic potential of these lesions.

This work has several highlights. First, to our knowledge,
it is the first to detect protruding lesions of the small bowel
and to assess their bleeding potential according to a vali-
dated classification system (Saurin’s classification).
Although the use of this classification system is not wide-
spread, the authors believe that the implementation of
automatic tools for automatic characterization of the
bleeding potential of enteric lesions will have a significant
clinical impact. Second, we included a large number of im-
ages from 2 gastroenterology centers. Third, our algorithm
demonstrated high levels of performance in the detection
and differentiation of such lesions. Finally, the architecture
of our network demonstrated a high image-processing
performance, with an approximate reading rate of 355
frames per second. This reading rate is higher than that
reported for other CNNs for assisted CE reading.28,29 With
consistent implementation of these tools to routine clinical
practice, these performance marks may be reflected into
shorter CE reading times.

This study has several limitations. First, our study is of
retrospective design. Second, our model was developed
using still frames. Thus, evaluating the performance of this
technology using full-length videos in large prospective
multicentric studies is required prior to the introduction
to clinical practice. Additionally, our model focused on the
Pillcam SB3 system. Therefore, our results may not be
generalizable to other CE systems or applicable to other
clinical scenarios. Future studies should include the eval-
uation of this model using other CE systems, different
computer specifications, and, particularly, different data
sets.

In conclusion, deep learning-based tools are expected to
have a significant impact in the interpretation of CE exams,
and their application to routine clinical practice is expected
to grow in the near future. The authors believe that our
results may help to sediment the application of AI technol-
ogy in this field.
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