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Simple Summary: Ovarian cancer (OC) comprises a heterogeneous group of hormone-dependent
diseases with very high mortality. Estrogens have been shown to promote the progression of OC;
however, their exact role in OC subtypes remains unknown. Here, we investigated the local estrogen
biosynthesis in OC. We performed targeted transcriptomics and estrogen metabolism analyses in
high-grade serous OC (HGSOC) cell lines that differed in chemoresistance status and compared these
data with publicly available transcriptome and proteome data for HGSOC tissues. In HGSOC cells,
estrogen metabolism decreased with increasing chemoresistance. In highly chemoresistant cells and
platinum-resistant HGSOC tissues, HSD17B14 expression was increased. Proteome data showed
differential levels of HSD17B10, SULT1E1, CYP1B1, and NQO1 between the four HGSOC subtypes.
Our results confirm that estrogen biosynthesis differs between different HGSOC cell models and
possibly between different HGSOC subtypes. Such differentially expressed enzymes have potential
as targets in the search of new treatment options.

Abstract: Ovarian cancer (OC) is highly lethal and heterogeneous. Several hormones are involved
in OC etiology including estrogens; however, their role in OC is not completely understood. Here,
we performed targeted transcriptomics and estrogen metabolism analyses in high-grade serous OC
(HGSOC), OVSAHO, Kuramochi, COV632, and immortalized normal ovarian epithelial HIO-80 cells.
We compared these data with public transcriptome and proteome data for the HGSOC tissues. In
all model systems, high steroid sulfatase expression and weak/undetected aromatase (CYP19A1)
expression indicated the formation of estrogens from the precursor estrone-sulfate (E1-S). In OC
cells, the metabolism of E1-S to estradiol was the highest in OVSAHO, followed by Kuramochi and
COV362 cells, and decreased with increasing chemoresistance. In addition, higher HSD17B14 and
CYP1A2 expressions were observed in highly chemoresistant COV362 cells and platinum-resistant
tissues compared to those in HIO-80 cells and platinum-sensitive tissues. The HGSOC cell models
differed in HSD17B10, CYP1B1, and NQO1 expression. Proteomic data also showed different levels
of HSD17B10, CYP1B1, NQO1, and SULT1E1 between the four HGSOC subtypes. These results
suggest that different HGSOC subtypes form different levels of estrogens and their metabolites and
that the estrogen-biosynthesis-associated targets should be further studied for the development of
personalized treatment.

Keywords: ovarian cancer; high-grade serous ovarian carcinoma; HIO-80; OVSAHO; Kuramochi;
COV362; immunoreactive; differentiated; proliferative; mesenchymal subtype

1. Introduction

Ovarian cancer (OC) is the seventh most common cancer in women worldwide [1]
and has a very high mortality due to its asymptomatic nature, which usually results in
the discovery of the disease in its advanced stages [2]. The survival of OC patients closely
correlates with disease progression; the average 5-year survival rate of OC patients is only
47% [2].
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More than 95% of all OCs are epithelial (EOC) [3]. EOC is an extremely heterogeneous
group of malignant diseases that differ in clinicopathological features and genomic pro-
files [4]. Classified according to histological characteristics, the five most common forms
of EOC are high-grade serous carcinoma (HGSOC; 70%), endometrioid carcinoma (10%),
clear-cell carcinoma (5–10%), low-grade serous carcinoma (<5%), and mucinous carcinoma
(2–3%) [4]. These subtypes share an anatomical location but are believed to be derived from
different tissues. For example, HGSOCs are suggested to originate in the distal fallopian
tube, and clear cell and endometrioid cancers have been associated with endometriotic
lesions. Mucinous cancers usually present metastases to the ovary, often originating from
the gastrointestinal tract [5].

Different OC subtypes have been traditionally classified as genetically stable type I or
genetically unstable type II tumors. Recently, different OC subtypes have been preferentially
classified based on their molecular characteristics [6]. For the most common OC, HGSOC,
four robust subtypes have been discovered: immunoreactive, proliferative, differentiated,
and mesenchymal subtypes, characterized by the expression of chemokines, proliferation
markers, ovarian tumor markers, and markers suggestive of increased stromal components,
respectively [7].

The development of OC can be explained by multiple hypotheses including the actions
of gonadotropins, estrogens, androgens, and inflammatory molecules [8]. Studies have
shown that estrogens promote OC development by increasing the proliferation of ovarian
surface epithelial cells [9], inducing invasiveness [10], and increasing metastatic potential,
as shown in some human epithelial cancer cell lines [11]. OC patients have increased
estradiol plasma concentrations compared to the controls [12], and high activities of certain
steroid-converting enzymes have been shown in OC tissues [9]. Both nuclear estrogen
receptors (ER) α and β are expressed in most OCs [13], and the ERα/β ratio is usually
elevated [14]. The literature on the association of ERα and the disease outcome or cisplatin-
sensitivity of OC is opposing [15–17], with most studies associating ERα positivity with a
good prognosis of serous OC patients [17]. ERβ expression is associated with antitumoral
effects such as decreased growth rate, motility, and increased apoptosis, as observed in OC
cells [18]. Additionally, the activation of ERβ with selective agonist results in the increased
effectiveness of the cisplatin and paclitaxel treatment of OC cells [19].

In hormone-dependent cancers and local (extragonadal) tissues, estrogens can be
formed from the inactive steroid precursor estrone sulfate (E1-S) via the sulfatase pathway
(with steroid sulfatase (STS) as the key enzyme) or from dehydroepiandrosterone sulfate
(DHEA-S) or androstenedione via the aromatase pathway (with aromatase (CYP19A1) as
the key enzyme. The cellular uptake of precursors is enabled by organic anion transport-
ing polypeptides (SLCOs, OATPs) and organic anion transporters (SLCs, OATs), whereas
the efflux is enabled by ATP-binding cassette transporters (ABCs) and the organic so-
lute transporter (OST) αβ (SLC51). Estrogen metabolism includes phase I, during which
estrogens are hydroxylated by cytochrome P450 (CYP) enzymes, and phase II, during
which catechol estrogens are conjugated by the actions of catechol-O-methyl transferase
(COMT), sulfotransferases, uridine diphosphate (UDP)-glucuronosyltransferase, or estro-
gen quinones, which are inactivated by glutathione S-transferase (GSTP1) and NAD(P)H
quinone dehydrogenases [20,21].

OC treatment usually involves cytoreductive surgery combined with platinum and
taxane chemotherapy [22]. Although 60–80% of patients respond positively to such treat-
ment, the disease relapses in most cases and becomes resistant to additional therapies [23].
Several mechanisms are involved in the development of OC resistance to chemotherapeutic
agents including altered drug transport, which involves ABC transporters and altered
cellular enzymes that are involved in detoxification (e.g., glutathione S transferases and
aldo-keto reductases) [23,24].

For several years, estrogens have been associated with OC development and progres-
sion; however, no systematic study has investigated the expression of E1-S or DHEA-S
transporters, estrogen biosynthetic or metabolic enzymes, or estrogen receptors in different
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HGSOC cell models or HGSOC subtype tissues. In this study, we used human OC cell
lines from the most common OC type (HGSOC): OVSAHO, Kuramochi, and COV362 cells,
which differ in their resistance to platinum derivatives, invasiveness, migratory ability,
and proliferation [25]. We also used the normal ovarian epithelial cell line HIO-80 and the
publicly available transcriptome and proteome data from the HGSOC tissues of different
subtypes and normal fallopian tube tissue. In the cell lines, we evaluated the steroid
precursor metabolism and performed a targeted transcriptomics study focusing on 50 key
genes involved in steroid precursor transport and local estrogen biosynthesis. In the tissue
samples, we evaluated the expression of these enzymes at the mRNA and protein levels.
We hypothesized that differentially chemoresistant HGSOC cell lines and the tissues of
different subtypes differ in their expressions of the transporters and enzymes involved in
local estrogen biosynthesis and metabolism.

2. Materials and Methods
2.1. Cell Lines

The HIO-80 (CVCL_E274) immortalized normal ovarian epithelial cells were originally
established from ovarian surface epithelium [26] and were obtained from Andrew K.
Godwin (University of Kansas Medical Center, USA) as p72 on 20 October 2017. HIO-80
cells were grown in a 1:1 mixture of Medium 199 (M5017; Sigma-Aldrich GmbH) and
MCDB105 medium (M6395) supplemented with 4% FBS (F9665) and 7.5 µg/mL insulin
(I9278). HIO-80 cells from passages +10 to +20 were used in this study. HIO-80 cells in
passage +10 were authenticated by short tandem repeat (STR) profiling performed by
ATCC on 22 February 2019.

The OVSAHO (CVCL_3144) cell line was originally established from a serous papillary
adenocarcinoma from a metastatic site in the abdomen [27] of a 56-year-old woman and was
purchased from JCRB (JCRB1046 lot 04062015) as p44 on 4 June 2018. The growth medium
for OVSAHO cells was RPMI (R5886; Sigma-Aldrich GmbH), with 10% FBS (F9665) and
2 mM L-glutamine (G7153). OVSAHO cells from passages +7 and +15 were used in this
study. Authentication by STR profiling was performed by JCRB.

The Kuramochi (CVCL_1345) cell line was originally established from high-grade
ovarian serous adenocarcinoma from a metastatic site in the ascites [28] and was purchased
from JCRB (JCRB0098 lot 06302015) as p17 on 23 October 2017. The growth medium for
Kuramochi cells was RPMI (R5886; Sigma-Aldrich GmbH), with 10% FBS (F9665) and
2 mM L-glutamine (G7153). Kuramochi cells from passages +5 to +15 were used in this
study. Authentication by STR profiling was performed by JCRB.

The COV362 (CVCL_2420) cell line was originally established from a high-grade
ovarian serous adenocarcinoma derived from a metastatic site in pleural effusion [29] and
was purchased from ECACC (ECACC 07071910) as p37 on 13 October 2017. The growth
medium for the COV362 cells was DMEM (D5546; Sigma-Aldrich GmbH), with 10% FBS
(F9665) and 2 mM L-glutamine (G7153). COV362 cells from passages +8 to +15 were used
in this study. Authentication by STR profiling was performed by ECACC.

All cell lines were negative for mycoplasma infection, which was periodically tested
using the MycoAlertTM Mycoplasma Detection Kit (Lonza, Basel, Switzerland).

2.2. RNA Isolation

The total RNA from the HIO-80, OVSAHO, Kuramochi, and COV362 cells was isolated
and purified using Nucleospin RNA Isolation Kits (Macherey-Nagel GmbH & Co. KG,
Düren, Germany), according to the manufacturer’s instructions. The RNA quantity and
quality were determined using NanoDrop (Thermo Fisher Scientific, Waltham, MA, USA).
The RNA was of very good quality, with an average RNA integrity number of 9.4 ± 0.39.
Samples of the total RNA (4 µg) were reverse transcribed into cDNA (in 40 µg) using the
SuperScript® VILO™ cDNA Synthesis Kit (Invitrogen, Thermo Fisher Scientific, Carlsbad,
CA, USA) according to the manufacturer’s instructions. The cDNA samples were stored
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at −20 ◦C. For RNA isolation, cell lines were cultured independently on three different
occasions (n = 3).

2.3. Quantitative PCR

The expressions of the genes of interest (Table 1) were examined by quantitative
PCR (qPCR) using the TaqMan® Fast Advanced Master Mix (Applied Biosystems; Foster
City, CA, USA) or SYBR Green I Master (Roche, Basel, Switzerland) as described in our
previous studies [20]. Quantification was accomplished with the Applied Biosystems®

ViiATM 7 Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA, USA). All cDNA
samples were run in triplicate using 0.25 µL of cDNA, and the reactions were performed
in Applied Biosystems® MicroAmp® Optical 384-well plates (Thermo Fisher Scientific,
Waltham, MA, USA) in a reaction volume of 5.0 µL. The PCR amplification efficiency
was determined from the slope of the log-linear portion of the calibration curve for each
gene investigated, and this was accounted for in the further calculations. For the gene
expression analysis, the normalization factor for each sample was calculated based on the
geometric mean of the two most stably expressed reference genes (POLR2A and RPLP0).
The gene expression for each sample was calculated from the crossing-point value (Cq)
as E−Cq, divided by the normalization factor and multiplied by 1012. The Cq cutoff value
was set to 35. The Minimum Information for Publication of Quantitative Real-Time PCR
Experiments guidelines were considered in the performance and interpretation of the qPCR
reactions [30].

Table 1. The assays and sequences of the primers and probes to evaluate the genes of interest.

Gene Gene Name Assay Assay ID or
Sequences or Primers and/or Probes (5′ to 3′)

ABCC1
Multidrug-resistance-associated

protein 1 SYBR Green
Forward primer:

GGACTCAGGAGCACACGAAA
Reverse primer: ACGGCGATCCCTTGTGAAAT

ABCC11 ATP-binding cassette subfamily C
member 11

SYBR Green
Forward primer: TCTCCATATATCCTGTTAAT
Reverse primer: TATAGTTCTCCAGTCTCTTG

ABCC4
Multidrug-resistance-associated

protein 4 SYBR Green
Forward primer:

AACTGCAACTTTCACGGATG
Reverse primer: AATGACTTTTCCCAGGCGTA

ABCG2
Broad substrate specificity

ATP-binding cassette
transporter ABCG2

SYBR Green
Forward primer:

GGGTTTGGAACTGTGGGTAG
Reverse primer: AGATGATTCTGACGCACACC

AKR1C3
Aldo-keto reductase family 1,

member C3 (17β-hydroxysteroid
dehydrogenase type 5)

TaqMan

Forward primer:
GTTGCCTATAGTGCTCTGGGATCT

Reverse primer: GGACTGGGTC
CTCCAAGAGG

Fluorescent MGB-NFQ probe:
CACCCATCGTTTGTCTC FAM

COMT Catechol-O-methyltransferase Taqman Hs00241349_m1

CYP19A1 Cytochrome P450, family 19,
subfamily A Taqman Hs00240671_m1

CYP1A1 Cytochrome P450, family 1, subfamily
A, polypeptide 1 Taqman Hs00153120_m1

CYP1A2 Cytochrome P450, family 1, subfamily
A, polypeptide 2 Taqman Hs00167927_m1

CYP1B1 Cytochrome P450, family 1, subfamily
B, polypeptide 1 Taqman Hs00164383_m1

CYP3A5 Cytochrome P450, family 3, subfamily
A, polypeptide 5 Taqman Hs00241417_m1
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Table 1. Cont.

Gene Gene Name Assay Assay ID or
Sequences or Primers and/or Probes (5′ to 3′)

CYP3A7 Cytochrome P450, family 3, subfamily
A, polypeptide 7 Taqman Hs00426361_m1

ESR1 Estrogen receptor 1 (α) TaqMan Hs00174860_m1

ESR2 Estrogen receptor 2 (β) TaqMan Hs00230957_m1

GPER v2 G-protein–coupled estrogen receptor
1 (gene variant 2) Taqman Hs00173506_m1

GPER v3, v4 G-protein–coupled estrogen receptor
1 (gene variants 3 and 4) Taqman Hs01116133_m1

GSTP1 Glutathione S-transferase pi 1 Taqman Hs00168310_m1

HSD17B1 Hydroxysteroid (17β)
dehydrogenase 1 TaqMan Hs00166219_g1

HSD17B10 Hydroxysteroid (17β)
dehydrogenase 10 TaqMan Hs00189576_m1

HSD17B12 Hydroxysteroid (17β)
dehydrogenase 12 TaqMan Hs00275054_m1

HSD17B14 Hydroxysteroid (17β)
dehydrogenase 14 Taqman Hs00212233_m1

HSD17B2 Hydroxysteroid (17β)
dehydrogenase 2 TaqMan Hs00157993_m1

HSD17B4 Hydroxysteroid (17β)
dehydrogenase 4 TaqMan Hs00264973_m1

HSD17B7 Hydroxysteroid (17β)
dehydrogenase 7 Taqman Hs00367686_m1

HSD17B8 Hydroxysteroid (17β)
dehydrogenase 8 TaqMan Hs00367151_m1

HSD3B1
Hydroxy-delta-5-steroid

dehydrogenase, 3β, and steroid
delta-isomerase 1

Taqman Hs00426435

HSD3B2
Hydroxy-delta-5-steroid

dehydrogenase, 3β, and steroid
delta-isomerase 2

Taqman Hs00605123_m1

NQO1 NAD(P)H dehydrogenase, quinone 1 Taqman Hs00168547_m1

NQO2 NAD(P)H dehydrogenase, quinone 2 Taqman Hs00168552_m1

POLR2A * DNA-directed RNA polymerase II
subunit RPB1

TaqMan and
SYBR Green

Hs00172187_m1 (TaqMan)
Forward primer:

CAAGTTCAACCAAGCCATTG (SYBR)
Reverse primer:

GTGGCAGGTTCTCCAAGG (SYBR)

RPLP0 * 60S acidic ribosomal protein P0 TaqMan and
SYBR Green

Hs99999902_m1 (TaqMan)
Forward primer:

AATGTGGGCTCCAAGCAGAT (SYBR)
Reverse primer:

TTCTTGCCCATCAGCACCAC (SYBR)

SLC10A6 Solute carrier family 10 member 6 SYBR Green
Forward primer: TATGACAACCTGTTCCACCG

Reverse primer:
GAATGGTCAGGCACACAAGG

SLC22A11 Solute carrier family 22 member 11 SYBR Green
Forward primer: CTCACCTTCATCCTCCCCTG
Reverse primer: CCATTGTCCAGCATGTGTGT
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Table 1. Cont.

Gene Gene Name Assay Assay ID or
Sequences or Primers and/or Probes (5′ to 3′)

SLC22A7 Solute carrier family 22 member 7 SYBR Green
Forward primer:

CCTCCAGAGTCCAAGGGTCT
Reverse primer: ATGCTGCTCACCCACCAAAT

SLC22A8 Solute carrier family 22 member 8 SYBR Green
Forward primer: TACGCTGGTTGGTCTTGTCT
Reverse primer: CTCCCTCTTCCTTCTTGCCA

SLC22A9 Solute carrier family 22 member 9 SYBR Green
Forward primer: CGGCTACCTATCTGACCCCA
Reverse primer: TCTTGACGACTGTGCTTCCC

SLC51A
Organic solute transporter

subunit alpha SYBR Green
Forward primer: GCCCTTTCCAATACGCCTTC
Reverse primer: TCTGCTGGGTCATAGATGCC

SLC51B
Organic solute transporter

subunit beta SYBR Green

Forward primer:
GTGCTGTCAGTTTTCCTTCCG

Reverse primer:
TCATGTGTCTGGCTTAGGATGG

SLCO1A2
Solute carrier organic anion

transporter family member 1A2 SYBR Green
Forward primer:

GTTGGCATCATTCTGTGCAAATGTT
Reverse primer:

AACGAGTGTCAGTGGGAGTTATGAT

SLCO1B1
Solute carrier organic anion

transporter family member 1B1 SYBR Green
Forward primer: CAAATTCTCATGTTTTACTG
Reverse primer: GATTATTTCCATCATAGGTC

SLCO1B3
Solute carrier organic anion

transporter family member 1B3 SYBR Green
Forward primer: TCCAGTCATTGGCTTTGCAC

Reverse primer:
TCCAACCCAACGAGAGTCCT

SLCO1C1
Solute carrier organic anion

transporter family member 1C1 SYBR Green

Forward primer:
CACACAGACTACCAAACACCC

Reverse primer:
TCACCATGCCGAACAGAGAA

SLCO2B1
Solute carrier organic anion

transporter family member 2B1 SYBR Green
Forward primer: AGAGCCCTGTGTTCCATTCT
Reverse primer: CTCTTGCTCCAGAAATGGCC

SLCO3A1
Solute carrier organic anion

transporter family member 3A1 SYBR Green
Forward primer: CTACGACAATGTGGTCTAC
Reverse primer: TTTTGATGTAGCGTTTATAG

SLCO4A1
Solute carrier organic anion

transporter family member 4A1 SYBR Green

Forward primer:
ATGCACCAGTTGAAGGACAG

Reverse primer:
AACAAGGTGGCAGCTTCTGAG

SULT1A1 Sulfotransferase family 1A, member 1 Taqman Hs00738644_m1

SULT1E1 Sulfotransferase family 1E,
estrogen-preferring, member 1 Taqman Hs00193690_m1

SLCO4C1
Solute carrier organic anion

transporter family member 4C1 SYBR Green
Forward primer: CCAGGAGCCCCAGAAGTC
Reverse primer: AACTCGGACAGCGACAGTG

STS Steroid sulfatase (microsomal),
isozyme S TaqMan Hs00165853_m1

SULT2A1
Sulfotransferase family, cytosolic, 2A,
dehydroepiandrosterone-preferring,

member 1
Taqman Hs00234219_m1

SULT2B1 Sulfotransferase family, cytosolic, 2B,
member 1 Taqman Hs00190268_m1

UGT2B7 UDP glucuronosyltransferase 2
family, polypeptide B7 Taqman Hs00426592_m1

* Reference genes.
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2.4. Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)

HIO-80 (10–15th passages), OVSAHO (8–15th passages), Kuramochi (10–15th pas-
sages), and COV362 (8–15th passages) cells were plated into 6-well plates at cell densities
of 1.1 × 105, 2.0 × 106, 5.0 × 105, and 3.5 × 105 cells/well, respectively. After 24 h, the
cells were washed with DPBS, and serum-free and phenol-red-free culture medium was
added. The cells were then incubated with 2.3, 8.5, and 85 nM E1-S (in ethanol with a final
concentration of 0.25%). After 8, 24, 48, and 72 h of incubation, the cell culture medium was
collected in microcentrifuge tubes (Eppendorf, Hamburg, Germany) and stored at −80 ◦C
until further processing. Two independent experiments were carried out, each performed
in duplicate.

E1-S metabolism in the cell lines was assessed using LC-MS/MS, which comprised a
Shimadzu Nexera XR system (Shimadzu Corporation, Kyoto, Japan) and a triple quadruple
MS system (Triple Quad 3 500; AB Sciex Deutchland GmbH, Darmstadt, Germany). The
levels of E1-S, E1, E2, and E2-sulfate (E2-S) were assessed with the LC-MS/MS method
as described previously [20]. Briefly, a deuterated internal standard of E2-d2 was added
to the cell culture medium samples, and the lipophilic fraction containing the analytes
of interest was extracted with solid-phase extraction (Strata-X polymer-based columns;
Phenomenex, Torrance, CA, USA). The method involved column conditioning with 1 mL
methanol, column equilibration with 1 mL water, sample loading, column drying at high
vacuum for 10 min, and finally elution with 1.5 mL methanol. Next, the samples were
evaporated under vacuum and reconstituted in 100 µL of 70% methanol/0.2 mM NH4F.

For chromatographic separation, we used a C18 column (Kinetex 2.6 µm XB; 100× 4.6 mm;
Phenomenex, Aschaffenburg, Germany). The mobile phase compositions included phase
A (5% methanol in water, 0.2 mM NH4F) and phase B (100% methanol, 0.2 mM NH4F).
The injection volume was 25 µL, and the oven temperature was 38 ◦C. The mobile phase
flow rate was 0.5 mL/min, and the following gradient was used: 0.0–3.0 min, 70% A;
3.0–8.0 min, 70–4% A; 8.0–8.01 min, 4–70% A; 8.01–15.0 min, 70% A. The MS/MS analysis
was performed in negative ion mode with constant electrospray ionization conditions. The
source-dependent parameters were as follows: curtain gas, 50 psi; collision gas, 8 psi; ion
spray voltage, −4500 V; source temperature, 600 ◦C; ion source gas 1, 40 psi; ion source gas
2, 80 psi. All transitions were recorded using the scheduled multiple reaction monitoring
algorithm. The target scan time was set to 1 s, with a multiple reaction monitoring detection
window of 120 s. The resolution for the first and third quadrupole (Q1, Q3) was set as the
unit, and the pause between the mass ranges was set at 5 ms. The limits of detection and
quantification were calculated as 3× and 10× the signal/noise ratio. The limit of detection
for E1, E1-S, E2, and E2-S was 1 pg/mL. The limit of quantification was 5 pg/mL for E1
and E1-S and 10 pg/mL for E2 and E2-S.

2.5. Transcriptome and Proteome Analysis in HGSOC and Normal Tissues Using Publicly
Available Databases

To analyze the gene expression in HGSOC tissues, we downloaded data from cBioPor-
tal (https://www.cbioportal.org/) on 10 January 2022 [31,32]. For the analysis, we used
the RNA expression data (acquired using the RNA-Seq by Expectation-Maximization algo-
rithm, batch normalized) and clinical data from the Ovarian Serous Cystadenocarcinoma
(TCGA, PanCancer Atlas) study.

To analyze the protein levels in the HGSOC and normal tissues, we accessed the
National Cancer Institute, Proteomic Data Commons server (https://pdc.cancer.gov) on
12 January 2022. We used proteomic data from the TCGA Ovarian PNNL and JHU Pro-
teome studies (IDs PDC000114, PDC000113) [33] and Prospective Ovarian JHU Proteome
study (ID PDC000110) [34]. We used normalized log2 transformed levels of the proteins of
interest from these studies.

https://www.cbioportal.org/
https://pdc.cancer.gov
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2.6. Hierarchical Clustering

Hierarchical clustering was performed using RStudio, version 1.1.436 [35] with the
ComplexHeatmap package [36]. We used log2 transformed gene expression data, Eu-
clidean distance, and Ward’s linkage. The R code used for data clustering is presented in
Supplementary Table S1.

2.7. Statistical Analysis

Statistical analysis was performed using GraphPad Prism software for Windows,
version 8.0 (San Diego, CA, USA) and the Kruskal–Wallis with Dunn’s multiple compar-
isons, Mann–Whitney U, one-way ANOVA with Bonferroni multiple comparisons, or
Tukey’s tests.

All data are shown as mean ± standard deviation (SD). Differences with
p values < 0.05 were considered statistically significant.

3. Results and Discussion
3.1. Targeted Transcriptomic Analysis Suggests That Estrogen Metabolism Differs between
Different HGSOC Cells

We examined the expression (Cq < 35) of 50 genes: 13 uptake and five efflux trans-
porters of steroid precursors, 16 biosynthetic, and 13 metabolic enzymes for estrogens, two
nuclear receptors, and all three variants of the membrane estrogen receptor (Figure 1). We
used the normal ovarian epithelial cell line HIO-80 and three different chemoresistant HG-
SOC cell lines: the least chemoresistant OVSAHO (cisplatin IC50~3.7 µM [25], carboplatin
IC50 = 9.4 µM [37]), moderately chemoresistant Kuramochi (cisplatin IC50~10.4 µM [25],
carboplatin IC50 = 12 µM [37]), and highly chemoresistant COV362 cell line (cisplatin
IC50 = 13.57 µM [25], carboplatin IC50 = 318.2 µM [38]).

Among the transporters, SLCO4A1 (uptake) and ABCC1 (efflux) had the highest ex-
pression, and the differential expression was detected for all expressed SLCOs (uptake)
and ABCC4 (efflux). In all cell lines, aromatase (CYP19A1) expression was weak or unde-
tectable, whereas the STS expression was high, indicating the importance of the sulfatase
pathway for estrogen formation. Genes for the HSD17B enzymes were highly and dif-
ferentially expressed between cells, indicating differences in estrogen metabolism. In
all cell lines, GSTP1 and NQO1 expression significantly exceeded the expression of all
the estrogen-hydroxylating CYP enzymes examined, indicating a high level of estrogen
quinone detoxification. All estrogen receptors were expressed, with significantly more
ESR1 than the G protein-coupled estrogen receptor (GPER) v3,v4 in HIO-80 (ESR1/GPER
v3,v4 = 171.3), OVSAHO (ESR1/GPER v3,v4 = 23,173.5), and COV362 cells (ESR1/GPER
v3,v4 = 560.0). ESR1 mRNA levels were the highest in the OVSAHO, followed by the
COV362 and Kuramochi cells, and were in line with the reported protein levels, except for
the Kuramochi cells, in which ERα was previously not detected [39]. Based on the gene
expression data, the HIO-80 and Kuramochi cells are very similar, whereas the COV362
cells differed the most.

The genes evaluated in the current study are not only involved in estrogen metabolism,
but also in the transport of anticancer drugs (e.g., SLCs and SLCOs [40], or indirectly
in cell cycle regulation (e.g., HSD17B7 [41]), proliferation (e.g., GPER [42]), apoptosis
(e.g., GSTP1 [43]), and other processes. Cell lines used in our study have different genetic
backgrounds including alterations in the genes regulating the cell cycle, cell maturation,
and apoptosis (e.g., RB1, MYC, KRAS [44]), possibly associated with their differences in
proliferation, migration, and colony formation [25]. Despite the possibility that the differen-
tial expression of evaluated genes may arise due to several processes, in the continuation,
we focus more on one aspect of this complex web of interactions: the metabolism of the
less investigated estrogens.
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Figure 1. Gene expression of the (a) uptake transporters, (b) efflux transporters, (c) estrogen biosyn-
thetic enzymes (with a schematic representation of local estrogen biosynthesis), (d) estrogen metabolic
enzymes (with a schematic representation of estrogen metabolism), and (e) estrogen receptors in the
HIO-80, OVSAHO, Kuramochi, and COV362 cell lines. (f) A heatmap with a dendrogram of the
evaluated genes (excluding the weakly/not expressed genes CYP1A2, CYP3A5, CYP3A7, HSD3B1,
HSD3B2, and SULT2A1) clustered based on Euclidean distance and Ward’s linkage. The expression
of the genes of interest was evaluated in three individual experiments. Kruskal–Wallis with Dunn’s
multiple comparison tests; *, p < 0.05. Data are presented as means ± SD. Normalized mRNA values
for individual genes are shown in Supplementary Table S2.
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3.2. Differential Gene Expression Correlates with Differences in Chemoresistance

We compared the cell lines pairwise based on gene expression (Figure 2). Compared to
cells of normal ovarian epithelium, HIO-80, the smallest differences in gene expression were
observed in OVSAHO, followed by the Kuramochi and COV362 cells. In OVSAHO cells,
lower STS expression (3.1-fold) indicated a lower formation of E1 and DHEA from sulfated
steroid precursors. In the Kuramochi cells, increased GPER v3,v4 expression (93.3-fold)
suggested a more important role of GPER-associated signaling and increased SLC51B
expression (22.0-fold, Km for E1-S = 320 µM [45] (Supplementary Table S3)), indicating
greater formation of the dimeric OSTαβ efflux transporter [46]. In the COV362 cells, we
observed an increase in SLCO4A1 (36.5-fold) and HSD17B14 (7.1-fold) and a decrease
in SLCO4C1 (22.1-fold, Km for E1-S = 27 µM [45]) and HSD17B12 (2.4-fold), indicating
differences in the uptake of steroid precursors and E2 formation compared to the HIO-
80 cells. None of the HGSOC cell lines expressed CYP3A5 or CYP3A7, suggesting that
estrogens cannot be 16α-hydroxylated in these cells.

Compared to the least chemoresistant OVSAHO cells, the Kuramochi cells expressed
less ABCC4 (6.2-fold) and HSD17B10 (2.7-fold) and more CYP1B1 (14.4-fold), indicating
less steroid precursor efflux, less E2 deactivation to E1, and more 4-OH-E1/E2 formation in
the Kuramochi cells. Conversely, compared to the OVSAHO cells, highly chemoresistant
COV362 cells expressed higher levels of SLCO1B3 (104.4-fold, Km for E1-S = 5–58 µM [45])
and SLCO2B1 (48.8-fold, Km for E1-S = 1.6–21 µM [45]), indicating more uptake of steroid
precursors, and lower levels of HSD17B4 (2.7-fold) and higher levels of HSD17B2 (which
was not expressed in OVSAHO cells), indicating higher deactivation of E2 to E1 in the
COV362 cells. Additionally, in the COV362 compared to OVSAHO cells, the levels of
the following genes were higher: AKR1C3 (348.2-fold), indicating more conversion of
androstenedione to testosterone, and NQO1 (14.4-fold) and GSTP1 (2.9-fold), indicating
more inactivation of estrogen-quinones in the COV362 cells. In the COV362 cells compared
to Kuramochi cells, increased SULT2B1 (4.5-fold) and CYP1A1 (28.6-fold) and decreased
SLCO1A2 (155.0-fold) levels were observed, indicating increased formation of catechol
sulfates and sulfated DHEA and decreased uptake of steroid precursors, respectively, in
the COV362 cells.

Some of the differentially expressed genes were previously associated with chemore-
sistance, prognosis, and cell proliferation. For example, the expression levels of AKR1C3,
an enzyme that has a role in chemoresistance establishment [24], are higher in COV362
than in OVSAHO cells. Furthermore, several SLCOs were upregulated in HGSOC tissues
compared to benign ovarian cysts [47], and SLCO1B1 and SLCO1B3 promoted paclitaxel
uptake [48]. In our study, several SLCO transporters were differentially expressed in
COV362 compared to the less chemoresistant cells or normal ovarian cells. As COV362 cells
are more chemoresistant to paclitaxel (IC50 = 2.72 nM [49]) compared to the Kuramochi
(IC50 = 1.51 nM [49]) and OVSAHO cells (IC50 = 0.276 nM [49]), the different transporter
profile in highly chemoresistant HGSOC indicates associations with processes other than
drug transport, perhaps with the functional characteristics of the COV362 cells or the
increased energy demands of cancer cells [50]. Furthermore, studies have also shown that
paclitaxel-induced CYP1B1 expression causes OC drug resistance [51] and that CYP1A1
contributes to OC initiation and progression [52]. In our study, we observed increased
CYP1B1 levels in the Kuramochi compared to OVSAHO cells and increased the CYP1A1
levels in COV362 compared to the Kuramochi cells, which indicates an association with the
prognosis of these HGSOC models.

In OC, ABC transporters were associated with aggressiveness (ABCC1) [53], unfavor-
able outcome (ABCC4) [53], and progression (ABCG2) [54]. Interestingly, we observed
decreased ABCC4 levels in Kuramochi compared to OVSAHO cells, which may be asso-
ciated with lower proliferation rates of Kuramochi cells [25], as observed in non-small
cell lung cancer cells [55]. Additionally, compared to the Kuramochi cells, slightly more
proliferative COV362 cells [25] expressed more SULT2B1, which may also be associated
with proliferation, as shown in hepatocellular carcinoma cells [56]. In the literature, the
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data on GPER are opposing; however, numerous studies have associated GPER with the
mechanisms of carcinogenesis [57]. Our results suggest that GPER is associated with
cancer progression because the GPER v3,v4 mRNA levels were higher in the Kuramochi
than those in normal HIO-80 cells. The importance of GPER has already been shown in
ERα-negative/GPER-positive OVCAR5 OC cells in which E2 induced cell proliferation [42].
This could also be the case for Kuramochi cells because these cells do not express ERα [39].
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Figure 2. Pairwise comparison of the gene expression in the HIO-80, OVSAHO, Kuramochi, and
COV362 cells, presented as volcano plots. FC, fold change; horizontal dashed line, the cutoff for
experimental significance (dark orange; −log (1.3); p < 0.05); vertical dashed lines, the cutoff for genes
similarly expressed in both cell lines (FC, ±2.0); vertical grey line (x = 0), genes not expressed in
either cell line; red dots, differentially expressed genes; black dots, non-differentially expressed genes.
Fold regulation and p values (Mann–Whitney U tests) of gene expression for individual cell pairs are
presented in Supplementary Table S4.

Overall, our results indicate the association of multiple transporters and estrogen
metabolic enzymes with the severity of HGSOC. Specifically, we observed an increasing
number of differentially expressed genes with increasing chemoresistance of OC cells,
indicating an association between estrogen metabolism and chemoresistance.
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3.3. OVSAHO Cells Have the Highest Capacity for E1-S Uptake and Metabolism

To evaluate the differences in estrogen metabolism between the normal and HGSOC
cell lines, we used 2.3 nM, 8.5 nM, and 85 nM E1-S and measured the products E1, E2, and
E2-S with LC-MS/MS 24, 48, and 72 h after treatment.

The formation of E1 and E2 was the fastest and largest in the OVSAHO cells (Figure 3,
Supplementary Table S5), followed by the Kuramochi, HIO-80, and COV362 cells. At lower
E1-S concentrations, the Kuramochi and HIO-80 cells showed a similar capacity for E1-S
uptake and metabolism, and at the highest E1-S concentration, the Kuramochi cells formed
more E1 than the HIO-80 cells. In the COV362 cells, the formation of E1 was minimal, and
the formation of E2 was undetectable.
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Our results confirmed E2 formation via the sulfatase pathway in the OVSAHO, Ku-
ramochi, and HIO-80, but not in the COV362 cells. In the COV362 cells, E2 formation may be
limited by an altered HSD17B enzyme ratio. The most potent enzyme for the transformation
of E1 to E2, HSD17B1 (Km = 0.9 µM [58]), was undetectable in the COV362 cells, whereas
the most potent enzyme for the transformation of E2 to E1, HSD17B2 (Km = 0.21 µM [59]),
was highly expressed in COV362 and undetectable in the OVSAHO cells. The resulting
high HSD17B1/HSD17B2 ratio in the OVSAHO cells and low ratio in the COV362 cells
could explain the strong E2 formation in the OVSAHO cells and the lack of E2 formation in
the COV362 cells.

Lower formation of estrogens observed in the Kuramochi and COV362 cells compared
to the OVSAHO cells may, to some extent, be associated with the differences in the oxidative
metabolism of estrogens in these cells. Gene expression data indicate that, compared
to the OVSAHO cells, the Kuramochi cells transform E1-S in higher levels to catechols
(decreased ABCC4 and HSD17B10 and increased CYP1B1), and COV362 cells form higher
levels of 2-OH-E1/E2 (increased NQO1) and glutathione-conjugated quinones (increased
GSTP1). Additionally, in the COV362 cells compared to the Kuramochi cells, higher
catechols (increased CYP1A1) and catechol sulfates (increased SULT2B1) are expected,
supporting the lower E1-S metabolism seen in the COV362 cells. The exact differences in
the levels of oxidative metabolites and their conjugates are currently unknown and are yet
to be determined.

In highly chemoresistant COV362 cells and moderately chemoresistant Kuramochi
cells, HSD17B enzymes with lower efficiency for estrogen transformation, HSD17B12
(Km for E1 = 3.5 µM [60]), HSD17B14 (Km for E2 = 5.6 µM [61]), and HSD17B10, were
also differentially expressed compared to the HIO-80 and OVSAHO cells, respectively
(Figure 2). The expression patterns of these genes were not in line with the observed
E2 formation, which indicates that other processes catalyzed by the enzymes HSD17B12,
HSD17B14, and HSD17B10 may also be crucial for OC progression. In accordance with this
finding, a previous study demonstrated that HSD17B12 might be associated with increased
prostaglandin formation in OC progression [62], but our results here indicate that these
HSD17B enzymes may also be associated with chemoresistance.

The limiting step for estrogen biosynthesis in COV362 cells is also the uptake and
transformation of E1-S to E1, as only minimal E1 formation was observed at the highest E1-S
concentration in the COV362 cells. The lack of E1 formation is not in line with the increased
SLCO1B3 (Km for E1-S = 5–58 µM [45]) and SLCO2B1 levels (Km for E1-S = 1.6–21 µM [45])
in COV362 compared to the OVSAHO cells, but can be partially explained by lower
STS expression (STS/SULT1E1 ratios: HIO-80, 1695.2; OVSAHO, 742.5; Kuramochi, 64.8;
COV362, 101.3). Increased SLCO1B3 and SLCO2B1 could indicate the potential importance
of DHEA-S and the formation of androgens in these cells, which is also indicated by an
increase in AKR1C3 expression.

Altogether, the gene expression differences in the highly chemoresistant COV362 cells
compared to the least chemoresistant OVSAHO cells are concordant with the low/undetectable
formation of E1 and E2 from E1-S in the COV362 cells and show an association with lower
STS/SULT1E1 ratio, the lack of HSD17B1 expression, and potentially higher formation of
oxidative metabolites and their conjugated metabolites in these cells.

Estrogens most likely play a more important role in OVSAHO cells because these
cells are responsive to estradiol when grown as 3D spheroids, whereas COV362 cells are
not [39]. Additionally, OVSAHO cells are the least chemoresistant of the evaluated cells,
and studies have shown that carboplatin-sensitive cells produce more steroid hormones and
metabolites than platinum-resistant cells [37]. Nevertheless, the lack of E1-S metabolism
cannot exclude the possibility of the paracrine or endocrine roles of estrogens in the
COV362 cells, considering that ESR1 expression at the mRNA level is relatively high, and
ERα expression at the protein level is moderate (compared to the OVSAHO and Kuramochi
cells) [39]. Furthermore, studies have shown that the tumor volume of COV362 xenografts
in immunocompromised NOD scid gamma (NSG) mice increases in the presence of E2,
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and, once established, the tumor grows steadily [39]. Our results here show that if the
growth of COV362 cells is estrogen-dependent, E2 cannot be formed from E1-S, and most
probably neither from E1 nor DHEA-S.

3.4. Gene Expression in Tissues Is in Line with Poor Prognosis of HGSOC

To examine whether cell gene expression correlates with expression in HGSOC tissues,
we used publicly available datasets at cBioPortal (https://www.cbioportal.org/, accessed
on 10 January 2022) (Figure 4).
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Figure 4. The expression of genes for (a) uptake transporters, (b) efflux transporters, (c) estrogen
biosynthetic enzymes, (d) estrogen metabolic enzymes, and (e) estrogen receptors in the HGSOC
tissues. (f) A heatmap with a dendrogram of all evaluated genes clustered based on the Euclidean
distance and Ward’s linkage. The data from the Ovarian Serous Cystadenocarcinoma (TCGA,
PanCancer Atlas) study were downloaded from cBioPortal on 10 January 2022. Data are presented
as means ± SD (n = 300). Statistically significant differences (One-way ANOVA with Bonferroni
correction) are shown in Supplementary Table S7.

In the HGSOC tissues, we observed a high expression of SLCO3A1 and SLCO2B1, fol-
lowed by SLCO4A1, SLCO4C1, SLCO1A2, and SLCO1B3, and weak expression of SLCO1C1,
SLCO1B1, and all of the evaluated SLC transporters. Of the efflux transporters, we ob-
served a high expression of ABCC1, followed by ABCC4 and ABCG2, and low expression of
ABCC11 and SLC51B. The expression of STS exceeded that of CYP19A1 by approximately
36-fold, and the expression of HSD3B1 and HSD3B2 was weak. This suggests that the

https://www.cbioportal.org/
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aromatase pathway is not involved in estrogen formation, whereas the sulfatase pathway
may play a pivotal role. The expression of SULT1E1 was weak, and the STS/SULT1E1
ratio was 15.8, which indicates that E1-S is preferentially activated to E1 in HGSOC tis-
sues. The expression of AKR1C3 and HSD17Bs was relatively high. The mean mRNA
levels of HSD17B10, HSD17B12, and HSD17B4 significantly exceeded those of HSD17B1,
HSD17B14, HSD17B7, and HSD17B8 (Supplementary Table S7). The detoxification phase II
enzymes GSTP1, NQO1, and COMT significantly surmounted the expression of all CYP
genes coding for estrogen-hydroxylating enzymes. Of the estrogen receptors, ESR1 expres-
sion was the highest, and significantly higher than that of ESR2 and GPER1 (by 104-fold
and 58-fold, respectively).

Expression trends of the evaluated genes were generally similar in the HGSOC tis-
sues and cell lines and in line with poor prognoses. In OC with poor prognosis, high
STS and low SULT1E1 expression are expected [63–65], and high AKR1C3 expression is
associated with higher chemoresistance [24]. Additionally, the expression of detoxifica-
tion phase II metabolic enzymes, which usually prevent the formation of OC-initiating
DNA adducts [66], can be associated with unfavorable disease outcomes. High NQO1
expression was associated with the poor prognosis of serous OC [67], and high GSTP1
expression was associated with higher chemoresistance, invasiveness, and migratory ca-
pacity of OC cells [43]. ERβ (ESR2) acts as a tumor suppressor in ovarian tissue and is lost
with the severity of malignant transformation, and thus low ESR2 levels are expected in
HGSOC [68–70].

Several highly expressed genes in HGSOC tissues are associated with the poor progno-
sis of OC. The altered expression pattern of several of these genes may affect the prognosis
of HGSOC subtypes by influencing estradiol formation, as observed in the HGSOC model
cell lines.

3.5. HSD17B14 and CYP1A2 Are Associated with Chemoresistance in HGSOC Tissues

It has been proposed that differentially expressed genes are associated with progno-
sis, and thus we evaluated their association with HGSOC chemoresistance. HSD17B14
and CYP1A2 expression was slightly but significantly increased (by 1.3-fold and 1.7-fold,
respectively) in the platinum-sensitive compared to platinum-resistant HSGOC (Figure 5).
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A similar trend for HSD17B14 and CYP1A2 expression was also observed in the
cell lines. HSD17B14 expression was increased in highly chemoresistant COV362 cells
compared to normal ovarian cells, HIO-80, and CYP1A2 mRNA was detected only in the
COV362 cells, indicating the importance of these genes in highly chemoresistant HGSOC.
Regarding estrogen metabolism, high HSD17B14 and CYP1A2 expression may be associated
with decreased E2 formation in more chemoresistant HGSOC cell models and may lead to
the increased deactivation of E2 to E1 and increased the formation of harmful 2-OH-E1/E2,
respectively. These effects are in accordance with our estrogen metabolism results, which
showed that less E2 is formed in more chemoresistant HGSOC cells.

There is currently no data on the prognostic role of HSD17B14 in OC. However, in
breast cancer, high HSD17B14 expression is associated with improved recurrence-free and
breast cancer-specific survival [71]. Additionally, high HSD17B14 protein levels in lymph
node-negative ER+ breast cancer tumors indicate better outcomes of adjuvant tamoxifen
treatment with fewer local recurrences [72]. There is little data regarding an association
between CYP1A2 expression and OC. CYP1A2 polymorphisms are associated with an
increased risk of OC in the Caucasian population [73,74]. However, no polymorphisms
were reported for any cell lines or tissues evaluated in our study (cBioPortal, accessed on
9 February 2022). Furthermore, the analysis of HSD17B14 and CYP1A2 expression regard-
ing the overall and disease-specific survival of resistant compared to sensitive HGSOC
tumors did not show any correlations (not shown).

Our results indicate that differential expression of HSD17B14 and CYP1A2 is associated
with a decrease in estrogen formation in highly chemoresistant HGSOC. However, further
studies are needed to elucidate the exact role of HSD17B14 and CYP1A2.

3.6. Protein Levels in Tissues Suggest Differences in Estrogen Biosynthesis between HGSOC Subtypes

To further validate our results at the protein level, we used publicly available datasets
at the NCI, PDC server (https://pdc.cancer.gov, accessed on 12 January 2022). The levels of
the proteins of interest were analyzed in two studies that contained proteomic data for OC.
The first study (IDs PDC000114, PDC000113) included 169 HGSOC samples [33], and the
second study (ID PDC000110) included 83 HGSOC samples and 23 normal fallopian tube
tissue samples (13 samples were paired) [34]. The investigated studies used a non-targeted
approach, so relative expression data of only the most abundant proteins were available.

The HGSOC tissues showed higher levels of STS than SULT1E1 (1.5-fold) and higher
levels of HSD17B4 (3.0-fold), HSD17B8 (2.8-fold), and HSD17B10 (2.8-fold) when all
were compared to HSD17B12, indicating an increased formation of E1 from E1-S and
E2 (Figure 6). Compared to the normal fallopian tube tissues, the HSD17B12 and CYP1B1
levels were decreased (both by 1.8-fold), also indicating higher levels of E1 in the HGSOC
compared to the fallopian tube tissues. The four HGSOC subtypes showed differential
levels of HSD17B10, SULT1E1, CYP1B1, and NQO1, indicating differences in E2 biosynthe-
sis and oxidative metabolism. In the HGSOC subtypes, the differential protein levels of
transporters and enzymes indicated alterations in precursor transport, E1 and E2 formation,
and estrogen metabolism (Supplementary Figure S1).

Our results indicate low E2 formation in the HGSOC tissues, as observed in the
COV362 and Kuramochi cells. In addition, differences in CYP1B1 and NQO1 between
different HGSOC subtypes were also observed in the cell line models differing in estrogen
metabolism; compared to the OVSAHO cells, CYP1B1 was increased in the Kuramochi
cells, and NQO1 was increased in the COV362 cells. Unfortunately, the subtypes of the
investigated cell lines are currently unknown. Nevertheless, our results suggest that the
four HGSOC subtypes may differ in estrogen metabolism due to differential expression of
the enzymes HSD17B10, SULT1E1, CYP1B1, and NQO1.

https://pdc.cancer.gov
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Figure 6. The normalized protein levels in (a) HGSOC (study IDs PDC000114, PDC000113) [33],
(left) and significant differences between individual proteins (right), (b) normal fallopian tube and
HGSOC tissues (study ID PDC000110 [34], left) and significant differences between individual
proteins in the HGSOC tissues (right), (c) different subtypes of HGSOC (study IDs PDC000114,
PDC000113) [33]). All the data were downloaded from the NCI, PDC server on 12 January 2022 and
are shown as mean ± SD. One-way ANOVA with Bonferroni correction (a,b) and Tukey’s tests (c);
*, p < 0.05; **, p < 0.01; ***, p < 0.001; FC, fold change; bold, differences that are more important for
interpretation; »>« denotes »levels are higher than«.

In OC tissues, HSD17B12 levels have been shown to vary; lower levels were associated
with better overall survival of the untreated OC patients [75]. Additionally, CYP1B1 levels
were increased in primary and metastatic OC [76]. Normal ovarian epithelium did not
express any of these proteins [75–77], whereas normal fallopian tube tissue expressed
relatively high levels of CYP1B1 [77]. High CYP1B1 expression in the HGSOC and fallop-
ian tube tissues may be explained by the theory of the fallopian tube origin of HGSOC.
However, due to the lack of data on HSD17B12 and the other enzyme levels, the differ-
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ences in estrogen metabolism between the HGSOC and fallopian tube tissues need to be
further investigated.

4. Conclusions

Estrogens are associated with OC progression; however, their exact roles in the OC sub-
types are unknown. To elucidate the role of estrogen formation in the subtypes of the most
common OC, HGSOC, we performed targeted transcriptomics and estrogen metabolism
analysis in the different cell lines of HGSOC and normal ovarian epithelium. Our results
show that different HGSOC models indeed differ in estradiol formation and that differ-
ences in gene expression are associated with chemoresistance. Furthermore, comparing
the results with public HGSOC tissue data revealed that chemoresistant tumors expressed
more HSD17B14 and CYP1A2 than the chemosensitive cases. Of the evaluated cell lines,
the COV362 cells expressed the highest HSD17B14 and CYP1A2 mRNA levels, indicating
the importance of these enzymes in only highly chemoresistant HGSOC. In addition, the
proteome data analysis showed lower HSD17B12 and CYP1B1 levels in HGSOC than those
in the fallopian tube tissues, indicating a difference in the estrogen metabolism between
HGSOC and the site of HGSOC origin. Furthermore, different HGSOC subtypes (i.e., im-
munoreactive, proliferative, differentiated, and mesenchymal) had different protein levels
of HSD17B10, SULT1E1, CYP1B1, and NQO1, suggesting differences in the E2 formation
between these subtypes. The limitations of our study were the lack of protein expression
data for the less-expressed estrogen-metabolism-associated transporters and enzymes in
the tissues and the lack of estrogen metabolism studies in HGSOC tissues. These call for
future investigation.

Overall, the results confirmed our initial hypothesis: different HGSOC cases dif-
fer in their expressions of transporters and enzymes, which results in different estrogen
metabolisms. Differential levels of individual enzymes between the HGSOC subtypes
warrant further research toward the development of new treatment options.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14112583/s1, Table S1: R code used for hierarchical
clustering; Table S2: Normalized mRNA values of evaluated genes in cell lines HIO-80, OVSAHO,
Kuramochi, and COV362, normalized to the expression of POLR2A and RPLP0; Table S3: Evaluated
transporters and HSD17B enzymes with KM values for the transport of E1-S and transformations of
E1 (to E2), E2 (to E1), or testosterone (to androstenedione); Table S4: Comparison of gene expressions
in cell lines compared to each other, presented as fold regulation (FR); Table S5: Statistical analysis
of LC-MS/MS results using Tukey’s test; Table S6: Levels of E1-S, E1, E2, and E2-S detected with
LC-MS/MS after E1-S treatment (2.3, 8.5, and 85 nM) in cell lines HIO-80, OVSAHO, Kuramochi,
and COV362; Table S7: Statistically significant differences in the gene expression in HGSOC tissues;
Figure S1. Venn diagram representation of differential protein levels in the HGSOC subtypes.
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