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Abstract: Time series classification (TSC) is a significant problem in data mining with several
applications in different domains. Mining different distinguishing features is the primary method.
One promising method is algorithms based on the morphological structure of time series, which
are interpretable and accurate. However, existing structural feature-based algorithms, such as time
series forest (TSF) and shapelet traverse, all features through many random combinations, which
means that a lot of training time and computing resources are required to filter meaningless features,
important distinguishing information will be ignored. To overcome this problem, in this paper, we
propose a perceptual features-based framework for TSC. We are inspired by how humans observe
time series and realize that there are usually only a few essential points that need to be remembered
for a time series. Although the complex time series has a lot of details, a small number of data points is
enough to describe the shape of the entire sample. First, we use the improved perceptually important
points (PIPs) to extract key points and use them as the basis for time series segmentation to obtain a
combination of interval-level and point-level features. Secondly, we propose a framework to explore
the effects of perceptual structural features combined with decision trees (DT), random forests (RF),
and gradient boosting decision trees (GBDT) on TSC. The experimental results on the UCR datasets
show that our work has achieved leading accuracy, which is instructive for follow-up research.

Keywords: time series classification; perceptual features; decision trees; ensemble learning

1. Introduction

In the information age, massive amounts of data have been generated over time.
These data are closely related to many studies. In mathematics, a time series is a series of
data points indexed in time order. Most commonly, a time series [1] is a sequence taken
at successive equally spaced points in time. Time series contains information on time
dimension and data dimension, and it exists in many fields such as economy, life science,
military science, space science, geology and meteorology, and industrial automation. Time
series classification [2–4] is an essential task that has attracted widespread attention. Nor-
mally, time series classification refers to assign time series patterns to a specific category,
for example, judge whether it will rain or not through a series of temperature data [5] or
determine whether the patient has Parkinson’s disease through a period of physiological
data [6,7]. Dau et al. [8] proposed UCR Time Series Classification Archive (UCR) for this
task, including 128 datasets from different fields such as ECG, Sensor, and Image. In order
to understand TSC more intuitively, Figure 1 shows some representative datasets in UCR.
These datasets almost cover the existing TSC tasks, show the morphological structure of
various time series, and lay the foundation for researchers to explore general classifica-
tion methods. In order to solve this problem, many methods have been proposed, which
can be divided into five categories according to their different cores: dictionary-based,
distance-based, interval-based, shapelet-based, and kernel-based.
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Figure 1. Three representative datasets from the UCR Time Series Classification Archive. Due to the large size of the original
dataset, only some samples are shown as examples.

The dictionary-based method refers to the idea of natural language processing. Re-
searchers believe that a time series is a special sentence composed of discrete words or
words. How to segment and map the time series into characters is the first issue that needs
to be considered. There are three main time series symbolization methods: Piecewise
Aggregate Approximation (PAA) [9,10], Symbolic Aggregate approXimation (SAX) [11,12],
and Symbolic Fourier Approximation (SFA) [13]. Subsequently, the Bag-of-SFA Symbols
(BOSS) method based on the bag-of-words model was proposed [14]. This method records
high-frequency symbol features and uses them to distinguish different types of time series
samples. Matthew et al. [15] and James et al. [16] further proposed Contract BOSS (cBOSS)
and Spatial BOSS (S-BOSS). In addition, Word Extraction for Time Series Classification
(WEASEL) [17] is also a typical dictionary-based method composed of a supervised sym-
bolic time series representation for discriminative word generation and the Bag of Patterns
(BOP) [18] model for building a discriminative feature vector.

Many TSC methods focus on the distance between time series. Generally, a time series
can be regarded as a point in a multi-dimensional space, and the dimension of this multi-
dimensional space depends on the length of the time series. Different types of time series
will have different aggregations. At this time, distance is an effective way to distinguish.
K-Nearest Neighbors (KNN) and the Elastic Ensemble (EE) [19] are two commonly used
methods. Ben et al. [20] proposed Proximity Forest to model a decision tree forest that uses
distance measures to partition data. It should be noted that since most distance calculations
use the form of “one to one”, samples of equal length are necessary. For unequal length
sequences, dynamic time warping (DTW) [21–23] is a robust calculation method, which
can avoid differences in length and shape. Combining KNN and DTW is a way to take
advantage of both at the same time [24,25].

In reality, different types of time series may have precisely the same statistical charac-
teristics such as mean, variance, standard deviation, and so on [26]. In order to avoid this
problem, the interval-based method focuses on local features rather than overall features.
Deng et al. [27] proposed a Time Series Forest (TSF) model that converts time series into statis-
tical features of sub-sequences and uses random forest for classification. Cabello et al. [28]
further constructed Supervised Time Series Forest (STSF), an ensemble of decision trees built
on intervals selected through a supervised process. Random Interval Spectral Ensemble
(RISE) is a popular variant of time series forest [29]. RISE differs from time series forest in two
ways. First, it uses a single time series interval per tree. Second, it is trained using spectral
features extracted from the series instead of summary statistics. Since RISE relies on frequency
information extracted from the time series, it can be defined as a frequency-based classifier.

The shapelet-based method draws inspiration from pattern recognition. Shapelets are
defined in [30,31] as “subsequences that are in some sense maximally representative of a
class”. Informally, if we assume a binary classification setting, a shapelet is discriminant
if it is present in most classes and absent from the series of the other class. However,
any subsequence may be distinguishable, and the length of the subsequence is arbitrary,
which means that all samples and their subsequences need to be checked through a sliding
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window, and the search space for shapelets is enormous. In response to this problem,
Ji et al. [32,33] proposed a fast shapelets selection algorithm.

Building on the recent success of convolutional neural networks for time series classifi-
cation, Dempster et al. [34] realize that simple linear classifiers using random convolutional
kernels achieve state-of-the-art accuracy with a fraction of the computational expense of
existing methods. Therefore, they proposed ROCKET, a kernel-based time series classi-
fication method. This is a new direction for TSC, which can both reduce computational
complexity and improve accuracy.

By analyzing the five classification methods, we realized that the existing algorithms
are essentially trying to find efficient distinguishing features by learning all the original
information of the sample, which leads to high computational complexity and resource
consumption. In fact, for human beings, it does not require all the information to distinguish
time series. On the contrary, we only pay attention to a few critical data points, which are
enough to describe the approximate outline of time series samples and present a significant
distribution. This paper proposes a classification framework based on perceptual features,
which can extract support points of morphological structure from the original time series
and further obtain interval-level and point-level features for classifiers such as decision
trees. The contributions of our work are described below.

• An improved algorithm called globally restricted matching perceptually important
points (GRM-PIPs) is proposed, which avoids the redundancy caused by sequential
matching in traditional important point extraction.

• How many data points are necessary to describe complete information? We conducted
in-depth research on this question and verified our opinions through mathematical
proofs and experiments.

• The data points extracted by GRM-PIPs can divide the time series into sub-sequences
similar to shapelets. We used statistical features such as mean, standard deviation,
slope, skewness, and kurtosis to enhance discrimination further.

• Most classifiers learn the information of the original time series, which is not suitable
for perceptual features. Therefore, we matched a suitable classifier and proposed a
complete perceptual features-based framework.

The remainder of this paper is organized as follows. In Section 2, related work about
PIPs, decision trees, random forests, and gradient boosting decision trees are presented.
Section 3 describes the details about PFC, including GRM-PIPs, perceptual feature extrac-
tion, and classifiers adaptation. Section 4 presents the experimental setup and performance
of the approach we proposed, as well as a comparison of the experiments and performances.
A discussion about the differences in experimental results is also given in Section 4. Finally,
the conclusions and directions for future research are given in Section 5.

2. Related Work
2.1. Perceptually Important Points

For time series, avoiding point-to-point local comparison is the key to reducing
computational complexity. In time series pattern mining, unique, and frequently occurring
patterns can be abstractly represented by several critical points. It is precisely through
these points with important visual impacts that humans remember specific time series
patterns [35]. The definition of perceptually important points was first introduced in
reference [36]. The PIPs algorithm can retain the key turning points in the time series,
and its ability to capture the critical points in the time series has been verified in the time
series segmentation and pattern recognition [37–39].
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Interestingly, PIPs have been widely used in the research of stock time series.
Fu et al. [40] used PIPs as a new time series segmentation method to extract the uptrend
and downtrend patterns. Mojtaba et al. [41] regard PIPs as a dimensionality reduction
method similar to PCA and combine it with support vector regression to predict the trend
of the stock market. The turning point in the stock time series indicates a substantial change
in the market, and PIPs are sensitive to these dividing points, which is also the advantage
of PIPs.

In general, we would define any time series as T = {t1, t2, . . . , tn} n ∈ Z+. This is a
classic one-dimensional definition, which treats a time series as a string of data arranged
chronologically. However, a one-dimensional data sequence is considered to have no
morphological structure and cannot be displayed on a two-dimensional plane. Therefore,
we need to upgrade the traditional one-dimensional definition to two-dimensional to
explain the calculation process of PIPs. By introducing data in the time dimension, the two-
dimensional definition of a time series is T = {(x1, y1), (x2, y2), . . . , (xn, yn)} n ∈ Z+,
where xn represents the current data point in the nth position in the entire time series,
and yn corresponds to amplitude. PIPs uses a concise idea to extract important points in
the morphological structure of time series. The process is shown below.

Definition 1. Perceptually Important Points.
Given a time series sample T = {(x1, y1), (x2, y2), . . . , (xn, yn)}, n > 2, n ∈ Z+, an empty

list Lp is set to save the extracted perceptually important points. In general, when extracting m
important points, the following steps should be followed.

Step 1: Put the first point (x1, y1) and the last point (xn, yn) in T as initial two PIPs into Lp.
Step 2: Check each point in T and calculate the distance between them and (x1, y1) and

(xn, yn). Choose the point with the largest distance as the third PIP and save it in Lp.
Step 3: The fourth PIP is the point that maximizes its distance to its adjacent PIPs (which are

either the first and the third, or the third and the second PIP). It is also necessary to save the fourth
PIP into the Lp.

Step 4: For each new PIP, use the same method as the fourth PIP, repeat Step 3 until the length
of Lp is equal to m.

For PIPs, there are three distance measures including the euclidean distance (ED),
the perpendicular distance (PD), and the vertical distance (VD). The calculation formula of
the vertical distance VD(Pc) between Pc(xc, yc) and the line PaPb is shown in Formula (1)
and Figure 2. We use VD to show the calculation process of PIPs through a simple example.

VD(Pc) = |yc − yd| =
∣∣∣∣yc −

(
|xb − xa| · |xd − xa|

|yb − ya|
+ ya

)∣∣∣∣ (1)

Pc (xc , yc)

Pa (xa , ya)

Pc (xb , yb)

VD (Pc)

Pd (xd , yd)

Figure 2. The schematic diagram of the vertical distance VD(Pc).
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We define the extraction of m PIPs from the sample T as PIPs(T, m). For example,
if the one-dimensional representation of T is T = {0, 4, 2.5, 3, 1, 5, 6, 1, 2, 1, 0}, its corre-
sponding two-dimensional representation as below. The process of finding six PIPs from T
is shown in Figure 3.

T = {(0, 0), (1, 4), (2, 2.5), (3, 3), (4, 1), (5, 5), (6, 6), (7, 1), (8, 2), (9, 1), (10, 0)}
It should be noted that when there are two points with the same maximum vertical

distance, the first calculated point is usually set as the new PIP.
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PIPs (T, 6)

Figure 3. The process of finding 6 PIPs from T.

2.2. Decision Tree and Ensemble Methods

A Decision Tree (DT) is a decision support tool that uses a tree-like model of deci-
sions and their possible consequences, including chance event outcomes, resource costs,
and utility. It is one way to display an algorithm that only contains conditional control
statements. DT is a non-parameter supervised learning method used for classification
and regression. Its purpose is to create a model to learn simple decision rules from data
features to predict the value of a target variable [42]. DT are commonly used in operations
research, specifically in decision analysis, to help identify a strategy most likely to reach a
goal, but are also a popular tool in machine learning [43].

DT is a predictive model in machine learning, which represents a mapping relation-
ship between object attributes and object values. Each node in the tree represents an object,
and each bifurcation path represents a possible attribute value, and each leaf node corre-
sponds to the value of the object represented by the path from the root node to the leaf
node. The decision tree has only a single output. If you want to have a complex output, you
can build an independent decision tree to handle different outputs [44]. Simultaneously,
DT is a frequently used technique in data mining, which can be used to analyze data, and it
can also be used to make predictions [45].

The applications of decision tree on the TSC task mainly has three directions, pat-
tern recognition, shapelet transformation and features selection. Pierre [4] believed that
many time-series classification problems can be solved by detecting and combining local
properties or patterns in time series and he proposed a technique based on DT to find
patterns which are useful for classification. Qiu et al. [46] forecast shanghai composite
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index based on fuzzy time series and improved C-fuzzy decision trees. Willian et al. [47]
explored shapelet transformation for time series classification in decision trees and develop
strategies to improve the representation quality of the shapelet transformation. In essence,
the DT uses the “if-then-else” rule to learn the data, and the deeper the rule is applied,
the better the data fitting will be.

There are too many research results and knowledge about DT, and we would not
repeat them specifically. The following is a simple example to introduce DT. We assume a
scenario that includes three factors: season, wind, and time. In this scenario, record the
data of whether someone is doing morning exercises, as shown in Table 1. This scenario is
a typical classification task, and the decision tree constructed based on Table 1 is shown in
Figure 4.

Table 1. The sample data of DT.

Season Time Wind Exercise

Spring Before 8:00 a.m. Breeze Yes
Winter Before 8:00 a.m. No wind Yes
Autumn After 8:00 a.m. Breeze Yes
Winter Before 8:00 a.m. No wind Yes
Summer Before 8:00 a.m. Breeze Yes
Winter After 8:00 a.m. Breeze Yes
Winter Before 8:00 a.m. Gale Yes
Winter Before 8:00 a.m. No wind Yes
Spring After 8:00 a.m. No wind No
Summer After 8:00 a.m. Gale No
Summer Before 8:00 a.m. Gale No
Autumn After 8:00 a.m. Breeze No

Season

Wind

Wind

Time

Exercise = Yes

Winter

Spring

Summer

Autumn

Exercise = Yes

Exercise = NoGale

Breeze

Exercise = Yes

Exercise = NoNo wind

Breeze or Gale

Exercise = Yes

Exercise = NoAfter

Before

Figure 4. A decision tree constructed based on the example.

The ensemble methods is a high-level application, and the decision tree is regarded as
a basic/weak estimator. The goal of the ensemble methods is to combine the predictions
of multiple basic estimators to achieve better generalization or robustness than a single
estimator. The ensemble methods generally fall into three categories:
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• Bagging Method. This method usually considers the homogeneous weak estimators,
learns these weak estimators independently and in parallel, and combines them
according to some deterministic average process [48]. In general, the combined
estimator is better than the single estimator because its variance is reduced. Random
forest (RF) [49] is a typical Bagging method, it can build a large number of decision
trees to filter features to get the best decision rule set.

• Boosting Method. The core of this method is also a combination of homogeneous
weak estimators. It sequentially learns these weak estimators in a highly adaptive
method (each basic estimator attempts to reduce the bias of the combined estimator),
and combines them according to a certain deterministic strategy. The current popular
boosting methods include AdaBoost and Gradient Tree Boosting. Freund and Schapire
proposed the former in 1999 [50]. Its core idea is to train a series of weak estimators
by repeatedly modifying the weights of the data [51]. On the other hand, Gradient
Tree Boosting [52] is a generalization of the lifting algorithm for any differentiable loss
function. It can be used for classification and regression and applied to various fields,
including web search ranking and ecological environment [53,54].

• Stacking Method. Different from the previous methods, the stacking method uses
heterogeneous estimators, learns them in parallel, and combines them by training a
“meta mode” to output a final result according to different predictions [55].

3. Perceptual Features-Based Framework

This section will introduce the perceptual features-based framework (PFC) in detail,
divided into three parts: time series preprocessing with GRM-PIPs, feature extraction,
and classifier. These parts have a precise sequence in our framework.

3.1. Time Series Preprocessing with GRM-PIPs

The purpose of this part is to traverse the time series and extract a certain number of
PIPs. Based on the traditional PIPs algorithm, we determined the global optimal selection
strategy and proposed a restrictive selection method. The relevant definition is as follows.

Definition 2. Globally Restricted Matching Perceptually Important Points.
Given a time series sample T = {(x1, y1), (x2, y2), . . . , (xn, yn)}, n > 2, n ∈ Z+, an empty

list Lp is set to save the extracted perceptually important points, the interval between adjacent PIPs
is defined as δ with δ ∈ Z+, δ > 4. Commonly, when the number of extracted PIPs m is large
enough (m = n), all points in T will be identified as PIPs, but if the parameter δ is considered,
the upper limit of PIPs will be further restricted. The calculation steps of GRM-PIPs are as follow.

Step 1: Put the first point P1(x1, y1) and the last point Pn(xn, yn) in T as initial two PIPs
into Lp.

Step 2: Set a temporary PIP Pt, which can be any point in T, and calculate the vertical distance
VDt between Pt and the line P1Pn. Pt divides the sequence {P1, . . . , Pn} into two subsequences: {P1,
. . . , Pt} and {Pt, . . . , Pn}. If the length of any subsequence is less than δ, the current Pt should not
be considered, and a new point is set as Pt to continue the calculation until a Pt is found that can
maximize VDt and satisfy that the length of all subsequences is greater than δ, then save this Pt in
Lp as the third PIP.

Step 3: The fourth PIP is the point that maximizes the vertical distance to its adjacent PIPs
(which are either the first and the third, or the third and the second PIP) and controls the length of
all segmented subsequences are greater than δ. It is also necessary to save the fourth PIP into the Lp.

Step 4: For each new PIP, use the same recursive method as the fourth PIP, repeat Step 3 until
the length of Lp is equal to m.

GRM-PIPs ensure a well-distribution of PIPs in the entire time series by adding a
restriction on the interval length. A simple example in Figure 5 is shown to distinguish
between the traditional PIPs and the GRM-PIPs proposed by us.

T = {0, 1, 2, 10, 9, 10, 9, 9, 6, 4, 3, 1, 5, 3, 10, 10, 8, 9, 10, 11, 9, 6, 3, 0} (2)
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Figure 5. GRM-PIPs and the traditional PIPs algorithms were used to extract PIPs from time series
sample T.

In this example, we set a time series sample T in (7) with the length n = 23. Figure 5
shows that the morphological structure of T is composed of two peaks and one trough.
Seven PIPs were extracted from it. There is an apparent difference between the results
of GRM-PIPs and PIPs, which are highlighted by red and green circles, respectively. Tra-
ditional PIPs are easy to fall into local optima because there is no interval constraint,
and the selected PIPs do not contribute to the depiction of the overall structure. GRM-PIPs
avoids this problem and accurately extracts PIPs that are more conducive to generalizing
structural features.

In GRM-PIPs, affected by the length of interval δ, the number of extracted PIPs has an
upper limit. In order to calculate the upper limit, we need to define the “quotient” first.
Suppose there are two integers a and b, b 6= 0, there must be a pair of integers q and r
satisfy a = q · b + r, and q can be called the quotient of a divided by b, abbreviated as
q = Q(a, b). In this way, the number of extracted PIPs can be calculated as follows:

2 6 m 6 Q(n, δ) + 2 (3)

It is obvious that the upper limit is closely related to δ. In our research, we set δ = 4
because the subsequent feature extraction determines this value. We would explain the
reason in detail in Section 3.2.

3.2. Feature Extraction

In this paper, we extract two features from time series, including point-level features
FP and interval-level features FI .

The point-level feature is straightforward, which is the coordinates of PIPs. We found
that for different classes of time series, the distributions of PIPs in the two-dimensional
space are also significantly different. Most importantly, these special distributions are
consistent on the training set and the test set. Therefore, the point-level feature is distinctive
and consistent, should be taken seriously. Some representative UCR datasets shown in
Figure 6 confirm our views.
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( a ) ( b )

Figure 6. The distributions of PIPs in two UCR datasets, which are Coffee (a) and ECGFiveDays (b).
The figures above show that the PIPs extracted from the original sample are discriminative, while the
figures below show that the distribution of PIPs is consistent on the training set and the test set.

On the other hand, PIPs can generate excellent time series segmentation. Many
datasets have no significant differences in the distribution of PIPs. At this time, the interval-
level features need to be supplemented to help the classifier further distinguish samples of
different categories. There are five interval-level features used by us:

• Arithmetic mean. The arithmetic mean (or simply mean) x̄ of a sequence is the sum of
all of the amplitudes divided by the length of the sequence n. This is a rough feature
used to describe the average level of all data in the sequence. The calculation of the
arithmetic mean follows Formula (4).

x̄ =
1
n

(
n

∑
i=1

xi

)
=

x1 + x2 + + xn

n
(4)

• Standard deviation. In statistics, the standard deviation σ is a measure of the amount
of variation or dispersion of a set of values. A low standard deviation indicates that
the values tend to be close to the mean of the set, while a high standard deviation
indicates that the values are spread out over a wider range. The standard deviation
plays an important role in distinguishing frequently fluctuating series from stable
changing series. The calculation of this feature is shown below.

σ =

√
1
n

n

∑
i=1

(xi − x̄)2 (5)

• Slope. In mathematics, the slope or gradient of a line is a number that describes both
the direction and the steepness of the line. Slope is calculated by finding the ratio of
the “vertical change” to the “horizontal change” between (any) two distinct points
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on a line. We can also abstract any subsequence as a straight line connecting two
adjacent PIPs and the trend can be judged by calculating the slope of the interval.
For sequence S = {(x1, y1), . . . , (xn, yn)}, its slope can be calculated according to the
following formula.

m =
∆y
∆x

=
yn − y1

xn − x1
(6)

• Kurtosis. In probability theory and statistics, kurtosis is a measure of the “tailedness”
of the probability distribution of a real-valued random variable. The standard measure
of a distribution’s kurtosis is a scaled version of the fourth moment of the distribution.
Objectively speaking, kurtosis is not exactly the same as peakedness. Higher kurtosis
means that the data has large deviations or extreme abnormal points, which deviate
from the mean. However, in most cases, when the amplitude in a period of time in the
time series is high, the corresponding kurtosis is high. In the calculation of kurtosis G2
we use Standard unbiased estimator. It is worth noting that n represents the number
of samples, and the formula needs to calculate (n− 3). As part of the denominator, it
is required to be (n− 3) 6= 0, which means that n must be a positive integer greater
than 3. This is why we require the parameter δ to be equal to 4.

G2 =
k4

k2
2
=

n2[(n + 1)m4 − 3(n− 1)m2
2
]

(n− 1)(n− 2)(n− 3)
· (n− 1)2

n2m2
2

=
(n + 1)n

(n− 1)(n− 2)(n− 3)
· ∑n

i=1 (xi − x̄)4

k2
2

− 3 · (n− 1)2

(n− 2)(n− 3)

(7)

• Skewness. In probability theory and statistics, skewness is a measure of the asymme-
try of the probability distribution of a real-valued random variable about its mean.
Skewness can be visually understood as the degree of inclination of the shape to
the left or right. For example, in the two sequences shown in Figure 7, S2 is almost
obtained by mirror flipping of S1, which is an indistinguishable situation for the
mean, standard deviation, slope, and kurtosis. The use of skewness makes up for this
deficiency. The calculation formula of skewness G1 is similar to kurtosis, is a scaled
version of the third central moment.

G1 =
k3

k3/2
2

=
n2

(n− 1)(n− 2)
· b1 =

n2

(n− 1)(n− 2)
· m3

σ3

=
n2

(n− 1)(n− 2)
·

1
n ∑n

i=1 (xi − x̄)3[
1

n−1 ∑n
i=1 (xi − x̄)2

]3/2

(8)
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Figure 7. An instance that cannot be distinguished by features such as mean and standard deviation.
The sequence S1 on the left is flipped to get the sequence S2 on the right.
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3.3. Classifer and the PFC Framework

In the TSC dataset, the data format is D = {data, label} = {(T1, . . . , Td), (L1, . . . , Ld)}
with d time series and corresponding labels. We extract m PIPs through GRM-PIPs, and get
m− 1 intervals, thereby converting the original dataset into the corresponding feature set
F(D) = {FP, FI}. Subsequently, the training set in the F(D) is input into the classifier and
the test set is used for verification.

We realize that F(D) is a high-level representation of raw data, essentially a combina-
tion of many features, and an explicit expression of morphological information. Therefore,
we are more inclined to choose a classifier that is conducive to feature processing. In the
PFC framework, we have selected three levels of classifiers, which are the decision tree
as the basic estimator, the random forest with bagging idea, and the gradient boosting
decision tree using boosting theory.

There are many ways to implement decision trees, such as ID3, C4.5, and CART.
Under normal circumstances, the effect of CART is better than other methods, so we
decided to implement CART. The reason for choosing RF and GBDT is that they are
classifiers developed based on decision trees. RF conducts joint learning by constructing
a large number of decision trees and integrates all classification results. RF equalizes the
weights of all basic estimators, while GBDT gradually upgrades the weak classifiers to
robust classifiers by iteratively changing the weights.

A schematic diagram of the PFC framework is shown in Figure 8. The innovation
of our work is to propose GRM-PIPs, extract the combination of point-level and interval-
level features, and use a suitable classifier to form a framework for TSC tasks. What we
want to explore is the effect of the entire framework. Therefore, we did not make any
special optimizations to the classifiers, and all the classifiers use traditional implementation
methods. Further improvement of the classifier is our future work.
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Figure 8. The schematic diagram of the PFC framework.

4. Performance Evaluation and Discussion
4.1. Experimental Design

The UCR archive has been widely used as a benchmark to evaluate TSC algorithms [8]
(check details in http://www.timeseriesclassification.com, accessed on 1 May 2021). It
currently contains 128 datasets, 15 of these are unequal length, 15 of there are missing
values, and one (Fungi) has a single instance per class in the train files. Given this situation,
in order to evaluate PFC, we select part of the UCR dataset. Since the two-category data is
typically exclusive to each other, we divide the verification into two types, two-category
and hybrid.

http://www.timeseriesclassification.com
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In the verification of two-category, we selected all the two-category datasets in UCR
Archive and excluded the two with many missing values. Finally, 40 datasets were used for
comparison experiments. Considering that PFC is a fast and straightforward classification
method, it is unfair compared with some methods that use neural networks and consume
substantial computing resources and time. Therefore, we exclude some deep learning
algorithms for the benchmark model, such as ResNet and HIVE-COTE. The following
five classification algorithms were selected for comparison, including the word extraction
for time series classification (WEASEL), bag of symbolic-fourier approximation symbols
(BOSS), time series forest (TSF), random interval spectral ensemble (RISE), and canonical
time-series characteristics (Catch22). The results of these comparison algorithms have been
officially recognized and released.

In the hybrid verification, we introduced some methods published recently as com-
parisons. These methods include extreme-SAX (E-SAX, 2020) [56], interval feature transfor-
mation (IFT, 2020) [57], and discriminative virtual sequences learning (DVSL, 2020) [58].
PFC is tested on the same datasets with these methods, including two-category datasets
and multi-category datasets.

In addition, through the analysis of the experimental results, we would find answers
to the following questions:

1. What is the appropriate number of PIPs? The more always means the better?
2. Does the number of PIPs have the same effect on different classifiers?

All experiments strictly follow UCR’s division of training set and test set. The classifi-
cation accuracy is uniformly adopted as the metric. Some methods use classification errors
and we convert them to accuracy. The number of time series correctly classified is defined
as nc, and the total number of time series of test set denoted by nt. The calculation formula
for classification accuracy (ACC) and error (ERR) is shown below.

ACC =
nc

nt
, ERR = 1− ACC (9)

Due to the randomness of RF and GBDT, the final experimental result is an average of
50 runs under the same parameters. At the same time, we do not do particular parameter
optimization for DT, RF, and GBDT. DT uses the information gain to measure the quality
of a split, and the nodes are expanded until all leaves are pure. There are 600 trees in RF,
and the number of boosting stages to perform in GBDT is 600, too.

4.2. The Verification of Two-Category

The information of 40 two-category datasets in UCR Archive is listed in Table 2.
Obviously, these datasets cover various situations such as short-sequence classification
(Chinatown and ItalyPowerDemand), long-sequence classification (HandOutlines, House-
Twenty, and SemgHandGenderCh2), unbalanced training set and test set (ECGFiveDays
and FreezerSmallTrain), and so on.

The classification accuracy of the five benchmark methods and PFC on these datasets is
shown in Table 3. We found that not all datasets have public results on the five benchmark
methods, and the results of two datasets (FordB and HandOutLines) are missing. These two
datasets were excluded when calculating the number of times to obtain the best accuracy,
and the experimental results of the remaining 38 datasets were considered.

The PFC framework achieved the best accuracy in 13 of 38 UCR datasets. What is
interesting is that when DT and GBDT are used as classifiers, 6 times catch the best, which
is less than 10 times when RF is used. Nevertheless, their performance has been better than
RISE, TSF and Catch22.
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Table 2. Summary of 40 two-category datasets in UCR Archive.

No. Name Type Train Test Length

1 BeetleFly Image 20 20 512
2 BirdChicken Image 20 20 512
3 Chinatown Traffic 20 343 24
4 Coffee Spectro 28 28 286
5 Computers Device 250 250 720
6 DistalPhalanxOutlineCorrect Image 600 276 80
7 Earthquakes Sensor 322 139 512
8 ECG200 ECG 100 100 96
9 ECGFiveDays ECG 23 861 136
10 FordA Sensor 3601 1320 500
11 FordB Sensor 3636 810 500
12 FreezerRegularTrain Sensor 150 2850 301
13 FreezerSmallTrain Sensor 28 2850 301
14 GunPoint Motion 50 150 150
15 GunPointAgeSpan Motion 135 316 150
16 GunPointMaleVersusFemale Motion 135 316 150
17 GunPointOldVersusYoung Motion 136 315 150
18 Ham Spectro 109 105 431
19 HandOutlines Image 1000 370 2709
20 Herring Image 64 64 512
21 HouseTwenty Device 40 119 2000
22 ItalyPowerDemand Sensor 67 1029 24
23 Lightning2 Sensor 60 61 637
24 MiddlePhalanxOutlineCorrect Image 600 291 80
25 MoteStrain Sensor 20 1252 84
26 PhalangesOutlinesCorrect Image 1800 858 80
27 PowerCons Power 180 180 144
28 ProximalPhalanxOutlineCorrect Image 600 291 80
29 SemgHandGenderCh2 Spectrum 300 600 1500
30 ShapeletSim Simulated 20 180 500
31 SonyAIBORobotSurface1 Sensor 20 601 70
32 SonyAIBORobotSurface2 Sensor 27 953 65
33 Strawberry Spectro 613 370 235
34 ToeSegmentation1 Motion 40 228 277
35 ToeSegmentation2 Motion 36 130 343
36 TwoLeadECG ECG 23 1139 82
37 Wafer Sensor 1000 6164 152
38 Wine Spectro 57 54 234
39 WormsTwoClass Motion 181 77 900
40 Yoga Image 300 3000 426

This seems to be a counter-intuitive result. As the most complex classifier, GBDT has
not achieved the best results. However, this situation can be explained. We noticed that
there is a significant difference in the number of PIPs extracted by the GRM-PIPs algorithm
when the best results are obtained (for detail see Appendix A). When DT and GBDT achieve
their best results, the number of PIPs is almost the same, while RF requires more PIPs to
achieve higher accuracy. This means that the upper limit of RF performance is the highest
among the three classifiers. This may be caused by no parameter optimization. GBDT and
DT usually rely on adjusting parameters to improve accuracy, while RF is not sensitive
to parameters, and a large number of random decisions can effectively compensate for
parameter defects.
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Table 3. Classification accuracy of PFC and five benchmarks on 40 two-category UCR datasets.

PFC
No. WEASEL BOSS RISE TSF Catch22 PFC-DT PFC-RF PFC-GBDT

1 0.8867 0.9433 0.8717 0.8333 0.8400 0.9000 0.9500 0.9000
2 0.8650 0.9833 0.8683 0.8150 0.8933 0.9500 0.9000 0.9500
3 0.9573 0.8771 0.8885 0.9530 0.9345 0.9795 0.9795 0.9767
4 0.9893 0.9857 0.9845 0.9869 0.9798 1.0000 1.0000 1.0000
5 0.7785 0.8005 0.7789 0.6488 0.7803 0.7000 0.7400 0.7640
6 0.8192 0.8117 0.8112 0.8058 0.8121 0.7500 0.7899 0.7753
7 0.7475 0.7460 0.7482 0.7475 0.7388 0.7913 0.8058 0.7986
8 0.8590 0.8783 0.8510 0.8600 0.7887 0.8100 0.8600 0.8500
9 0.9935 0.9923 0.9729 0.9520 0.8159 0.9988 0.9501 0.9954
10 0.9687 0.9214 0.9400 0.8158 0.9092 0.7136 0.8530 0.8734
11 lack lack lack lack lack 0.6432 0.7025 0.7271
12 0.9906 0.9881 0.9523 0.9971 0.9982 0.9782 0.9621 0.9775
13 0.9006 0.9616 0.8787 0.9614 0.9598 0.9281 0.9081 0.9421
14 0.9931 0.9964 0.9809 0.9553 0.9431 0.9533 0.9933 0.9533
15 0.9813 0.9949 0.9863 0.9777 0.9439 0.9589 0.9936 0.9873
16 0.9939 0.9996 0.9911 0.9960 0.9935 0.9810 1.0000 0.9810
17 0.9860 0.9992 0.9998 1.0000 0.9642 1.0000 1.0000 1.0000
18 0.8213 0.8375 0.8197 0.7994 0.6940 0.6667 0.7714 0.7486
19 lack lack lack lack lack 0.8865 0.9216 0.9351
20 0.6021 0.5958 0.5984 0.6042 0.5557 0.6875 0.6563 0.6875
21 0.8106 0.9560 0.9297 0.8378 0.9462 0.8740 0.9243 0.8740
22 0.9468 0.8709 0.9445 0.9595 0.8775 0.9417 0.9485 0.9105
23 0.6273 0.8191 0.6820 0.7645 0.7448 0.7541 0.8197 0.8197
24 0.8283 0.8095 0.8055 0.7995 0.7727 0.7423 0.8316 0.8178
25 0.9048 0.8442 0.8780 0.8555 0.8485 0.7764 0.8594 0.7572
26 0.8217 0.8174 0.8125 0.8057 0.7919 0.7145 0.7995 0.8007
27 0.9194 0.8900 0.9580 0.9931 0.8863 0.9333 0.9556 0.9500
28 0.8763 0.8655 0.8737 0.8489 0.8337 0.8419 0.8797 0.8965
29 0.7814 0.8877 0.8700 0.9474 0.8706 0.8250 0.8867 0.8867
30 0.9974 1.0000 0.7676 0.5137 0.9937 0.5667 0.5944 0.5667
31 0.9093 0.8977 0.8670 0.8637 0.8834 0.8469 0.7804 0.8469
32 0.9353 0.8794 0.9125 0.8743 0.9023 0.8001 0.7827 0.7901
33 0.9786 0.9705 0.9730 0.9675 0.9229 0.9108 0.9824 0.9622
34 0.9430 0.9249 0.8804 0.6671 0.8127 0.7675 0.8915 0.8333
35 0.9285 0.9615 0.9118 0.8026 0.8351 0.7692 0.8308 0.7462
36 0.9975 0.9847 0.9107 0.8706 0.8539 0.9543 0.9719 0.9543
37 0.9999 0.9989 0.9954 0.9966 0.9973 1.0000 1.0000 1.0000
38 0.9302 0.8926 0.8710 0.8623 0.7000 0.7037 0.7963 0.7222
39 0.8004 0.8078 0.7853 0.6935 0.7922 0.7143 0.7403 0.7800
40 0.8924 0.9102 0.8372 0.8658 0.8038 0.7497 0.8200 0.8097

Best ACC 9 12 0 4 1 13 (6/10/6)

We conduct an in-depth analysis of the experimental results shown in Table 3, which
are divided into two aspects:

• The impact of the length of the time series on accuracy. We sort all the datasets
according to their length, and the ones with a length less than 100 are classified as
a group of G1, which contains 11 datasets. G2 has 11 datasets, the corresponding
length is greater than 100 but less than 300. G3 covers 15 datasets ranging in length
from 300 to 1000. The remaining three datasets whose length exceeds 1000 are set
as G4. From G1 to G4, the number of times that PFC achieves the best accuracy is 3,
6, 4, and 0, respectively. The results show that PFC is good at distinguishing time
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series samples whose length ranges from 100 to 1000. For samples with a length
less than 100, GRM-PIPs can only extract 27 PIPs at most and generate 26 intervals,
which results in the feature dimension being much larger than the original sequence
dimension, and the information redundancy makes the classifier unable to obtain
robust decision rules. On the other hand, since we set up to extract only 30 PIPs in the
experiment, the features of samples longer than 1000 may be incompletely extracted.

• Does the imbalance of the training set and test set affect the accuracy of PFC? As
far as the current results are concerned, the training set and test set are not factors that
affect accuracy.

4.3. The Hybrid Verification

In hybrid verification, we will compare with the TSC methods in three recently
published papers. Since the datasets validated by these methods are different, we decided
to compare them one by one and use the same datasets.

First, we test the performance of PFC and DVSL. Abhilash et al. [58] believed that
the existing VSML methods employ fixed virtual sequences, which might not be optimal
for the subsequent classification tasks. Therefore, they proposed DVSL to learn a set of
discriminative virtual sequences that help separate time series samples in a feature space.
Finally, this method was validated on 15 UCR datasets. The results of the comparative
experiment are shown in Table 4.

Table 4. Comparison of PFC and DVSL on 15 UCR datasets.

PFC
Datasets Train Test Class Length DVSL PFC-DT PFC-RF PFC-GBDT

ArrowHead 36 175 3 251 0.7200 0.6114 0.7257 0.7257
Beef 30 30 5 470 0.9000 0.7000 0.7333 0.6667
Car 60 60 4 577 0.8350 0.7167 0.7167 0.7500
ChlConcent 467 3840 3 166 0.7743 0.5951 0.6497 0.6466
Coffee 28 28 2 286 1.0000 1.0000 1.0000 1.0000
ECG200 100 100 2 96 0.8350 0.8100 0.8600 0.8500
ECGFiveDays 23 861 2 136 0.9735 0.9988 0.9501 0.9954
Herring 64 64 2 512 0.6563 0.6875 0.6563 0.6875
InsectWingb 220 1980 11 256 0.5819 0.4217 0.5927 0.4788
Meat 60 60 3 448 0.9883 1.0000 0.9667 0.9667
MPhaOLAge 400 154 3 80 0.5818 0.5779 0.6558 0.5974
OliveOil 30 30 4 570 0.8467 0.9667 0.9333 0.9000
SonyAIBR1 20 601 2 70 0.7616 0.8469 0.7804 0.8469
TwoLeadECG 23 1139 2 82 0.9160 0.9543 0.9719 0.9543
Wine 57 54 2 234 0.6500 0.7037 0.7963 0.7222

Best ACC 4 12 (6/7/4)

The results show that PFC performed better on the same 15 UCR datasets and sur-
passed DVSL for the best accuracy in 12 of them. At the same time, we also notice that
the accuracy of PFC is much lower than that of DVSL in datasets such as Beef. Figure 9
shows the distribution of PIPs in Beef. We can clearly find that only the distribution of
Label = 1 (represented by the red dots) is distinguishable, and the distributions of the
other categories are highly similar. We believe that PFC can distinguish some samples
with obvious distinguishing characteristics, but if these characteristics are highly similar in
multiple types of samples, PFC will be invalid. Although this situation is accidental, PFC
is based on morphological perception information, and it is difficult to process samples
with small differences in morphology.
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Figure 9. The original time series and the distribution of PIPs in Beef.

The second comparison method is IFT [57], which also uses PIPs. The difference is
that IFT adopts information gain-based selection for interval features, which makes the
whole method a special decision tree. Since both PFC and IFT perceive the importance of
morphological features, this is a meaningful comparative experiment. IFT was validated
on 22 UCR datasets, and we also tested on the same datasets. The comparison results are
shown in Table 5.

Table 5. Comparison of PFC and IFT on 20 UCR datasets (exclude two datasets with missing values).

PFC
Datesets Train Test Length Class IFT PFC-DT PFC-RF PFC-GBDT

BirdChicken 20 20 512 2 0.9000 0.9500 0.9000 0.9500
FreezerRegularTrain 150 2850 301 2 0.9035 0.9782 0.9621 0.9775
ShapeletSim 20 180 500 2 0.9944 0.5667 0.5944 0.5667
ToeSegmentation1 40 228 277 2 0.8816 0.7675 0.8915 0.8333
Worms 181 77 900 5 0.6623 0.5974 0.6623 0.6883
Rock 20 50 2844 4 0.6200 0.7000 0.7600 0.7000
Meat 60 60 448 3 0.9500 1.0000 0.9667 0.9667
Beef 30 30 470 5 0.6667 0.7000 0.7333 0.6667
InlineSkate 100 550 1882 7 0.3582 0.2800 0.3818 0.3327
Coffee 28 28 286 2 0.9643 1.0000 1.0000 1.0000
ECGFiveDays 23 861 136 2 0.8281 0.9988 0.9501 0.9954
Ham 109 105 431 2 0.6381 0.6667 0.7714 0.7486
Herring 64 64 512 2 0.6719 0.6875 0.6563 0.6875
PowerCons 180 180 144 2 0.9333 0.9333 0.9556 0.9500
Wine 57 54 234 2 0.7407 0.7037 0.7963 0.7222
Yoga 300 3000 426 2 0.7767 0.7497 0.8200 0.8097
FaceFour 24 88 350 4 0.6477 0.7045 0.6136 0.6591
OliveOil 30 30 570 4 0.7667 0.9667 0.9333 0.9000
Fish 175 175 463 7 0.8114 0.7600 0.8971 0.8500
Plane 105 105 144 7 1.0000 0.9429 1.0000 0.9905

Best ACC 2 19 (8/9/4)

On these datasets, the performance of PFC almost completely surpasses IFT. However,
one exception to the results, was the huge difference in the accuracy of the PFC and IFT
on a dataset called ShapeletSim. The samples in ShapeletSim present a form similar to
high-frequency sinusoidal signals, which causes most of the PIPs to be located at the peaks
and troughs. At this time, the distribution of PIPs can describe the boundary of the sample
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only, a rectangle in Figure 10. The crux of the problem is not just the abnormality of these
distributions, we realize that they lack the necessary distinguishability. On this dataset,
the performance of IFT is almost perfect. The reason may be that its feature selection is
different from our work, and these unique features play an important role in classification.
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Figure 10. The distribution of PIPs in ShapeletSim. The distribution on the training set is on the left,
and the right is the distribution on the test set.

Finally, we set our sights on E-SAX. One of the most popular dimensionality reduction
techniques of time series data is the Symbolic Aggregate Approximation (SAX), which is
inspired by algorithms from text mining and bioinformatics. E-SAX uses only the extreme
points of each segment to represent the time series [56]. The essence of SAX is to reduce
the dimensionality of time series, which is the same as PIPs. For these reasons, we chose
E-SAX as the comparison method.

There are 45 UCR datasets used for comparison experiments, and all the results are
listed in Table 6. It is important to point out that E-SAX originally used classification error
ERR as the metric. In order to facilitate comparison, we convert the classification error
ERR into classification accuracy ACC according to formula (9).

As shown in Table 6, the PFC achieves the most best ACC, and best performance in 34
out of 45 datasets.These datasets are divided into 17 two-category datasets and 28 multi-
category datasets. PFC has achieved significant advantages in 13 two-category datasets
and 21 multi-category datasets. Although PFC is still at a disadvantage in some datasets,
we found that the results obtained by PFC are very close to E-SAX, which is based on the
premise that we have not optimized any parameters and model structure. We believe that
PFC still has the possibility of improvement.

This comparison experiment and the previous two-category verification have a very
small gap in the number of datasets used. It is equivalent to removing part of the two-
category datasets and introducing a large number of multi-category datasets based on the
latter. However, the number of times that the PFC using RF as a classifier achieves the best
accuracy has greatly increased, far exceeding the cases of DT and GBDT. RF can rely on a
large number of decision trees to satisfy multi-classification tasks, and this advantage has
been demonstrated.
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Table 6. Comparison of PFC and E-SAX on 45 UCR datasets. All results are converted to accuracy uniformly.

PFC
Datesets Train Test Class Length E-SAX PFC-DT PFC-RF PFC-GBDT

SyntheticControl 300 300 6 60 0.9970 0.8400 0.9767 0.9500
GunPoint 50 150 2 150 0.8600 0.9533 0.9933 0.9533
CBF 30 900 3 128 0.9190 0.9522 0.9111 0.9056
FaceAll 560 1690 14 131 0.7250 0.6817 0.8302 0.8012
OSULeaf 200 242 6 427 0.5160 0.5248 0.6612 0.6157
SwedishLeaf 500 625 15 128 0.7520 0.7296 0.8752 0.8112
Trace 100 100 4 275 0.6800 1.0000 1.0000 1.0000
FaceFour 24 88 4 350 0.7840 0.7045 0.6136 0.6591
Lightning2 60 61 2 637 0.8360 0.7541 0.8197 0.8197
Lightning7 70 73 7 319 0.6020 0.6986 0.7945 0.7397
ECG200 100 100 2 96 0.8800 0.8100 0.8600 0.8500
Adiac 390 391 37 176 0.1460 0.4731 0.6419 0.5242
Yoga 300 3000 2 426 0.8210 0.7497 0.8200 0.8097
Fish 175 175 7 463 0.7540 0.7600 0.8971 0.8500
Plane 105 105 7 144 0.9710 0.9429 1.0000 0.9905
Car 60 60 4 577 0.7330 0.7167 0.7167 0.7500
Beef 30 30 5 470 0.6330 0.7000 0.7333 0.6667
Coffee 28 28 2 286 0.7140 1.0000 1.0000 1.0000
OliveOil 30 30 4 570 0.1670 0.9667 0.9333 0.9000
CinCECGTorso 40 1380 4 1639 0.9270 0.8800 0.9415 0.9223
ChlorineConcentration 467 3840 3 166 0.4920 0.5951 0.6497 0.6466
DiatomSizeReduction 16 306 4 345 0.9120 0.9052 0.9020 0.8889
ECGFiveDays 23 861 2 136 0.7650 0.9988 0.9501 0.9954
FacesUCR 200 2050 14 131 0.7940 0.5937 0.7405 0.6615
Haptics 155 308 5 1092 0.3380 0.3701 0.5097 0.4805
InlineSkate 100 550 7 1882 0.3300 0.2800 0.3818 0.3327
ItalyPowerDemand 67 1029 2 24 0.8880 0.9417 0.9485 0.9105
MedicalImages 381 760 10 99 0.6420 0.6618 0.7421 0.6868
MoteStrain 20 1252 2 84 0.8070 0.7764 0.8594 0.7572
SonyAIBORobotSurface1 20 601 2 70 0.6940 0.8469 0.7804 0.8469
SonyAIBORobotSurface2 27 953 2 65 0.8540 0.8001 0.7827 0.7901
Symbols 25 995 6 398 0.8970 0.8040 0.9317 0.8523
TwoLeadECG 23 1139 2 82 0.7220 0.9543 0.9719 0.9543
InsectWingbeatSound 220 1980 11 256 0.5470 0.4217 0.5927 0.4788
ArrowHead 36 175 3 251 0.7770 0.6114 0.7257 0.7257
BeetleFly 20 20 2 512 0.7500 0.9000 0.9500 0.9000
BirdChicken 20 20 2 512 0.6500 0.9500 0.9000 0.9500
Herring 64 64 2 512 0.5940 0.6875 0.6563 0.6875
ProximalPhalanxTW 400 205 6 80 0.6380 0.7366 0.8195 0.7951
ToeSegmentation1 40 228 2 277 0.6450 0.7675 0.8915 0.8333
ToeSegmentation2 36 130 2 343 0.8080 0.7692 0.8308 0.7462
DistalPhalanxOutlineAgeGroup 400 139 3 80 0.7500 0.7338 0.7626 0.7482
DistalPhalanxOutlineCorrect 600 276 2 80 0.6020 0.7500 0.7899 0.7753
DistalPhalanxTW 400 139 6 80 0.7280 0.6978 0.6906 0.6763
WordSynonyms 267 638 25 270 0.6290 0.4232 0.5799 0.4828

Best ACC 11 34 (8/27/6)

4.4. Discussion on the Number of PIPs

This is a meaningful discussion, because most of the current papers ignore this prob-
lem. No matter what operations will be performed later, we usually extract m PIPs from the
original time series at first. There are two questions that need to be answered at this time:
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1. What is the appropriate number of m? The more always means the better?
2. Does the number of PIPs have the same effect on different classifiers?

The second question is relatively easy to answer. The data listed in Appendix A. gives
us the answer: the same m has different effects on different classifiers. RF and GBDT always
require a large number of PIPs to achieve high accuracy, but DT is not so demanding. RF
and GBDT as ensemble methods must be suitable for more features, but on some simple
datasets, DT can outperform them with a few PIPs.

In fact, the most difficult thing is to answer the first question. As shown in Figure 11,
with the length of the dataset as the horizontal axis, we obtain the distribution of PIPs
when the best accuracy is achieved on the corresponding dataset. The three distributions
are similar, but for RF and GBDT, the appropriate number of PIPs is greater than DT.
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Figure 11. The distribution of the number of PIPs in different classifers.

On the other hand, on the same dataset, the larger m does not mean the better. Through
a large number of experimental records, we found that there is no specific rule. For some
time series with quite different morphological structures, a small amount of PIPs is enough
to highlight their differences. Conversely, more PIPs may cause information redundancy
and confusion. When the morphological structure of the time series is complex, the situ-
ation is completely opposite, and more PIPs are needed to describe the characteristics of
the sample.

5. Conclusions

The introduction of morphological structure features is an important improvement to
the time series classification. Based on the way of human visual cognition, many studies
have pointed out that the shape of time series can be described by a sequence of important
turning points. Inspired by these studies, we proposed GRM-PIPs, which control the length
of the interval. Then we used PIPs to segment the time series, and extracted the feature
combination of interval-level and point-level. The introduction of three classifiers, DT, RF,
and GBDT, completes the perceptual feature-based framework. Finally, we compared five
benchmark methods and three recently published methods on a large number of UCR
datasets. The experimental results show that our work has excellent performance on the
TSC task. In addition, we demonstrated the threshold of the interval length and discussed
the influence of the number of PIPs, which made up for the deficiency in these aspects.

In future work, we plan to add more different types of classifiers and optimize these
classifiers. At the same time, further improvement of feature extraction is considered.
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Appendix A. Summary of the Number of PIPs When the Best Results Are Obtained

Table A1. The best accuracy and the number of PIPs used at the time.

ACC PIPs
No. PFC-DT PFC-RF PFC-GBDT PFC-DT PFC-RF PFC-GBDT

1 0.9000 0.9500 0.9000 9 7 21
2 0.9500 0.9000 0.9500 5 7 5
3 0.9795 0.9795 0.9767 5 7 4
4 1.0000 1.0000 1.0000 3 15 3
5 0.7000 0.7400 0.7640 25 22 12
6 0.7500 0.7899 0.7753 4 6 5
7 0.7913 0.8058 0.7986 5 4 29
8 0.8100 0.8600 0.8500 6 7 6
9 0.9988 0.9501 0.9954 6 18 6
10 0.7136 0.8530 0.8734 7 29 29
11 0.6432 0.7025 0.7271 9 22 26
12 0.9782 0.9621 0.9775 6 7 6
13 0.9281 0.9081 0.9421 6 6 7
14 0.9533 0.9933 0.9533 5 7 7
15 0.9589 0.9936 0.9873 11 10 11
16 0.9810 1.0000 0.9810 5 6 5
17 1.0000 1.0000 1.0000 3 3 3
18 0.6667 0.7714 0.7486 31 24 24
19 0.8865 0.9216 0.9351 7 13 11
20 0.6875 0.6563 0.6875 26 12 16
21 0.8740 0.9243 0.8740 19 21 19
22 0.9417 0.9485 0.9105 5 6 5
23 0.7541 0.8197 0.8197 6 3 3
24 0.7423 0.8316 0.8178 12 11 11
25 0.7764 0.8594 0.7572 22 23 16
26 0.7145 0.7995 0.8007 7 8 11
27 0.9333 0.9556 0.9500 3 29 3
28 0.8419 0.8797 0.8965 16 14 17
29 0.8250 0.8867 0.8867 3 10 5
30 0.5667 0.5944 0.5667 21 29 21
31 0.8469 0.7804 0.8469 6 12 6
32 0.8001 0.7827 0.7901 14 9 14
33 0.9108 0.9824 0.9622 4 7 7

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/UCRArchive_2018.zip
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/BriefingDocument2018.pdf
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/BriefingDocument2018.pdf
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/BriefingDocument2018.pptx
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/BriefingDocument2018.pptx
http://www.timeseriesclassification.com
http://www.timeseriesclassification.com
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Table A1. Cont.

ACC PIPs
No. PFC-DT PFC-RF PFC-GBDT PFC-DT PFC-RF PFC-GBDT

34 0.7675 0.8915 0.8333 4 5 4
35 0.7692 0.8308 0.7462 5 19 9
36 0.9543 0.9719 0.9543 3 5 3
37 1.0000 1.0000 1.0000 19 27 19
38 0.7037 0.7963 0.7222 9 26 10
39 0.7143 0.7403 0.7800 15 11 13
40 0.7497 0.8200 0.8097 7 7 7
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