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Abstract

Membrane proteins move in heterogeneous environments with spatially (sometimes temporally) varying friction and with
biochemical interactions with various partners. It is important to reliably distinguish different modes of motion to improve
our knowledge of the membrane architecture and to understand the nature of interactions between membrane proteins
and their environments. Here, we present an analysis technique for single molecule tracking (SMT) trajectories that can
determine the preferred model of motion that best matches observed trajectories. The method is based on Bayesian
inference to calculate the posteriori probability of an observed trajectory according to a certain model. Information theory
criteria, such as the Bayesian information criterion (BIC), the Akaike information criterion (AIC), and modified AIC (AICc), are
used to select the preferred model. The considered group of models includes free Brownian motion, and confined motion in
2nd or 4th order potentials. We determine the best information criteria for classifying trajectories. We tested its limits
through simulations matching large sets of experimental conditions and we built a decision tree. This decision tree first uses
the BIC to distinguish between free Brownian motion and confined motion. In a second step, it classifies the confining
potential further using the AIC. We apply the method to experimental Clostridium Perfingens [-toxin (CP[T) receptor
trajectories to show that these receptors are confined by a spring-like potential. An adaptation of this technique was
applied on a sliding window in the temporal dimension along the trajectory. We applied this adaptation to experimental
CP[T trajectories that lose confinement due to disaggregation of confining domains. This new technique adds another
dimension to the discussion of SMT data. The mode of motion of a receptor might hold more biologically relevant
information than the diffusion coefficient or domain size and may be a better tool to classify and compare different SMT
experiments.
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Introduction

Advances in single molecule tracking (SMT) techniques, have

made it possible to record trajectories of individual biomolecules in

a large variety of biological systems [1,2]. This allows for new

insight into the dynamics of membrane proteins and into the

structural organization of the membrane. Labeled membrane

biomolecules can undergo free Brownian diffusion, confined

motion, hopping, stabilization by scaffolding proteins, anomalous

diffusion etc. The complex motion of membrane proteins has been

attributed to molecular crowding effects [3,4], intermolecular

interactions [5,6], differences in lipid solubility [7], cytoskeleton

barriers [8,9], non-local potential fields induced by the environ-

ment [10–12], tethering to the cytoskeleton [13,14], lipid rafts or

domains [15,16] and hopping between confinement areas [7].

Finally, proteins often exhibit a mix between these behaviors that

lead to different modes of motion (Fig. 1 top).

It is important to reliably distinguish between different modes

of motion of molecules and to quantify their characteristics.

This allows to gain deeper insights into the structure of the

membrane and to better understand the nature of the

interactions between proteins and their environments. The most

widely spread approach to classify the mode of motion is based

on the analysis of the mean-square displacement (MSD) of the

tracked molecule [17,18]. The MSD is usually plotted against

the time lag t. In the case of Brownian motion, the resulting

points should lie on a line, whose slope is proportional to the

diffusion coefficient D (for 2 dimensional Brownian diffusion

MSD(t)~4Dta, a~1). If the relationship is not linear, the

motion of the molecule is classified as subdiffusive (av1) or

superdiffusive (aw1). In the case of confined motion, the

particle does not escape from a corral of a certain size during

the observed time, which will manifest itself in the MSD versus

time lag plot through a plateau. Yet, this method is known to

fail to take into account diffusion heterogeneities and transient

confinement may be misinterpreted as anomalous diffusion.

Hence, it tends to often identify biomolecule motion as

subdiffusive and leads to extremely wide distributions of

diffusion coefficients that are difficult to associate to physical

characteristics of a medium. A different approach is to analyze

the cumulative distribution of square displacements for a fixed

lag time. Here, the cumulative distribution is analyzed for
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individual trajectories [19] or multiple trajectories [20,21].

Similarly, this method is sensitive to heterogeneities and does

not include interactions with the local environment. Image

correlation techniques are also used [22], as well as a technique

based in Bayesian inference [23]. Other methods exploit higher-

order moments of the biomolecule displacement [24], first

passage times [25] and the analysis of the radial density

distribution [14]. These estimators also tend to introduce the

heterogeneities into the quantity describing the motion or are

sensitive to local geometrical effects. Finally, all of these

Figure 1. Bayesian Decision Tree for the Classification of Single-Molecule Trajectories. Biomolecules undergo a variety of different modes
of motion in the cell membrane, which are often difficult to distinguish. We show Brownian motion, and confined motion in a 2nd and 4th order
potential as examples for receptors that might reside in lipid rafts or move according to the picket-fence model. Using a Bayesian inference and a
decision tree, which can be developed through simulations with known modes of motion, it is possible to easily classify modes of motion of
molecules in the cell membrane. Adapted decision criteria, such as the Bayesian information criterion (BIC) or the Akaike information criterion (AIK)
can be computed from the maximum a posteriori distribution (MAP) and used to make decisions on the single-trajectory level. The decision tree that
was derived for this work is shown in the bottom of the figure. We first use the BIC (red) to determine if a potential confines the biomolecule and
then classify the type of potential using the AIC (blue).
doi:10.1371/journal.pone.0082799.g001

Bayesian Decision Tree for Classification

PLOS ONE | www.plosone.org 2 December 2013 | Volume 8 | Issue 12 | e82799



methods exploit only a subset of the available information

because they either discard part of the full information or loose

information through averaging.

A related challenge is to correctly subdivide trajectories that

undergo different modes of motion and to clearly determine when

the mode of motion changed [9,26]. Receptors have been

observed to be transiently confined in small corrals and to then

continue with free Brownian diffusion [19]. One method to detect

transient confinement is to evaluate the probability that the

tracked molecule will stay within a certain region during a short

window that is moving along the entire trajectory [27,28]. Yet, this

method fails when the environment is highly heterogeneous or

when local interactions are sufficiently strong to significantly

deviate the trajectories from pure Brownian motion. A more

versatile method evaluates the diffusion coefficient, the MSD

curvature, and trajectory asymmetry with a threshold for a

variable window. It has been shown to segment trajectories into

portions exhibiting stalled, constrained, directed or Brownian

motion [29]. Different types of motion can also be identified by a

characteristic feature vector [30]. Features that can distinguish

between directed motion, fast and slow drifting motion, and

confined motion are: net displacement, straightness, bending,

efficiency, asymmetry and skewness. Another wavelet transform

based method can reliably detect dynamic heterogeneities in time

series data without making prior assumptions about a model, but it

does not give information on what model best describes the data

[31].

In an attempt to address the high heterogeneity of the

membrane, to take the local and non-local interactions into

account and to exploit as much information as possible from

SMTs, we previously developed a Bayesian inference scheme

allowing the spatial mapping of both the diffusivity and the

potential field [7,10,12]. Here, we extend the Bayesian scheme to

classify the nature of protein motion in the membrane by building

a solid tool for discriminating between modes of motion. The

studied cases are free Brownian motion, the harmonic confined

trajectories V!r2 and the anharmonic confined trajectories

V!r4. These 3 simple models cover a large set of possible

membrane molecule behaviors. Confinement can stem from a

large variety of interactions, ranging from purely local interactions,

for example with the cytoskeleton, to highly non local interactions,

for example complex organization of different lipids. The higher

the anharmonicity of the potential, the more it can model localized

interactions. The here presented classification technique is an

extension of the inference technique that can provide a

comprehensive measure of the fit of a used model. The previously

introduced inference technique only returns the most likely values

for the model parameters, but it does not provide a relative value

for the goodness of fit of the chosen model over alternative models.

This quantitative model comparison is an additional layer of

analysis that is added after the previously introduced inference

method is used for each model separately.

To classify the motion, we infer the parameters that best fit an

observed trajectory, assuming a model for the motion and obtain

the maximum a posteriori (MAP). Using the MAP, we can

calculate various information based criteria, such as the Bayesian

information criterion (BIC) and the Akaike information criterion

(AIC) for each tested model and use them to determine the

preferred model (Figure 1 middle). These criteria are often better

suited for model selection than the direct likelihood-ratio test,

because they take the degrees of freedom of the model into

account. Moreover, to test the accuracy and to further enhance

the preferred model selection, we built a decision tree using

simulated data for all models (Figure 1 bottom). We then

developed a variant of the technique that performs the model

selection with a temporal resolution. This provides a tool that can

detect changes in the mode of motion of a biomolecule.

Extensive simulations with numerical trajectories undergoing

Brownian motion in confining potentials are used to build a

decision tree. The decision tree first determines if a trajectory is

undergoing free Brownian motion or if it is confined by a potential

through the Bayesian information criterion. If the trajectory is

classified as being confined by a potential, the decision tree can

further distinguish between potentials of the type V!r2 and

V!r4. Note that there are no theoretical limitations imposing the

analysis to specifically stop at order 4 for the potential. Yet, often

experimental recordings are limited to few hundred points, hence

the inference for higher order potentials would not gather

significantly more information. Then, we apply this technique to

experimental trajectories of the Clostridium Perfingens [-toxin (CP[T)

receptor on live Madin-Darby Canine Kidney (MDCK) cell

membranes and confirm that these receptors are confined in a

harmonic-like potential, as previously shown [11]. Furthermore,

we apply the temporal version of the model selection to

experimental CP[T receptor trajectories that lose confinement

due to disaggregation of confining domains. The CP[T is a

member of the pore-forming toxin family. It is secreted by the

bacterium as prototoxin monomers and activated by an enzymatic

reaction. An individual toxin binds to a currently unidentified 37-

kDa membrane receptor on the cell membrane, oligomerizes with

other bound toxins, and forms pores that pierce the cell membrane

with a b-barrel and cause the death of the cell by uncontrolled ion

exchange [32,33].

Results

Information Theory Criteria
To determine the preferred model corresponding to a

biomolecule trajectory, we calculate the Bayesian information

criterion (BIC), the Akaike information criterion (AIC), and a

modified version of the AIC whose performance improves for

short trajectories, the corrected AIC (AICc). These criteria were

developed to determine the preferred model, or the model that

best describes a given data set. Note that to build the decision tree,

trajectories were generated from the 3 predefined models.

Experimentally, trajectories will be associated to one of the 3
models which describe a large set of experimental situations, yet it

is obviously possible to extend the decision tree by adding other

types of motion.

The AIC is based on Kullback-Leibler information loss [34] and

can be understood as information entropy. The AIC is given by

AIC~{2: ln (L)z2k ð1Þ

where k is the number of free parameters in the model and L is the

MAP of the likelihood function assuming a certain model. Note

that in our case the number of parameters greatly varies between

models with 1 variable for the Brownian motion, 6 variables for

harmonic confinement and 16 variables for anharmonic 4th order

confinement. The preferred model is the one that yields the lowest

AIC value, which is a measure of lost information. The AICc is a

variant of the AIC with a correction for finite sample sizes N and is

given by

AICc~AICz
2k(kz1)

N{k{1
ð2Þ
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The BIC, also known as the Schwarz criterion, is based on Bayes

factors and is derived from the asymptotic behavior of Bayes

estimators under a special class of priors [35]. The preferred model

is the model that yields the minimal value for:

BIC~{2: ln (L)zk: ln (N) ð3Þ

These three information criteria are calculated for each

individual trajectory and then a decision about the preferred

model is made according to each criterion. Such an approach is

more adapted to single-molecule data. Averaging values of the

information criteria over many trajectories will lead to overlapping

distributions and to the inability to decide between different

models, as shown in figure S1. Furthermore, the high heteroge-

neity of biological media prevent the use of averaging between

different spatial parts of the cell.

We will next evaluate how many numerical trajectories are

correctly attributed to their respective mode of motion under

various conditions matching the ones met experimentally. This

will lead to a multidimensional map that will give us the

experimental parameter range for which this technique is valid.

Furthermore, we will use these results to build the decision tree.

Here, the studied cases are free Brownian motion, the harmonic

confined trajectories V!r2 and the anharmonic confined

trajectories V!r4. Specifically, we use the 2nd order potential

V (x,y)~1=2kX x2z1=2kY y2 with k~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

X zk2
Y

q
and the 4th

order potential V (x,y)~aX x4zaY y4 with a~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

X za2
Y

q
: These

3 simple models cover a large set of possible membrane molecule

behaviors. We will not discuss diffusion heterogeneities, since they

were treated in previous work [7,11,12]. Indeed, free Brownian

motion in heterogeneous diffusive environments can be modeled

and inferred as free Brownian motion with a locally varying

diffusion coefficient D(r).

Free Brownian Motion
Here, we determine how well the three information theory

criteria attribute the correct model to numerical free Brownian

trajectories. We studied the performance over a range of trajectory

lengths (N), diffusion coefficients (D), and acquisition times (tacq)

matching most of the experimental conditions and most of

biological media properties. Experimentally, the tacq is the time

over which the camera integrates the arriving photons plus the

readout time and images are acquired back to back. In simulations

tacq is the time between two simulated points. Under each

condition, which is specified in the figure caption, we simulated

300 trajectories and recorded the normalized histogram of

decisions, which are made after each trajectory by determining

which model yielded the minimal value for a criterion. The

performance of the BIC, AIC and AICc with respect to the

trajectory length is shown in figure 2 (A). The BIC clearly

outperforms the AIC and the AICc, even for very short

trajectories. Only 20 points are sufficient for the BIC to correctly

find the model of motion, while a length of 10 points is too short.

Fig. 2 (B), shows the range of diffusion coefficients, for which the

criteria perform well. Again, the BIC outperforms the AIC and

AICc in accuracy, as well as range. Under the specified conditions,

the BIC reliably attributed the correct model to the simulated

trajectories for a D between 0:01 mm2=s and 5 mm2=s. This is the

range of diffusion coefficients that is typically observed for

membrane molecules. The BIC also outperforms the AIC and

AICc with respect to the possible acquisition times. When the

input D is 0:1 mm2=s, the BIC is reliable for acquisition times

between 10 and 200 ms. These data indicate that the BIC is the

better indicator for free Brownian motion, when compared to the

AIC and AICc. It should be noted that this evaluation is solely for

the model of the trajectory and not the inferred parameters, which

might be subject to a bias, as discussed in reference [12].

Confined Motion in a Harmonic Potential (V!r2)
This section studies the performance of the three information

theory criteria for numerical Brownian trajectories that are

confined in a harmonic-spring potential (V~1=2kr2), where k is

the spring constant. Again, we simulated 300 trajectories under

each condition and recorded the normalized histogram of

decisions, which are made for each trajectory by determining

which model yielded the minimal value for a criterion. The

performance of the BIC, AIC and AICc with respect to the

trajectory length is shown in figure 3 (A). The BIC slightly

outperforms both the AIC and AICc for most trajectory lengths

and correctly attributes the right potential down to 50 trajectory

points. The diffusion coefficient does not change the performance

of the BIC over a large range of D (Fig. 3 (B)). The AIC and AICc

only perform down to a D of 0:05 mm2=s: Figure 3 (C) shows that

the BIC outperforms both the AIC and AICc and is correct over a

larger range of acquisition times. The impact of the strength of the

potential is investigated in Fig. 3 (D). The BIC is the better

indicator and the performance remains constant, except for low k.

This investigation shows that the BIC performs overall better in

determining the preferred model for Brownian trajectories that are

confined by a spring potential. A histogram of decisions for

parameters close to experimental conditions is given in Fig. S2.

Confined Motion in an Anharmonic Potential (V!r4)
The last investigated case are numerical Brownian trajectories

that are confined by a 4th order (anharmonic) potential V~ar4.

As before, we simulated 300 trajectories under each condition and

recorded the normalized histogram of decisions made for each

trajectory. The performance of the BIC, AIC and AICc with

respect to the trajectory length is shown in figure 4 (A). In stark

contrast to the previous two cases, the BIC does not perform well

and fails to attribute the correct potential. However, both the AIC

and AICc do find the correct potential down to a trajectory length

of 400 points. As shown in Fig. 4 (B), the AIC and AICc can

determine the correct model up to a diffusion coefficient of

0:1 mm2=s, while the BIC cannot. The AIC and AICc can

determine the correct model for acquisition times below 200 ms

when D is 0:1 mm2=s (Fig. 4 (C)). Figure 4 (D) shows that, similarly

to the spring-potential case above, the strength of the confining

potential does not significantly influence the ability to choose the

correct potential for the AIC and AICc, except at very low a
values. These data suggest that the BIC cannot be used to

determine that a trajectory is confined by a 4th order potential.

However, the AIC and AICc are good tools to do so.

Building the Decision Tree
Because the BIC cannot always determine the correct model, as

shown by the results above, model selection cannot be performed

in a unique step with one criterion. As we can see, the BIC can

distinguish between the free Brownian case and the harmonic

potential. However, AIC or AICc are able to distinguish between

the harmonic potential and the anharmonic potential over a wide

parameter range. This information points towards building a

decision tree with nested models that first distinguishes between

free motion and confinement and then, in a second step, can

Bayesian Decision Tree for Classification
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determine the shape of the potential. Using the idea of the decision

tree, we mapped a greater parameter space than previously

explored to determine the structure and limits of the final decision

tree. Simulations mapping the trajectory length N and the diffusion

coefficient D space, are shown in figure 5. Here, the normalized

performance of the three criteria for 300 numerical trajectories per

condition is shown by a color code after a threshold of 0.5 has

been applied. The threshold is used because we require that our

method should determine the correct model over half the time.

The three models are shown vertically in columns and the three

criteria BIC, AIC and AICc are shown for the three models in

rows, as indicated. The bright areas show that the model could be

attributed correctly and black squares indicate that the correct

model could not be found, i.e. more than 50% of trajectories were

falsely classified.

As previously suspected, the BIC can correctly distinguish

between free Brownian motion and the harmonic potential (red

box), but fails to determine the anharmonic 4th order potentials.

The AIC and AICc on the other hand, can distinguish between

the different potentials (blue box), but cannot be used to determine

free Brownian motion. Similar results are obtained by looking at

the other parameters, such as acquisition time tacq and N (Figure

S3). The potential strength also does not change the fact that only

the AIC and AICc can be used to distinguish the different

potentials (Figure S4).

The key in building the decision tree was to realize that the

anharmonic 4th order potential was falsely determined to be a

spring potential by the BIC, as shown in in Figure S5. Thus, we

used the BIC only to determine if a trajectory was undergoing

free Brownian motion or if it was confined in a potential (red

arm in Fig. 1 (bottom)). The simulations showed that this was

possible for trajectory lengths down to 20 points for most D and

acquisition times between 10 and 200 ms. Once, a trajectory

has been determined to be confined in a potential, the AIC or

AICc can be used to classify the potential to be spring-like or

4th order. For this classification, the trajectory length has to

exceed 500 points, the acquisition time has to be below 200 ms
and the potential strength of the 4th order potential should be

in the range of 0.1 to 1 pN=mm3. These conditions are the

consequence of the information accessible in the trajectory as

demonstrated in [36]. If the tracked biomolecule moves too fast

with respect to the acquisition time or if the force due to the

potential is far greater than the thermal noise, it will become

increasingly difficult to resolve these effects. Overall, the AIC

gives a slightly larger window in which it determines the correct

potential. Thus, we use the AIC instead of the AICc in our

final decision tree. A source code that calculates the BIC, AIC

and AICc for a given trajectory for the three models is provided

in the supporting information (Model distinction in trajectory.c)

(Source Code S4).

Application to Experimental Clostridium Perfingens [-
toxin (CP[T) Receptor Trajectories

We applied the derived decision tree to experimental

Clostridium Perfingens [-toxin receptor trajectories. This pore-

forming toxin binds to a receptor in the cell membrane and

undergoes confined motion in lipid rafts [10,11,37]. The tracked

toxin monomers exploit these confinement zones to locally

Figure 2. Information criteria for simulated free Brownian
trajectories. To determine the performance of the decision criteria, we
calculated the BIC (black), AIC (blue) and AICc (red) for simulated
Brownian trajectories under various conditions. (A) Percentage of
correct decisions (300 trajectories per point) versus the length of the
trajectory (Parameters: Dinput~0:1 mm2=s, tacq~50 ms, Br~30 nm): The
BIC outperforms the AIC and AICc. (B) Percentage of correct decisions
versus the input diffusion coefficient (Parameters: N = 500 points,
tacq~50 ms, Br~30 nm): The BIC outperforms the AIC and AICc and

works down to a diffusion coefficient of 0:01 mm2=s: (C) Percentage of

c o r r e c t d e c i s i o n s v e r s u s a cq u i s i t i o n t i m e (P a r a m e t e r s :
Dinput~0:1 mm2=s, N~500 points, Br~30 nm): The BIC outperforms
the AIC and AICc and works for acquisition times between 10 ms and
1000 ms.
doi:10.1371/journal.pone.0082799.g002
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increase their concentration and initiate further biological

functions. In previous work, we have analyzed the trajectories

by Bayesian inference and modeled them by a 2nd or 4th order

potential. We then used a comparison of the magnitude of

terms in the two polynomials to conclude that a 2nd order

description of the confining potential is sufficient because the

4th order terms are small [11]. With our here improved

decision tree technique, we analyzed a total of 60 trajectories,

which we have cut to only contain 500 points. The first step of

the decision tree that uses the BIC determined that 59

trajectories are confined, while only 1 trajectory was attributed

to free Brownian motion (Fig. 6 insert). For the confined

trajectories, the next step in the decision tree uses the AIC to

determine the shape of the potential. The blue histogram in

figure 6 shows that the majority of the experimental trajectories

(54) were found to undergo confined motion in a spring

potential, while only 5 were found to be confined by a 4th

order potential.

The results of the decision tree agree with the previous findings

that the CP[T receptor undergoes confined motion in a spring-like

potential [11]. However, the present method is much more flexible

and fast in classifying the shape of the potential than the previously

used method which consisted in fitting the confining potential with

polynomials of growing order and quantifying the evolution of the

likelihood along with the error on the inferred parameters.

Preferred Model Selection with Temporal Resolution for
Multi-mode Trajectories

Single-molecule trajectories often change their mode of motion.

Here, we applied the decision tree method to classify the mode of

motion along a single-molecule trajectory to determine the current

mode of motion during the observed trajectory.

To this end, we selected the preferred model via the information

criteria along a trajectory using a window of variable size. We

chose simulation parameters, similar to experimental conditions

(Dinput~0:1 mm2=s, tacq~50 ms, Br~30 nm, k~0:3 pN=mm,

N~500 frames). Consulting Fig. 5, we chose a window size of

51 frames that slides along the trajectory. As an example, we

studied the transition from confined motion in a harmonic spring

potential to free Brownian motion half way through the numerical

trajectory (Fig. 7 (A)).

Figure 7 (B) shows the determined mode of motion for the

numerical trajectory shown in 7 (A). The Bayesian decision tree

can correctly identify the confined part (red) of the trajectory and

the free Brownian motion part (blue). A low-pass filter that does

not allow switching of modes unless three consecutive frame

Figure 3. Information criteria for simulated Brownian trajectories confined in a spring-like potential (V = 1/2kr2 ). To determine the
performance of the decision criteria, we calculated the BIC (black), AIC (blue) and AICc (red) for trajectories under various conditions. (A) Percentage
of correct decisions (300 trajectories per point) versus the length of the trajectory (Parameters: Dinput~0:1 mm2=s, tacq~50 ms, Br~30 nm,
k~0:3 pN=mm): The BIC outperforms the AIC and AICc. (B) Percentage of correct decisions versus the input diffusion coefficient (Parameters:
N~500points, tacq~50 ms, Br~30 nm, k~0:3 pN=mm): The BIC outperforms the AIC and AICc and works down to a diffusion coefficient of

0:01 mm2=s: (C) Percentage of correct decisions versus acquisition time (Parameters: Dinput~0:1 mm2=s: N~500 points, Br~30 nm, k~0:3 pN=mm).
The BIC outperforms the AIC and AICc and works for acquisition times between 1 ms and 1000 ms. (D) Percentage of correct decisions versus input
spring constant (Parameters: Dinput~0:1 mm2=s, N~500 points, Br~30 nm). The BIC outperforms the AIC and AICc.
doi:10.1371/journal.pone.0082799.g003

Bayesian Decision Tree for Classification
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positions of the window yield a mode change, gives a very reliable

result (Fig. 7 (C)).

To study the performance in greater detail, we evaluated the

mode of motion of 50 numerical trajectories. Figure 7 (D) shows

the number of decisions, using the BIC criterion (shown on the x-

axis as a normalized histogram), as the central frame of the 51-

frame time window slides along the trajectories (shown on the y-

axis). When a frame was deemed free Brownian, it is represented

in blue (left side), when it was deemed confined in a spring

potential it is represented in red (right side). The red and blue

counts add up to unity for each central frame. The input mode of

motion is shown by the black dotted line and switches from

confined to free at frame 250. On average, the method can

correctly identify the mode of motion. The BIC is more sensitive

towards free Brownian motion, i.e. when some part of the 51-

frame long window of observation sees free Brownian motion, the

decision is deemed Brownian overall. This explains why the

method finds the frame at which the trajectory switches from

confined to Brownian at frame number 22869 for the ensemble of

50 trajectories. The ratio of confined to free Brownian motion

decisions agrees with the ratio previously determined by the

simulations for the decision tree (Fig. 5).

Comparison of the Bayesian Decision Tree Method to a
Residence Time Based Method

To further evaluate the precision of the here presented decision

tree method we compare it to a commonly used residence time

based method. The residence time based method detects temporal

confinement by identifying periods in which the receptor remains

in a membrane region for durations longer than a free Brownian

diffusing particle would stay in an equally sized region [28]. We

generate 5 trajectories for two different spring constants of 1200

frames length (60 s) that have three distinct temporal confinement

zones of 200 frames duration (10 s) and test whether the two

methods can detect the real confinement zones (Fig. 8 (A)) and the

level of falsely detected confinement zones, which are not present

in the input (Fig. 8 (B)). The results show that both methods can

identify confinement zones but only the Bayesian decision tree

method can detect all of the 15 input regions. The real strength of

the Bayesian decision tree method lies in the low number of false

positives, when compared to the residence time based method.

The decision tree method only finds one non-existing confinement

region, while the residence time method finds 5 and 6 false zones

for a spring constant of 0.3 and 0:6 pN=mm, respectively. Figure 8

(C–E) and (F–H) show the performance of the two methods along

Figure 4. Information criteria for simulated Brownian trajectories confined in a 4th order potential (V~ar4). To determine the
performance of the decision criteria, we calculated the BIC (black), AIC (blue) and AICc (red) for trajectories under various conditions. (A) Percentage
of correct decisions (300 trajectories per point) versus the length of the trajectory (Parameters: Dinput~0:1 mm2=s, tacq~50 ms, Br~30 nm,

a~0:5 pN=mm3). The AIC slightly outperforms AICc for shorter trajectories. The BIC classifies the trajectory erroneously as confined in a 2nd order
potential. (B) Percentage of correct decisions versus the input diffusion coefficient (Parameters: N~500points, tacq~50 ms, Br~30 nm,

a~0:5 pN=mm3). The AICc slightly outperforms AIC for small diffusion coefficients. The BIC is wrong and classifies the trajectory erroneously as
confined in a 2nd order potential. The AIC and AICc cease to work for diffusion coefficients higher than 0:2 mm2=s. (C) Percentage of correct decisions
versus acquisition time (Parameters: Dinput~0:1 mm2=s, N~500 points, Br~30 nm, a~0:5 pN=mm3). The AICc slightly outperforms AIC for short
acquisition times. The BIC does not work, i.e. correct attribution below 50%. The AIC and AICc cease to work for acquisition times longer than 100 ms.
(D) Percentage of correct decisions versus input potential strength (Parameters: Dinput~0:1 mm2=s, N~500 points, Br~30 nm). The AIC and AICc
work equally well and outperform the BIC. Very weak potentials cannot be detected.
doi:10.1371/journal.pone.0082799.g004
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two numeric sample trajectories for two different confining spring

constants of 0.3 and 0:6 pN=mm, respectively. The residence time

based method in Fig. 8 (E & F) fails to detect one input zone and

falsely declare a free Brownian section of the trajectory as

confined.

Model Selection along Experimental Clostridium
Perfingens M-toxin (CPMT) Receptor Trajectories

We applied the preferred model selection with temporal

resolution to an experimental CP[T receptor trajectory that

changes its mode of motion. As previously shown, the confining

membrane domain of the CP[T receptor can be destabilized by

oxidizing cholesterol in the cell membrane [7].

The Bayesian decision tree method determines a change of

motion from confined to free Brownian motion along the recorded

experimental data (Fig. 7 (E)). Here, the trajectory is undergoing

confined motion (red) at the beginning of the incubation with the

enzyme cholesterol oxidase. An additional trajectory is shown in

the Figure S6. As the enzyme gradually oxidizes more cholesterol

in the membrane, the receptor switches to free Brownian motion

(blue). This result agrees with our previous work, which detected a

decrease in confining potential along the CP[T receptor trajectory

during incubation with cholesterol oxidase.

Discussion

We introduced a decision-tree based method that uses

information criteria to determine the mode of motion of a

single-molecule trajectory. The method is based on the combined

use of the Bayesian information criterion (BIC), the Aikaike

information criterion (AIC), and a modified version of the AIC

(AICc). These criteria are used to determine which model best

describes a specific data set. The models that we discussed in this

work are free Brownian motion, confined motion in a harmonic

potential and confined motion in a 4th order polynomial potential.

All of these models can be associated to various identifiable

structural characteristics. A spring-like potential can indicate actin

tethering or hydrophobic interactions and an anharmonic 4th

Figure 5. Building the decision tree using information criteria from simulated trajectories. The 2D plots show the heat map of the
percentage of correct decisions out of 300 simulated trajectories per square for the BIC (first row), AIC (middle row), and AICc (bottom row). The input
trajectories were free Brownian (left column), Brownian confined in a 2nd order spring potential V!r2 (middle column), and Brownian confined in a
4th order potential V!r4 (right column). The heat map has a threshold of 0.5, which means that only cases where the information criterion works
correctly more than half of the time are non-black as indicated by the color scale. The BIC is the better criterion to determine if a trajectory is
undergoing purely Brownian motion or if is confined by a potential (red box & red arm in decision tree in Fig. 1). The BIC is not suited to distinguish
between a 2nd and 4th order potential. Here, the AIC and AICc provide a solution (blue box & blue arm in decision tree in Fig. 1).
doi:10.1371/journal.pone.0082799.g005
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order potential can indicate more local confinement by the picket-

fence model, for example. The information criteria allows

association of experimental data to these models. Thus, this

method can provide quantitative information on how much better

a certain model describes a trajectory with respect to other

competing models. Of course, it is possible to extend this method

to include more models of motion. Furthermore, more complex

environments can be numerically investigated and associated to

more simplified models, such as the ones discussed here to classify

trajectories.

In order to build the decision tree, numerical trajectories were

generated under various conditions matching previous experi-

mental data in the field of single-molecule tracking. These

trajectories were either undergoing free Brownian motion or

confined motion in a potential. For each trajectory, we calculate

the BIC, AIC and AICc using the posteriori probabilities

corresponding to each investigated model. Then the algorithm

chose the preferred model by evaluating which model has the

smallest information criterion value. The key feature was that this

method supplied a reliable method based on simple criteria that

can automatically classify the mode of motion.

Surprisingly, the most accurate method in choosing the

preferred model is not a simple decision making step, but a

decision tree where the two confined models are nested. A first

decision using the BIC determines if the trajectory is undergoing

free Brownian motion or if it is confined. Here, the minimal

trajectory length for meaningful classification is 50 frames under

most conditions (D: 0:01{10 mm2=s, kv0:1 pN=mm, and tacq:

10{100 ms). In a second step, the nature of the confining

potential is investigated. The AIC is used to distinguish between

the harmonic potential and the anharmonic potential. This

distinction can be made with trajectories that have more than

500 frames for diffusion coefficients below 0:1 mm2=s, spring

constants of 0:02{10 pN=mm, and a in the range of

0:1{1 pN=mm3. Experimentally determined single molecule

diffusion coefficients range from 0.004 to 2:2 mm2=s [38,39].

Thus, the presented method yield reliable results for two out of the

three magnitudes spanned by results from literature. Experimental

spring constants lie in the range of 0:3{10 pN=mm [11,13,14,40].

The method can provide an accurate model distinction for the

entire range of experimental spring constant values in the current

literature. The need for at least 500 frames is the largest limitation

of the presented technique and will provide a challenge for groups

that use organic fluorophores for tracking. However, quantum

dots or fluorescent nanoparticles provide an alternative label that

is more photostable. It should be noted that we did not discuss the

accuracy of the inferred parameters, such as the diffusion

coefficient in this text and we only focus on the ability to attribute

the correct model. They might be subject to a bias, as discussed in

reference [12]. We then apply the decision tree to experimental

CP[T receptor trajectories and show that the method can reliably

confirm previous findings about the nature of the confining

potential of these receptors.

The method can also be adapted to determine changes in the

mode of motion along a single-molecule trajectory. To this end, we

evaluated the mode of motion using a window of 51 frames that

slides along the trajectory in time. Simulations show that the method

can reliably classify confinement regions on numerical trajectories

and that it outperforms the commonly used residence time based

method. Thus, this technique supplies a rigorous and reliable tool to

automatically segment and classify SMT data. Finally, this method

can easily confirm previous findings about the loss of confinement of

CP[T receptor trajectories due to lipid raft disaggregation. In the

previous analysis, the mean diffusion coefficient increased from

0:063+0:01 mm2=s to 0:18+0:02 mm2=s, while the spring con-

stant of the confining potential decreased from 237+44 kBT :mm{2

to 35:4+7:7 kBT :mm{2 [7]. In the previous work, we have

analyzed the change in motion of many receptors and concluded

that their confinement reduces but does not become entirely free

Brownian motion [7]. Here, we have selected the most extreme

trajectories from the dataset, which do switch to free Brownian

motion for the sake of showing a change in the mode of motion.

In conclusion, we have successfully built a method that can

reliably distinguish between different modes of motion over a wide

parameter range. Furthermore, it is possible to quantify how

reliable the method is for each group of input parameters. This

method can be extended to include further models of motion, for

example phenomena like active transport and hopping.

This technique adds another dimension to the discussion of

SMT data. Currently, most of the discussions are focused on

determining the mean value of quantities, such as diffusion

coefficients and confining domain sizes. Such measurements,

however, are not easily compared over the vast range of

experiments and tracked biomolecule species. Additionally to

parameters, such as diffusion coefficient and domain sizes, this

method can be used to gain information about the mode of motion

and changes in the mode of motion. The mode of motion of a

receptor might hold more biologically relevant information than

the diffusion coefficient or domain size and is perhaps a better tool

to classify and compare different SMT experiments.

Materials and Methods

Generating Numerical Trajectories
In this work, we generate numerical trajectories that undergo

free Brownian motion or Brownian motion in a 2nd and 4th order

potential (V!r2 & V!r4). To simulate two-dimensional

Brownian motion, the length of each step was taken from a

Gaussian distribution with a standard deviation of
ffiffiffiffiffiffiffiffiffiffiffi
4DDt
p

, where

the input diffusion coefficient D and the acquisition time Dt. The

angle of each step is randomly distributed over ½0,2p�. Each

particle takes 1000 substeps during each Dt. The substeps are not

Figure 6. Classification of experimental Clostridium Perfingens
[-toxin (CP[T) receptor trajectories. We apply the decision tree in
Fig. 1 to 60 experimental trajectories with a length of 500 frames. First
we use the BIC to determine that the trajectories are confined (red
insert). 59 trajectories were found to be confined while one trajectory
was attributed to free Brownian motion. The AICc shows that the CP[T
receptors are confined in a 2nd order potential V!r2 , which is in
agreement with previous results [11].
doi:10.1371/journal.pone.0082799.g006
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averaged. If the trajectory is confined by a potential, the

displacement due to the force generated by the confining potential

is added to each substep. The confining potentials used, as

demonstration, in this work are the 2nd order spring potential

(V (x,y)~1=2kX x2z1=2kY y2 with k~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

X zk2
Y

q
), and the 4th

order potential (V (x,y)~aX x4zaY y4 with a~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

X za2
Y

q
). Yet,

we emphasize that this approach is not limited to spring potentials

nor to polynomial potentials. For all numerical trajectories, static

positioning noise Br~30 nm was added to the trajectory by an

additional displacement taken from a Gaussian distribution with

standard deviation 2Br with an angle randomly distributed over

½0,2p�. This Gaussian noise models all sources of noise, i.e.

Poissonian photon shot noise due to signal and fluorescence

background, detector noise, pixelization effects, and error of the

localization algorithm using a Gaussian representation. The source

code for the trajectory generation is given in the supporting

information: Free Brownian motion (GenerateBrownianTraj.c)

(Source Code S1), Brownian motion confined in a 2nd order

spring potential (GenerateBrownianTrajin2ndOrderPot.c) (Source

Code S2), and Brownian motion confined in a 4th order potential

(GenerateBrownianTrajin4thOrderPot.c) (Source Code S3).

Bayesian Inference
We developed the Bayesian inference approach to treat single-

molecule trajectories in previous works [10,12], but we include

some information here to make this article self-contained.

The single-molecule motion is modeled by the overdamped

Langevin equation:

dr

dt
~{

+V (r)

c(r)
z

ffiffiffiffiffiffiffiffiffiffiffiffi
2D(r)

p
j(t), ð4Þ

Figure 7. Classification of the mode of motion along a trajectory. (A) We apply the first part of the decision tree in Fig. 1 to single numerical
trajectories, which switch from being confined by a spring potential (red) to free Brownian motion (blue). (Parameters: Dinput~0:1 mm2=s, tacq~50 ms,
Br~30 nm, k~0:3 pN=mm). (B) shows the result of using the BIC criterion along the numerical trajectory shown in (A). We use a window of 51 frames
that slides along the trajectory, and a classification is made for each central frame of the window. The method can correctly identify confinement
(red). (C) Low-pass filtering the classifications gives a very robust method to determine the mode of motion of a trajectory that changes. (D) shows
the performance of the BIC along the 500 frames of 50 numeric trajectories. The input mode is shown by the black dotted line, which is at first
confined and switches to free Brownian motion at frame 250. The blue histogram shows the number of free Brownian classifications at a certain
central frame. The red histogram shows the number of spring-potential confined classifications. (E) Classification along a CP[T receptor trajectory,
while confinement is reduced due to a modification of the cell membrane.
doi:10.1371/journal.pone.0082799.g007
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with c(r) the spatially varying friction coefficient, D(r) the spatially

varying diffusion coefficient, V (r) the potential acting on the

biomolecule and j(t) the rapidly varying zero-average Gaussian

noise. The fluctuation-dissipation theorem gives D(r)~kBT=c(r)
[41]. In this work we don’t address the question of diffusion

heterogeneities by setting D(r)~D.

The associated Fokker-Planck equation, which governs the

evolution of the transition probability over time, has no general

solution for an arbitrary potential and a spatially varying diffusion

coefficient. We therefore divide the confinement domain into

subdomains using a mesh grid and the points of the trajectory are

attributed to their respective grid subdomains. Within each

subdomain, we consider that the potential gradient is constant.

Note, that this mesh is not used, when the suspected model is a

purely Brownian trajectory. This assumption enables us to solve

the associated Fokker-Planck equation to Eq. 4, for a constant Fij

and D per subdomain (i,j), where the forces in adjacent

subdomains is free to vary. The assumption leads to the expression

of the transition probability,

PConfined ((r2,t2jr1,t1)jFij ,D)~
e
{

(r2{r1{Fij (t2{t1)=cij )2

4 Dzs2= t2{t1ð Þð Þ(t2{t1)

4p Dzs2= t2{t1ð Þð Þ(t2{t1)
ð5Þ

with s the amplitude of the positioning noise 2Br. This expression

is the probability of going from one space-time coordinate (r1, t1)

Figure 8. Comparison to the residence time method. We apply the first part of the decision tree in Fig. 1 to single numerical trajectories, which
cycle between confinement by a spring potential and free Brownian motion. (Parameters: Dinput~0:1 mm2=s, tacq~50 ms, Br~30 nm, k~0:3 &
0:6 pN=mm). Receptors are confined three times for 200 frames (10 s). (A) Histogram of the correctly found confinement zones out of 15 zones for the
Bayesian decision tree method (blue) and the residence time method (red) for two spring constants. We use a window of 51 frames that slides along
the trajectory, and a classification is made for each central frame of the window. (B) shows a histogram of non-existing found confinement zones for
the Bayesian decision tree method (blue) and the residence time method (red) for two spring constants. (C & F) One of the five input trajectories with
three confining zones (red) with a spring constant of k~0:3 pN=mm and k~0:6 pN=mm, respectively. (D & G) Result using the Bayesian decision tree
method with free brownian motion in blue and confined motion in red. (E & H) Result using the residence time method with free brownian motion in
blue and confined motion in red.
doi:10.1371/journal.pone.0082799.g008
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to the next (r2, t2) for a diffusivity D and a force Fij with a

positioning noise s. The transition probability for the free

Brownian motion can be obtained from Eq. 5 by setting Fij~0

and gives:

PBrownian((r2,t2jr1,t1)j,D)~
e
{

(r2{r1)2

4 Dzs2= t2{t1ð Þð Þ(t2{t1)

4p Dzs2= t2{t1ð Þð Þ(t2{t1)
ð6Þ

The overall probability of observing a certain trajectory for a given

set of variables is then computed by multiplying all the

displacement probabilities between all individual points in the

dataset, assuming that the motion of the molecule is a Markov

process.

Now that the likelihood is known, we may apply Bayes’ rule:

P(QjT)~
P(T jQ)P0(Q)

P0(T)
, ð7Þ

where P QjTð Þ is the posterior or a posteriori probability of the

parameters, i. e. the probability that the parameters Q take on a

specific value given the recording of the trajectory T. P T jQð Þ is

the likelihood of the trajectory, i.e. the probability of recording the

trajectory T given a specific value Q of the parameters, P0 Qð Þ the

prior probability of the parameters and P0 Tð Þ is a normalization

constant called the evidence of the model [42,43]. Without prior

knowledge on the parameters, the prior probability P0 Qð Þ is

supposed to be constant over a broad range of possible values.

Calculation of the Posteriori Probability and Inferred
Value

The inferred values are obtained from the posteriori probability

distribution. All variables are initialized at zero. The prior

probability P0 Qð Þ is taken to be unity. A quasi-Newtonian

optimization using the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) algorithm [44] finds the maximum of the a posteriori

distribution (MAP) P T jD,Fij

� �
on a 10610 mesh of subdomains.

In the case of inferring the 2nd and 4th order potential, the Fij are

no longer independent but are governed by 2nd and 4th order

polynomials, respectively. The number of free parameters for the

pure Brownian case is thus 1, for the 2nd order potential it is 6, for

the 4th order it is 15. The inference algorithms were programmed

in C language and executed on a local PC (dual-core 3 GHz,

2 GB RAM) or Amazon web services (AWS) on c1.medium

instances (high-CPU computing instance).

Calculation of Information Criteria along the Trajectory
We determine the mode of motion along a trajectory that

changes its mode of motion by calculating the BIC, AIC and AICc

for a window of 51 frames, which slides along the trajectory in

time. The information criteria are calculated for each central

frame i of the window, by evaluating the posteriori probability and

subsequently the information criteria for the trajectory portion

between frame i{25 to frame iz25. We only distinguish between

free Brownian motion and confinement in a spring potential. To

test the algorithm, we generate 50 numerical trajectories with

parameters: Dinput~0:1 mm2=s, tacq~50 ms, Br~30 nm,

k~0:3 pN=mm, N~500frames. Fig. 7 shows that the decision

tree can distinguish these two modes of motion under these

conditions.

Clostridium Perfingens [-toxin (CP[T) Receptor Tracking
Y0.6Eu0.4VO4 nanoparticles were coupled to toxins as described

in [45]. In brief, we coupled APTES-coated europium-doped

nanoparticles to [-toxin produced by C. perfringens bacteria (Cp[T)

via the amine-reactive cross-linker bis (sulfosuccinimidyl) suberate

(BS3), as described in [11]. A BCA test used to determine the

amount of toxin after the coupling process, showed a toxin:nano-

particle coupling ratio of 3:1.

Tracking experiments were performed with a wide-field

inverted microscope (Zeiss Axiovert 100) equipped with a 63x,

NA~1:4 oil immersion objective and a EM-CCD (Roper

Scientific QuantEM:512SC). NPs were excited with an Ar+-ion

laser using the 465.8 nm line. A 500DRLP beam splitter (Omega)

directs the beam towards the sample. Emission was collected

through the beam splitter and a 617/8 M filter (Chroma).

Confluent cells on coverslips were incubated with 0.04 nM NP-

labeled proto-toxin (CP[pT) for 20 minutes at 37uC. The

concentration was low to avoid oligomerization and observe single

NPs (&10 per cell). The sample was then rinsed three times with

observation medium (HBSS +10 mM HEPES buffer, 1% FCS) to

remove non-bound toxins and nanoparticles. We recorded images

at a frame rate of about 20 Hz (exposure time: 50 ms; readout

time: 1:3 ms) and an excitation intensity of 0:25 kW=cm2 at 37uC
in observation medium. We have verified that the nanoparticles do

not perturb the motion of the CP[T receptor through tests with

substitute organic fluorophore labeling and the use antibodies

[11].

The toxin receptor position in each frame was determined from

a Gaussian fit to the diffraction pattern of the nanoparticles with a

home-made Matlab V8.2 (Mathworks, Natrick MA) algorithm.

MDCK Cell Culture
Madin-Darby canine kidney (MDCK) cells were cultured in

(DMEM, 10% fetal calf serum (FCS), 1% penicillin-streptomycin)

culture medium at 37uC. For tracking experiments, cells were

trypsinated two days before and transferred onto acid-bath treated

glass microscope coverslips and grown until confluent. The

medium was replaced by an observation medium (HBSS+10 mM

HEPES buffer, 1% FCS, pH 7.4) just before the tracking

experiment, which lasted less than 1.5 h.

Cell Treatment with Cholesterol Oxidase
Where mentioned, we incubated cells with 20 U=mL choles-

terol oxidase (Calbiochem) in HBSS+10 mM HEPES for 30

minutes. A cholesterol quantification kit (Invitrogen) was used to

determine successful cholesterol digestion on lyzed cells before and

after incubation. The data has been previously used to examine

membrane-protein interactions [7].

Residence Time Method for the Detection of Temporary
Lateral Confinement

We followed the work by Simson et al. [28]. The probability Y
that a protein with diffusion coefficient D, will stay in a circular

region with radius R for a time period twd is calculated by:

logY~0:2048{2:5117 Dtwd=R2 ð8Þ

We compute this probability along the trajectory for a window

of 51 frames (twd~2:55 s), with R being the maximal displacement

from the center position of the 51 frame window and known input

diffusion coefficient. To accentuate the region of nonrandom

behavior, we calculate the probability level L according to:
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L~
{log Yð Þ{1 for Yƒ0:1,

0 for Yw0:1,

�
ð9Þ

L is filtered in magnitude with a cutoff Lc~4 and temporal

tc~2:5 s. A plot of L along a numerical sample trajectory is shown

in Fig. S7. To qualify as a confinement zone, L has to be larger

than Lc for a time greater than tc. The parameters were optimized

to detect the confinement zones without generating many false

positives.

Supporting Information

Figure S1 Averaged versus single-trajectory decision
making. (A) Calculating and averaging the information theory

criteria, such as the here displayed AIC, for a distribution of 100

numerical trajectories (Parameters: D~0:1 mm2=s, N = 500

points, tacq~50 ms, Br~30 nm, a~0:5 pN=mm3) shows that it is

possible to distinguish between free Brownian motion and

confined motion, but it is impossible to determine the nature of

the confining potential from the averaged data. (B) However,

making decisions based on the criteria for each individual

trajectory can lead to a histogram that correctly identifies the

input potential.

(TIF)

Figure S2 Histogram of trajectory classifications out of
300 numerical input trajectories that resemble experi-
mental trajectories with confinement in a spring-like

potential. (Parameters: D~0:1 mm2=s, N = 500 points,

tacq~50 ms, Br~30 nm, k~0:3 pN=mm): Decisions based on

the BIC are shown in black, decisions based on the AIC and AICc

are shown in red and blue, respectively.

(TIF)

Figure S3 Building the decision tree using information
criteria from simulated trajectories. The 2D plots show the

heat map of the percentage of correct decisions out of 300

simulated trajectories per square for the BIC (first row), AIC

(middle row), and AICc (bottom row). The input trajectories were

Brownian (left column), confined in a spring potential V~1=2kr2

(middle column), and confined in a 4th order potential V~ar4

(right column). The heat map has a threshold of 0.5, which means

that only cases where the information criterion works correctly

more than half of the time are non-black as indicated by the color

scale. The BIC is the better criterion to determine if a trajectory is

undergoing purely Brownian motion or if is confined by a

potential (red box & red arm in decision tree in Fig. 1). The BIC is

not suited to distinguish between a 2nd and 4th order potential.

Here, the AIC and AICc provide a solution (blue box & blue arm

in decision tree in Fig. 1).

(TIF)

Figure S4 Building the decision tree using information
criteria from simulated trajectories. The 2D plots show the

heat map of the percentage of correct decisions out of 300

simulated trajectories per square for the BIC (first row), AIC

(middle row), and AICc (bottom row). The input trajectories were

Brownian walkers, confined in a spring potential V~1=2kr2 (left

column A–C), and confined in a 4th order potential V~ar4 (right

column D–F). The heat map has a threshold of 0.5, which means

that only cases where the information criterion works correctly

more than half of the time are non-black as indicated by the color

scale. The AIC and AICc are the only effective indicator that can

distinguish between these two potential types. However, the

strength of the potential does not have a large impact on the

performance of these criteria.

(TIF)

Figure S5 The BIC erroneously classifies the 4th order
potentials to be 2nd order spring potentials. The 2D plot

shows the heat map of the percentage of trajectories classified to

have a 2nd order spring potential out of 300 simulated 4th order

(V~ar4) trajectories per square for the BIC. The heat map has a

threshold of 0.5, which means that only cases where the

information criterion falsely chooses 2nd order more than half of

the time are non-black as indicated by the color scale. As

mentioned earlier, the BIC cannot correctly attribute the 4th order

potential, but finds a 2nd order spring-potential instead. Although

this is clearly wrong, it can be exploited to build a two-step

decision tree that can correctly distinguish all three cases using a

mixture of BIC and AIC.

(TIF)

Figure S6 Inferring the mode of motion of single
experimental CPT receptors during disaggregation of
the confining domain. Two different trajectories are shown in

A and B. We use the decision tree to determine the mode of

motion on a 51 frame window that slides along the trajectory in

time, while the cells are treated with cholesterol oxidase. The

trajectory begins being confined by a spring-like potential (red). As

the enzyme cholesterol oxidase oxidizes more cholesterol, the

trajectory receptor becomes less confined and undergoes free

Brownian motion (blue).

(TIF)

Figure S7 Residence time method for the detection of
temporal lateral confinement. A single trajectory has three

different confinement zones in a second order potential.

(Parameters: Dinput~0:1 mm2=s, tacq~50 ms, Br~30 nm,

k~0:3 pN=mm): The three confined parts of the trajectory are

shown in black where a non-zero value indicates confinement.

Outside of the confined zones, the trajectory undergoes free

Brownian motion. The probability level (L) is shown in red along

the trajectory. L is filtered in magnitude with a cutoff Lc~4
(dotted line) and temporal tc~2:5 s: To qualify as a confinement

zone, L has to be larger than Lc for a time greater than tc: The

parameters were optimized to detect the confinement zones

without generating many false positives. The threshold result

displaying the confinement zones is shown in green. The method

could correctly determine two out of three confining zones and

found one false confinement zone (false-positive).

(TIF)

Source Code S1 Code in C (GenerateBrownianTraj.c) to
generate a trajectory undergoing free Brownian motion.
(C)

Source Code S2 Code in C (GenerateBrownianTrajin2n-
dOrderPot.c) to generate a trajectory undergoing free
Brownian motion confined in a 2nd order spring
potential.
(C)

Source Code S3 Code in C (GenerateBrownianTra-
jin4thOrderPot.c) to generate a trajectory undergoing
free Brownian motion confined in a 4th order potential.
(C)

Source Code S4 Code in C (Model distinction in
trajectory.c) to calculate the information criteria for a
given trajectory. This algorithm requires the files: nrutil.c
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(Source code S5), nrutil.h (Source code S6) and simplex.c (Source

code S7).

(C)

Source Code S5 Code in C (nrutil.c) is required to run
Model distinction in trajectory.c (Source Code S4).
(C)

Source Code S6 Code in C (nrutil.h) is required to run
Model distinction in trajectory.c (Source Code S4).
(H)

Source Code S7 Code in C (simplex.c) is required to run
Model distinction in trajectory.c (Source Code S4).
(C)

Acknowledgments

We thank Dr. Antigoni Alexandrou for the critical review of this

manuscript and for her helpful insight. We also thank Maximilian Richly

for his support during the cholesterol oxidase treatment SMT experiments.

Author Contributions

Conceived and designed the experiments: ST JBM. Performed the

experiments: ST. Analyzed the data: ST. Contributed reagents/materi-

als/analysis tools: ST JBM. Wrote the paper: ST.

References

1. Saxton MJ, Jacobson K (1997) Single-particle tracking: applications to

membrane dynamics. Ann Rev Biophys Biomol Struct 26: 373–399.
2. Lord S, Lee H, Moerner W (2010) Single-molecule spectroscopy and imaging of

biomolecules in living cells. Anal Chem 82: 2192–2203.
3. Ryan T, Myers J, Holowka D, Baird B, Webb W (1988) Molecular crowding on

the cell surface. Science 239: 61–64.

4. Dix JA, Verkman AS (2008) Crowding effects on diffusion in solutions and cells.
Ann Rev Biophys 37: 247–263.

5. Sieber JJ, Willig KI, Heintzmann R, Hell SW, Lang T (2006) The SNARE motif
is essential for the formation of syntaxin clusters in the plasma membrane.

Biophys J 90: 2843–2851.
6. Douglass A, Vale R (2005) Single-molecule microscopy reveals plasma

membrane microdomains created by protein-protein networks that exclude or

trap signaling molecules in T cells. Cell 121: 937–950.
7. Türkcan S, Richly MU, Alexandrou A, Masson JB (2013) Probing membrane

protein interactions with their lipid raft environment using single-molecule
tracking and bayesian inference analysis. PloS one 8: e53073.

8. Sheetz M (1993) Glycoprotein motility and dynamic domains in fluid plasma

membranes. Ann Rev Biophys Biomol Struct 22: 417–431.
9. Kusumi A, Ike H, Nakada C, Murase K, Fujiwara T (2005) Single-molecule

tracking of membrane molecules: plasma membrane compartmentalization and
dynamic assembly of raft-philic signaling molecules. Seminars in Immunology

17: 3–21.
10. Masson JB, Casanova D, Türkcan S, Voisinne G, Popoff MR, et al. (2009)

Inferring Maps of Forces inside Cell Membrane Microdomains. Phys Rev Lett

102: 48103(4).
11. Türkcan S, Masson JB, Casanova D, Mialon G, Gacoin T, et al. (2012)

Observing the confinement potential of bacterial pore-forming toxin receptors
inside rafts with nonblinking eu3+-doped oxide nanoparticles. Biophysical

Journal 102: 2299–2308.

12. Türkcan S, Alexandrou A, Masson JB (2012) A bayesian inference scheme to
extract diffusivity and potential fields from confined single-molecule trajectories.

Biophysical Journal 102: 2288–2298.
13. Peters I, van Kooyk Y, van Vliet S, de Grooth B, Figdor C, et al. (1999) 3D

single-particle tracking and optical trap measurements on adhesion proteins.

Cytometry A 36: 189–194.
14. Jin S, Haggie P, Verkman A (2007) Single-particle tracking of membrane protein

diffusion in a potential: simulation, detection, and application to confined
diffusion of CFTR Cl- channels. Biophys J 93: 1079–1088.

15. Varma R, Mayor S (1998) GPI-anchored proteins are organized in submicron
domains at the cell surface. Nature 394: 798–801.

16. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle.

Science 327: 46–50.
17. Barak LS, Webb WW (1982) Diffusion of low density lipoprotein-receptor

complex on human fibroblasts. J Cell Biol 95: 846–852.
18. Sheetz M, Turney S, Qian H, Elson E (1989) Nanometre-level analysis

demonstrates that lipid flow does not drive membrane glycoprotein movements.

Nature 340: 284–288.
19. Pinaud F, Michalet X, Iyer G, Margeat E, Moore HP, et al. (2009) Dynamic

partitioning of a glycosyl-phosphatidylinositol-anchored protein in glycosphin-
golipid-rich microdomains imaged by single-quantum dot tracking. Traffic 10:

691–712.
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