
 

www.aging-us.com 10450 AGING 

INTRODUCTION 
 

The RIPK2 kinase transduces signaling downstream of 

the intracellular peptidoglycan sensors, nucleotide-

binding, and oligomerization domain (NOD1) and 

NOD2, to promote a productive inflammatory response 

[1, 2]. The NOD1 and NOD2 are cytosolic Nod-like 

receptor (NLR) family proteins, activation of which will 

further activate NF-κB and MAP kinases, leading to the 

transcription of pro-inflammatory cytokines and the 

induction of autophagy [3]. Signaling by NOD2-RIPK2 

has attracted wide scientific attention owing to its 
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ABSTRACT 
 

Receptor Interacting Serine/Threonine Kinase 2 (RIPK2) is located on chromosome 8q21 and encodes a protein 
containing a C-terminal caspase activation and recruitment domain (CARD), which is a component of signaling 
complexes in both the innate and adaptive immune pathways. To estimate the value of RIPK2 in evaluating the 
prognosis and guiding the targeted therapy for patients with kidney renal clear cell carcinoma (KIRC), we 
analyzed total 526 KIRC samples from The Cancer Genome Atlas (TCGA) database. Our result showed that RIPK2 
was upregulated in KIRC tumor samples compared with normal samples. Cox regression was performed to 
calculate the hazard ratio of RIPK2 expression as an unfavorable prognosis feature for overall survival. 
Moreover, RIPK2 expression was positively correlated to the high-risk clinical stage, and metastasis features. 
The upregulation of RIPK2 was strongly correlated with various immune signaling pathway dysregulations as 
well as immune phenotypes changes in KIRC patient’s cohort. In addition, inhibition of RIPK2 activity by either 
shRNA-mediated knockdown or inhibitor significantly reduced kidney cancer cell viability, trans-migration in 
vitro, and impaired tumor growth in vivo. In conclusion, elevated RIPK2 expression indicates a worse 
prognosis for KIRC patients and could serve as a potential prognostic biomarker and therapeutic target in 
kidney cancer. 
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significant role in numerous diseases, making 

pharmacologic inhibition of RIPK2 activity be a 

promising strategy [2, 4]. Accumulating studies have 

implicated that RIPK2 predominantly expresses in the 

human breast, kidney, liver, and ovary tissues, and is 

upregulated in different types of tumors, including 

bladder, breast, and lung cancers [5–8]. As a remarkable 

association between the expression level of the RIPK2 

gene and oncogenesis has been established, it has been 

shown as a potential target for cancer therapeutic 

intervention. 

 

Kidney renal clear cell carcinoma (KIRC) is the eighth 

most common type of cancer and accounts for 70–80% of 

renal cell carcinoma, representing 4.2% of all new cancer 

cases, with about 73,820 new cases and 14,770 deaths 

estimated for 2019 in the United States [9]. Generally, 

there is no early clinical symptom revealed until the 

volume of the tumor is large enough. Thus, most KIRC 

patients are diagnosed in the medium or late stages, in 

which the mortality and recurrence rates are quite high. It 

is urgent to study the carcinogenesis and progression of 

KIRC and identify some biomarkers for the early 

diagnosis of KIRC [10, 11]. However, to date, limited is 

known about the oncogenesis and pathogenesis of KIRC, 

and few biomarkers for clinical use has been found. As 

far as we have known, the oncogenic and prognosis role 

of the RIPK2 gene in KIRC has not been systematically 

analyzed, and additional investigations are merited. 

 

As one of the largest cancer genomics databases, The 

Cancer Genome Atlas (TCGA) has profiled more than 

five hundred KIRC samples with genomic alterations, 

expression profiles, and clinical annotations data have 

been involved. The genomics, transcriptomics, and 

clinical data of the KIRC cohort (a total of 526 tumor 

samples) from the TCGA database were been explored 

to obtain a better understanding of the roles of the 

RIPK2 gene in the carcinogenesis process of KIRC. We 

investigated the somatic mutations, copy number 

variation, expression profiling, immunological features 

of the tumor microenvironment, and clinical association 

significance of the RIPK2 gene in this work. Our 

analysis demonstrated that RIPK2 upregulation 

correlated with signature genes of tumor immunity, 

clinical features of metastasis, and high histological 

grade, suggesting that RIPK is a potential oncogene and 

unfavorable clinical prognosis marker for KIRC. 

 

RESULTS 
 

Oncogenic role and prognosis value of RIPK2 

upregulation 

 

First, the mRNA expression value of RIPK2 was 

determined in KIRC samples based on RNA-sequencing 

data of the TCGA database. The results showed that the 

RIPK2 gene was dramatically higher expressed in KIRC 

tumor samples (N = 526) compared with normal tissues 

(N=72) (Figure 1A, top, log-scale). The over-expression 

trend of RIPK2 was also detected when compared with 

the matched tumor samples with adjacent normal 

samples (P < 0.0001) (Figure 1A, bottom, linear-scale). 

To further investigate whether the upregulation of 

RIPK2 is due to the gene copy number amplification or 

epigenetics change (like promoter demethylated), we 

interrogated the chromosomal segment to determine the 

copy number alterations of KIRC samples. The KIRC 

patients could be stratified into four sub-groups based 

on the copy number values of gene RIPK2 estimated 

 by GISTIC2 algorithm (Low-level deletion sub-group, 

N = 64; Diploid sub-group, N = 389; Low-level 

amplification sub-group, N = 62; High-level 

amplification sub-group, N = 3) [12, 13]. The results 

revealed that about one-fifth of all KIRC samples 

harbored RIPK2 copy number amplification (Figure 

1B), and consistently, exhibited higher gene expression 

value than those harboring diploid RIPK2. In addition, 

we did not find any association between the methylation 

level at the gene region of RIPK2 and its mRNA 

expression level (Figure 1C). Consequently, copy 

number gains of the gene RIPK2 was likely the key 

machinery that contributes to the overexpression in 

KIRC patients. Furthermore, the upregulation of RIPK2 

was also confirmed at both protein level, while the 

phosphorylation level of RIPK2 that representing it 

activated state was also significantly increased in KIRC 

samples (Supplementary Figure 2, 3). 

 

Since the RIPK2 gene was aberrantly upregulated  

in KIRC tumor samples, we next determined the 

prognostic value of its expression in KIRC patients. As 

shown in Figure 1D, the comparison of Kaplan–Meier 

curves (5-year overall survival) determined by the 

quartile (median, respectively) of RIPK2 gene 

expression value revealed that higher expression sub-

group was significantly correlated with inferior survival 

for KIRC patients. Taken together, a positive 

correlation between gene copy number amplification 

and over-expression of the gene RIPK2 was observed in 

KIRC tumor samples, and its up-regulated expression 

could serve as an adverse prognostic marker for KIRC 

patients. 

 

RIPK2 upregulation is associated with the 

dysregulated immune pathway 

 

We next performed the differential gene expression 

(DGE) analysis between RIPK2 high-expression sub-
group (N = 132) and RIPK2 low-expression sub-group 

(N = 132) based on the KIRC cohort of the TCGA 

database (Figure 2). In total, we identified 471 
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significantly up-regulated genes and 263 down-regulated 

genes in RIPK2 high expression samples when 

compared with low expression samples (Supplementary 

Table 1). And more interestingly, when we performed 

the gene ontology (GO) enrichment analysis by using 

these up-regulated genes as input, the results showed 

that nearly all of the enriched functional terms (9 of the 

top 10 enriched gene ontology terms) were immune-

related (Figure 2B). Then, the gene set enrichment 

analysis (GSEA) by using the KEGG pathway gene sets 

from MSigDB database was also been employed (Figure 

3A), which revealed that most of the immunologically 

related pathways (Cytokine-cytokine receptor interaction 

pathway, Antigen processing and presentation pathway, 

Natural killer cell mediated cytotoxicity, B cell receptor 

signaling pathway, T cell receptor signaling pathway) 

were positively enriched in samples harboring RIPK2 

high-expression compared with RIPK2-low expression 

samples (Figure 3A, Supplementary Figure 1). We also 

found a very limited number of significantly enriched 

metabolism-related gene sets (Butanoate metabolism 

pathway, Valine, leucine, and isoleucine degradation 

pathway, Propanoate metabolism pathway) were 

negatively enriched in RIPK2 high-expression KIRC 

patients (Figure 3B). Consistently, most significantly 

KEGG pathway gene sets (the two of three) that 

enriched in sub-groups with RIPK2 high-expression of 

KIRC patients were immune signaling related pathways 

(Figure 3B). 

 

Interaction pattern and immune phenotypes changes 

by RIPK2 upregulation in the kidney tumor 

microenvironment 

 

The tumor microenvironment is a dynamic multi-scale 

molecular and cellular networks with high complexity 

that plays critical roles in tumor prevention, but also its 

initiation and progression. To determine the network-

based interaction pattern change of the immunological 

activity, we next performed the pathways enrichment 

and signaling network analysis by using the Ingenuity 

Pathway Analysis (IPA) software. The identified 

significantly up-regulated genes in KIRC samples based 

on the above analysis were used as the input gene list. 

The results showed that among all the enriched 

networks, about half (7/14) are immune-related, which 

 

 
 

Figure 1. Oncogenic role of RIPK2 in human kidney cancer. (A) Change of RIPK2 mRNA expression between tumor samples and 

normal samples from TCGA KIRC studies. (B) Dot plot showing the positive correlation between RIPK2 copy number values defined by GISTIC2 
approach and mRNA expression values quantified by FPKM. (C) Dot plot showing the correlation between RIPK2 methylation values defined 
by HM450 approach and mRNA expression values quantified by FPKM. (D) Kaplan–Meier survival curve comparing the high and low 
expression value of RIPK2 (determined by the mean or quantile value) for the TCGA KIRC patient cohort. Statistical significance was 
determined by one-way ANOVA and the log-rank test. 
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were consistent with differential expression analysis and 

GSEA pathway activity results (Figure 4A). The 

network representation of the high-ranked immuno-

logical signal network associated with “Cell-To-Cell 

Signaling and Interaction, Cellular Movement, Immune 

Cell Trafficking” was shown in Figure 4B. Collectively, 

these data demonstrated an obvious positive correlation 

between dysregulation of RIPK2 gene expression and 

immunological changes in the tumor microenvironment. 

Considering KIRC is usually abundant in immune 

infiltrates consisting of lymphocytes, dendritic cells, 

macrophages, and others. Different functions are 

ascribed to the different subsets of immune cells. The 

role of the immune system changes in kidney cancer is 

not only observed through the inflammatory mediators 

but also at the cellular level, that is, via the changes of 

immune phenotypes and cellular interactions would 

lead to tumor microenvironment reorganizations. 

Further-more, to investigate whether some specific 

subsets of leukocytes were affected by the RIPK2 

expression level, we estimated the abundance of each 

immune cell phenotype in the tumor microenvironment 

of KIRC by using the TIMER algorithm [14]. Among 

the major tumor-infiltrating immune effector cells that 

can be identified by TIMER, including T cell (CD4 T 

cells and CD8 T cells), B cells, macrophages, 

neutrophils, and dendritic cells. As shown in Figure 

5A, most of the immune cell phenotypes had a higher 

infiltration level in RIPK2-overexpression samples 

compared with low expression KIRC samples, except 

for CD4 T cells. 

 

RIPK2 upregulation samples exhibit a selective 

increase of SETD2 and BAP1 genomic alterations 

 

There are many well-recognized hyper-mutated genes 

(VHL, PBRM1, SETD2, BAP1, and MTOR) in KIRC 

patients cohorts from the TCGA database. So we next 

evaluated the correlation of the RIPK2 over-expression 

and the mutation profile of these genes to examine 

whether the tumor samples with RIPK2 upregulation 

were enriched for some specific somatic alterations. The 

OncoPrint function (from cBioPortal for Cancer 

Genomics web-server toolkits, https://www. 

cbioportal.org/) was employed to investigate the 

somatic mutation rate of these top five altered genes  

in the TCGA KIRC cohort (Figure 6A). Interestingly, 

the results revealed that the alteration rate 

 

 
 

Figure 2. Identification of differentially upregulated expressed genes. (A) Volcano plot of mRNA expression changes between KIRC 

samples harboring RIPK2 high- and low- expression value. The x-axis specifies the log2 fold-changes (FC) and the y-axis specifies the negative 
logarithm to the base 10 of the adjusted p-values. Gray vertical and horizontal dashed lines reflect the filtering criteria. Red and green dots 
represent genes expressed at significantly higher or lower levels, respectively. (B) Top 10 Gene ontology enrichment terms for up-regulated 
(top) and down-regulated (bottom) genes, respectively. 

https://www.cbioportal.org/
https://www.cbioportal.org/
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Figure 3. Gene set enrichment analysis between RIPK2 high- and low- expression samples. GSEA comparing gene-expression 

signatures of TCGA KIRC tumors with the RIPK2 high- and low-expression by using hallmark gene sets. GSEA positive result table (A) showing 
all the significant enrichment terms of the hallmark keg pathway gene sets from MSigDB, and GSEA negative result table (B) showing 
significant enrichment terms of the KEGG pathway gene sets from MSigDB. 

 

 
 

Figure 4. Immune signaling interactions and network analysis. (A) The table showed the significant signaling networks actively 
compared between the RIPK2 high-, and low-expression samples by using Ingenuity Pathway Analysis (IPA) database. (B) The highest-ranked 
immunological signal pathway network revealed by IPA. Proteins indicated in red were up-regulated in RIPK2-high KIRC samples and the 
intensity of red means the foldchange. The shapes are indicative of the molecular class (i.e. protein family). Lines connecting the molecules 
indicate molecular relationships. In detail, dashed lines indicate indirect interactions, and solid lines indicate direct interactions. The style of 
the arrows indicates specific molecular relationships and the directionality of the interaction (A acts on B). 
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of SETD2 and BAP1 genes in the sub-group of KIRC 

patients with RIPK2 high-expression is 3-fold higher 

than RIPK2 low-expression sub-group (Figure 6B). 

Recent studies identified SETD2 functions as a tumor 

suppressor in kidney cancer, which was frequently 

inactivated and associated with the recurrence of clear 

cell renal cell carcinoma [15, 16]. For BAP1, it had 

been proven that BAP1 served as a tumor suppressor, 

and the loss of BAP1 could result in enhanced 

mesenchymal-epithelial transition in kidney tumor cells 

[17, 18]. However, the expression of both SETD2 and 

BAP1 was not affected by RIPK2 knockdown 

(Supplementary Figure 4F, 5B, 5C). 

 

Associations between tumor clinical state and RIPK2 

expression 

 

We next analyzed the distribution of clinical and 

pathological features among different RIPK2 expression 

sub-groups. As expected, the tumor samples with 

metastasis status: M1 (spread to other parts of the body 

patients) were dramatically enriched in the sub-groups 

of KIRC patients harboring high-expression of the 

RIPK2 gene (P < 0.0001, Figure 7A). Moreover, we 

also observed that there were dramatic differences in 

tumor stage (Figure 7B) and histologic grade (Figure 

7C) distribution between high- and low-expression of 

RIPK2 sub-groups. The tumors with RIPK2 over-

expression showed an increased risk of the high-grade 

stage when compared with RIPK2 low-expression 

samples, and this was also confirmed at protein levels of 

both total protein and phosphorylation state 

(Supplementary Figure 3). 

 

Inhibition of RIPK2 activity suppressed cell 

proliferation in vitro and in vivo 

 

To investigate the relationship between RIPK2 

expression and tumorigenic capacity, we firstly knocked 

down RIPK2 expression by shRNA strategy. Realtime 

PCR and Western blot results showed that the 

expression level of RIPK2 was reduced to about 20% 

 

 
 

Figure 5. The difference in estimated immune cell fraction. Distribution plot of estimated immune cell fraction among between RIPK2 
high- and low- expression samples. Statistical significance was determined by the Wilcoxon rank-sum test. 
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by two different shRNA (Figure 8A, 8B). Cell count kit 

8 assay and colony formation assay were performed to 

determine the ability of cell proliferation after RIPK2 

knockdown. We found that decreased RIPK2 

expression significantly delayed cell proliferation, and 

colony formation capacity (Figure 8C, 8D). Moreover, 

cell migration ability was also attenuated after reducing 

RIPK2 expression (Figure 8E). Mechanistically, RIPK2 

knockdown greatly decreased the phosphorylation level 

of NF-κB and c-Jun N-terminal kinase (JNK), while no 

change was observed in the total protein levels of NF-

κB and JNK. In a complemental experiment, 

GSK2983559 (3 μM), a selective inhibitor of RIPK2, 

was used to suppress RIPK2 activity. Expectedly, 

inhibition of RIPK2 by 3 μM GSK2983559 completely 

reproduced the effect of RIPK2 knockdown in cell 

proliferation and migration (Supplementary Figure 4B–

4D). Furthermore, the combination of shRNA targeting 

RIPK2 and GSK2983559 showed no additive inhibitory 

effect on cell proliferation, thus excluding the 

possibility for off-target. To evaluate whether RIPK2 

can be used as a potential therapeutic target in KIRC, 

we established the xenograft model by injection of 

RIPK2-knockdown or control cells into nude mice and 

monitored the tumor size over time. We observed that, 

the tumor size of nude mice in the RIPK2-knockdown 

group was significantly smaller, suggesting that 

inhibition of RIPK2 activity effectively suppress tumor 

growth in vivo (Figure 8F). Consistently, administration 

of GSK2983559 also suppressed the in vivo tumor 

growth (Supplementary Figure 4E). 

 

DISCUSSION 
 

Previous studies have reported that the gene RIPK2 

played important roles in both inflammatory activity 

and tumor invasion and metastasis processes [4, 19]. 

Serine/threonine/tyrosine kinase contributes to the 

modulation of innate and adaptive immune responses 

and is involved in the tyrosine phosphorylation of the 

guanine exchange factor ARHGEF2 leading to NFκB 

activation by NOD2 [1, 20]. To our knowledge, this is 

the first demonstration of RIPK2 upregulation during 

carcinogenesis in human kidney cancers. Our results 

highlighted the oncogenic role of RIPK2 over-

expression in KIRC and suggested that the copy number 

amplification would be one of the potential genetic 

drivers for its upregulation. Furthermore, our data 

 

 
 

Figure 6. SETD2 and BAP1 genomic alterations are selectively enriched in RIPK2-high expression samples. (A) cBioPortal 

OncoPrint plot showing the distribution of VHL, PBRM1, CDKN2A, SETD2, BAP1, and MTOR genomic alterations rate in the TCGA KIRC dataset. 
(B) Bar graphs showing the percentage of TCGA KIRC samples with genomic alterations in SETD2 and BAP1 by different RIPK2 expression 
groups. 
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revealed that RIPK2 could serve as a potential 

unfavorable prognosis biomarker for KIRC patients. In 

the past few years, even though significant progress in 

biomedical imaging technology and application has 

greatly improved the diagnosis of renal cell carcinomas, 

most of these malignancies are still detected at an 

advanced stage due to their asymptomatic nature. 

Consequently, more oncogenes, particularly potential 

biomarkers for diagnosis and/or prognosis of KIRC are 

urgently required in this field. 

 

RIPK2 has been associated with activation of the NF-κB, 

JNK, extracellular signal-regulated kinase (ERK), and 

mitogen-activated protein kinase (p-38) pathways. RIPK2 

also mediates pro-inflammatory signaling from the 

bacterial sensors NOD1 and NOD2 and is an emerging 

therapeutic target in autoimmune and inflammatory 

diseases [19, 21, 22]. Interestingly, a strong correlation 

between RIPK2 over-expression and dysregulated tumor 

immune infiltration level was found in this work. RIPK2 

promoted various immunological signaling pathways and 

immune phenotypes (including CD8 T cell, Dendritic 

cell, B cells, Neutrophils, and Macrophages) in the tumor 

microenvironment. The tumor microenvironment with 

chemotactic characteristics would recruit infiltrating 

immune cells including lymphocytes (such as T cell, B 

cell, and NK cell) and myeloid cell (such as monocyte, 

macrophage, and neutrophil). Usually, these infiltrating 

immune cells serve as a protective antitumoral role in the 

tumor microenvironment, but they could also contribute 

to cancer progression under particular circumstances. As 

exemplified by the tumor-associated macrophages 

(TAM), they could release angiogenic factors and 

fibroblast growth factors, which result in tumorigenesis 

and promote the process of tumor growth, invasion, and 

apoptotic resistance [7, 13, 23]. Thus, high infiltration of 

immune cells in kidney tumor samples may support 

tumors as that tumor cells, in turn, modulate the 

microenvironment within which they reside. Given that 

our work showed the potential linking between RIPK2 

dysregulated expression and altered immunological 

activities in the tumor microenvironment of KIRC, we 

believe that the increase of RIPK2 transcripts would 

cause NF-κB signaling activation and subsequently 

contributing to KIRC pathogenesis and aggressiveness. 

The mechanism is still unclear what causes these links 

but the results presented lead us to suggest the possible 

use of RIPK2 as a therapeutic marker, which will shed 

light on the future development of anti-cancer therapies 

for KIRC. 

 

 
 

Figure 7. The difference in clinical characteristics between RIPK2 high- and low- expression samples. (A) Distribution of M0 and 
MX samples among different RIPK2 expression subtypes of KIRC from the TCGA patient cohort and functional modules activation analysis by 
IPA based on up-regulated genes in RIPK2-high samples. (B) Distribution of tumor stages among different RIPK2 expression subtypes. (C) The 
distribution plot of the patient’s somatic mutation count (left) and the patient’s fraction of copy number altered (right) among KIRC patients 
between RIPK2 high- and low- expression samples. 
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In this work, it is a very interesting and promising 

finding that our results showed the KIRC samples 

harboring RIPK2 over-expression enriched in the 

somatics mutants of gene SETD2 and BAP1, these 

results provided potential interaction between RIPK2 

and these two well-known oncogenes of kidney cancer 

[24, 25]. As far as we have known, the gene RIPK2 is 

not the target gene of SETD2 and BAP1, and there is no 

published work that has leaked the possible correlation 

between them, so it will be an open question for the 

researcher in this filed. Besides, our data revealed that 

the copy number amplification probably provides a 

genetic fix that facilitates RIPK2 overexpression in the 

KIRC cohort of this study, however, we believe that the 

gene amplification that we mentioned in this work 

would not the only mechanism to up-regulate the 

mRNA expression of the gene RIPK2 in the cancer cells 

of KIRC. More exploratory and integrative cancer 

genomics work based on KIRC (such as epigenomics 

analysis) datasets will be needed in future work. 

 

CONCLUSIONS 
 

Our findings identified RIPK2 as a potential oncogenic 

gene for KIRC and revealed its involvement in 

dysregulated immunological activities in the tumor 

microenvironment of KIRC. We also proved that RIPK2 

could serve as a novel prognosis marker and therapeutic 

target in KIRC. In future clinical use, the anti-RIPK2 

agents as a potential therapy for KIRC patients may 

open new avenues for the development of antineoplastic 

drugs. 

 

 
 

Figure 8. Knockdown of RIPK2 inhibit the 786-O cell proliferation, migration, colony formation and in vivo growth. (A) 
Western blot analysis of the 786-O cells stably transfected with control shRNA (NTC), or that targeting RIPK2 coding region (shRIPK2-1 and 
shRIPK2-2). (B) Quantitative PCR analysis of the RIPK2 mRNA level. Data are means ± SD (n=3), **p<0.01; (C) Cell proliferation results 
expressed in means ± SD (n=5), **p<0.01. (D) Colony formation assay photos (left) and quantitative results (right), Data are means ± SD 
(n=3), **p<0.01. (E) Migration result of 786-O cells, migrated cells were calculated and expressed with means ± SD (n=5), **p<0.01. (F) In 
vivo xenograft model of 786-O, the tumor volume was determined twice a week. Tumor volume was expressed in means ± SEM (n=5), 
**p<0.01. 
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MATERIALS AND METHODS 
 

Plasmids and reagents 

 

shRNA plasmids. RIPK2 shRNA sequence was  

cloned into SHC201 vector (Sigma-Aldrich) and the 

plasmids were verified by DNA sequencing. The 

shRNA primer sequences are as follows: shRIPK2-1: 

5´- GGA CAT CGA CCT GTT ATT AAT -3´; sh 

RIPK2-2: 5´- CAC CAA TCC TTT GCA GAT AAT-3. 

Antibodies for RIPK2 (ab75257), JNK1+JNK2+JNK3 

(ab179461) and JNK1 + JNK2 + JNK3 (phospho 

Thr183+Thr183+Thr221) (ab124956) were purchased 

Abcam, and the antibody for β-actin (A5441) was 

obtained from Sigma-Aldrich; NF-κB p65 (# 8242), 

Phospho-NF-κB p65 (Ser536) (# 3033) were purchased 

from Cell Signaling Technology, Inc. GSK2983559 (# 

S8927) was from Selleck. 

 

Cells and cell culture 

 

Human KIRC cell line 786-O cells (CRL-1932™) and 

HEK293T cells (CRL-11268™) were obtained from 

ATCC. 786-O cells were cultured in RPMI-1640 

medium (Gibco, 31870082). HEK293T cells were 

cultured in DMEM medium (Gibco, C11965500BT). 

The complete culture media were composed of 10% 

heat-inactivated fetal bovine serum (FBS) (Gibco, 

10099-141), 1% antibiotics mixture of penicillin and 

streptomycin (Gibco, 15070063) and 2 mM glutamine 

(Gibco, 15140-122). Cells were maintained in a wet 

incubator at 37° C with 5% CO2. Mycoplasma 

contamination was tested by PCR. 

 

Lentivirus package 

 

The recombinant SHC201 vectors were co-transfected 

in HEK293T cells with PMD2.G (Addgene, #12259) 

and psPAX2 (Addgene, #12260) using Lipofectamine 

3000 (Life Technologies) for lentivirus packaging. Then 

the virus particles were harvested and used to infect 

786-O cells. And the infected cells were selected in 

media supplemented with 5 μg/ml of puromycin for 3 

days. SHC201 empty vectors were used as controls. 

 

Cell count kit 8 assay 

 

Cell Counting Kit 8 (Cat. No C0038) was purchased 

from Beyotimes and used to evaluate cell proliferation. 

Briefly, 2000 cells were seeded into 96 well plates and 

cultured with 100 μl complete culture medium. Cell 

activity was analyzed by adding 10μl CCK8 reagent to 

each well at day 1, 2, 4 and 6. Multiskan™ FC 

(Thermo) was used to detect the value of OD450 at each 

well of the plates after incubation for 1 hour. 

Experiments were performed in triplicate. 

Colony formation assay 

 

786-O cells were cultured in six-diameter dish (500 

cells / well) with 4ml complete medium. After 2 weeks 

incubation, the cells were washed with cold phosphate 

buffer saline (PBS) and then fixed with methanol for 

30min, followed by incubation with crystal violet dye 

for another 30 min, colonies were imaged and counted 

for analysis. 

 

Transwell assay 

 

24-well chemotaxis chambers (Corning, #3422) were 

used to analyze migration potential. 10,000 cells were 

resuspended in 100 μl serum-free medium and then 

were added into the top chambers. the bottom chamber 

was filled with 600ul complete medium. 24 hour later, 

the membranes were firstly fixed with methanol for 

about 30 minute at 23° C, ant then were stained with 

crystal violet for 30 minutes. The migrated cells were 

imaged and counted in six independent fields per group 

using a microscope. 

 

qPCR 

 

The total RNA was extracted from 786-O using Trizol 

(InvivoGen, 15596018) based method according to the 

manufacturer’s instructions. The first strand of cDNA 

was synthesized from 1 μg of total RNA with random 

primers and MMLV reverse transcriptase (Vazyme, 

R021). The polymerase chain reaction were performed 

with the CFX-96 Real-Time PCR System (Bio-Rad). 

The Glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) was chosen as an internal control for 

normalization, and the ΔΔCt method was used to 

analyze the relative expression of the analyzed genes. 

Each sample was measured in duplicates. The primer 

sequences are as follows: GAPDH: sense, 5´- GAA 

GGT GAA GGT CGG AGT C-3´; antisense, 5´-GAA 

GAT GGT GAT GGG ATT TC-3´; RIPK2: sense, 5´- 

CAG AAG CCT GCC TTA ACC -3´; antisense, 5´- 

CTT GGA TGT CAG TAG TGT CTA -3´; SETD2: 

sense, 5´- AGA CAG CAG AAG CAG ACA -3´; 

antisense, 5´- GCA CTG GAC GAT GAA CTG -3´; 

BAP1: sense, 5´- AAG GAG GAG GTA GAG AAG 

AG -3´; antisense, 5´- TGA GCC AGC ATG GAG 

ATA -3´. 

 

Western blot 

 

The 786-O cells were collected and resuspended in lysis 

buffer (20mM Tris, pH7.5, 150mM NaCl, 5mM EDTA, 

0.5% NP-40, 10% glycerol, protease inhibitor cocktail 
(Roche) at 4° C for 30 minutes, followed by 

centrifugation (12,000 × g for 15 minutes, at 4° C). The 

protein concentration was determined by Bicinchoninic 
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acid (BCA) assay. Proteins were separated by SDS–

PAGE and immunoblotted with anti-RIPK2 or anti-β-

actin antibody. 

 

Animal experiment 

 

All procedures of the animal experiment were approved 

by the Animal Experiment Ethics Committee of General 

Hospital of the Chinese People's Liberation Army. 

Female athymic BALB/c nude mice (aged 5-6 weeks) 

were purchased from the Vital River Laboratory Animal 

Technology Co. Ltd. To establish a xenograft model, 

nude mice were randomized into two groups and 5 × 

106 786-O cells were respectively injected sub-

cutaneously into the right flanks of mice of each group. 

An electronic caliper was used to measure the length 

and width of each tumor, and tumor volume was 

estimated by applying the following equation: volume = 

length × width2/2. For the in vivo pharmacodynamic 

model, GSK2983559 was administrated at 50 mg/kg 

b.i.d doses. 

 

Datasets 

 

The genomics, transcriptomics, and clinical 

information data of the KIRC cohort were accessed 

from the TCGA database (Figure. 1). Through the 

TCGA data portal (https://portal.gdc.cancer.gov/, 

March 2020), the masked copy number segment 

profiles and mRNA expression quantification profiles 

(HTSeq–FPKM) of all the KIRC tumor samples were 

obtained. The GISTIC2 algorithm was used to 

determine the gain or loss of copy number for each 

gene by transforming the DNA segment data with a 

noise threshold [26]. The detailed clinical information 

and annotated mutation files of KIRC tumor  

samples were accessed from cBioPortal for Cancer 

Genomics web-server (http://www.cbioportal.org/ 

index.do, February 2020). 

 

Gene-set enrichment analysis 

 

The gene-set enrichment analysis (GSEA) in this  

work was performed by using the GSEA software  

(version 3.0) [27]. The gene signatures that  

summarize the biological functions and pathway 

processes were accessed from the Broad Molecular 

Signatures Database (MSigDB v6.0, https://www.gsea-

msigdb.org/gsea/msigdb/). 

 

Then the hallmark gene-sets (N=50) and KEGG 

pathway gene-sets (N=186) were used as input for 

GSEA software. The signal-to-noise metric (with 
default parameters) was employed to rank all genes, and 

the 1,000 permutations were performed for the 

estimation of statistical significance. 

Survival analysis 

 

To describe the effect of categorical or quantitative 

variables on overall survival time (5-year), the Kaplan-

Meier curve with quantile level (the top 25% and the 

bottom 25%) as the cut-off value was performed, and 

the log-rank test was used to estimate the significance 

among multiple curves. The Cox proportional hazard 

regression model (5-year overall survival) was 

employed to perform the univariate survival analysis for 

the prognostic significance of each feature. 

 

Biostatistical analysis 

 

For comparisons, the Mann-Whitney test (between two 

groups) and the one-way analysis of variance 

(ANOVA) test (among multiple groups) were used for 

statistical significance estimated. For the correlation 

analysis between two continuous variables, the 

correlation coefficient (Spearman) was calculated to 

estimate the significance of the association. For the 

enrichment analysis, Fisher's exact test was employed 

for significance estimation. For the differential 

expression analysis, the DESeq2 algorithm was used to 

perform between RIPK2-high and RIPK2-low KIRC 

samples [28] (False Discovery Rate (FDR) <0.05), 

log2ratio of expression mean value>1, and the 

difference of the mean value of normalized counts for 

each gene >500) to determine the significant difference. 

All the statistical calculations were performed using R 

software (https://www.r-project.org/) and the graphs 

display were performed by using GraphPad PRISM 

software (version 8.3, GraphPad Software, Inc.). 

 

Ingenuity pathway analysis 

 

The Ingenuity Pathway Analysis (IPA) software was 

used for pathway enrichment and signaling network 

analysis in this work. The significantly up-regulated 

gene expression profile (with fold-change and P-value) 

based on DEG analysis was employed for the IPA 

software as the input gene list. Then the two functional 

models (1, Canonical Pathways, and 2, Signaling 

Network Analysis) of IPA software were run with 

default parameters. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Role of RIPK2 related pathway in KIRC. (A) The association plot of RIPK2 expression and NOD pathway 
activity. (B) The violin plot of the gene expression value of XIAP, SHARPIN, OTULIN, and TNFAIP3 in TCGA KIRC dataset. (C) The survival curve 
of XIAP, SHARPIN, OTULIN, and TNFAIP3 in TCGA KIRC dataset. 
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Supplementary Figure 2. Expression of RIPK2 in KIRC and other cancer types. (A) Expression profile of RIPK2 in cancer cell lines 
(Broad Institute Cancer Cell Line Encyclopedia Database). (B) Immunostaining of RIPK2 in renal cancer tissue, antibody: HPA015273, Patient 
ID:2067; Female, age: 72. (C) Expression of RIPK2 in different cancer types; *: p-value < 0.05; **: p-value <0.01; ***: p-value <0.001 
(www.timer.cistrome.org). 

http://www.timer.cistrome.org/
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Supplementary Figure 3. Expression of RIPK2 and its phosphorylation in KIRC. Z-values represent standard deviations from the 
median across samples for the given cancer type. Log2 Spectral count ratio values from CPTAC were first normalized within each sample 
profile, then normalized across samples. 
 



 

www.aging-us.com 10466 AGING 

 
 

Supplementary Figure 4. Effect of RIPK2 inhibition on signaling pathway and in vivo tumor growth. (A) Western blot analysis of 

JNK and NFκB expression in 786-O cells upon treatment with GSK2983559. (B–D) GSK2983559 (3 uM) mediated RIPK2 inhibition leads to 
suppressed cell growth determined by colony formation assay (B), CCK-8 assay (D) and cell migration (C). (E) In vivo efficacy of GSK2983559 
on 786-O xenograft model. (F) Quantitative PCR analysis of the SETD2 and BAP1 mRNA level. Data are expressed as means ± SD (n=3). 
 

 
 

Supplementary Figure 5. Expression of RIPK2 in KIRC scRNA dataset and expression correlation between RIPK2 and SETD2 
and BAP1. (A) Analysis of KIRC scRNA dataset (GSE111360) for the expression of RIPK2 among different groups of cells was shown in violin 

plot. (B) mRNA expression correlation between RIPK2 and SETD2 (r=-0.019) in TCGA KIRC patient dataset (http://starbase.sysu.edu.cn/). (C) 
mRNA expression correlation between RIPK2 and BAP1 (r=-0.297) in TCGA KIRC patient dataset (http://starbase.sysu.edu.cn/). 
  

http://starbase.sysu.edu.cn/
http://starbase.sysu.edu.cn/
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Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Differential expressed genes in RIPK2 high expression samples when compared with 
low expression samples. 

 


