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A B S T R A C T   

An approach that combines NMR spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS) and 
advanced tensor decomposition algorithms with state-of-the-art deep learning procedures was applied for the 
classification of Croatian continental sparkling wines by their geographical origin. It has been demonstrated that 
complex high-dimensional NMR or ICP-MS data cannot be classified by higher-order tensor decomposition alone. 
Extension of the procedure by deep reinforcement learning resulted in an exquisite neural network predictive 
model for the classification of sparkling wines according to their geographical origin. A network trained on half 
of the sample set was able to classify even 94% of all samples. The model can particularly be useful in cases 
where the number of samples is limited and when simpler statistical methods fail to produce reliable data. The 
model can further be exploited for the identification and differentiation of sparkling wines including a high 
potential for authenticity or quality control.   

1. Introduction 

Wine is an extremely complex mixture of many components in a 
hydro-alcoholic solution. It is 97 % water and ethanol, but each bottle 
also contains uncountable number of molecules, ranging from acids and 
sugars to phenolic compounds and low concentration aroma compounds 
(Waterhouse et al., 2016). Knowledge of the chemical composition of 
wines is essential for the identification of compounds (or classes of 
compounds), that will more or less control the final wine quality, sta-
bility, safety, and value. Alternatively, compounds may be of interest 
because they can be used for solving certain problems in practice, like 
detecting the presence of fraud and counterfeits that are permanent 
economic and health risk issue (Rubert et al., 2015; Valls-Fonayet et al., 
2021). Since wine is among the most counterfeit goods (European 
Commission, 2022), more complex methodologies, namely targeted or 
untargeted metabolomic analysis are being applied during last two de-
cades to establish chemical markers and fingerprints for wine trace-
ability and authenticity (Valls-Fonayet et al., 2021). 

Sparkling wines are special wines characterized on uncorking by the 
production of a more or less persistent effervescence resulting from the 
release of CO2 (OIV, 2022). In 2018 the world sparkling wine production 

reached for the first time 20 mhL (7 % of world wine production), with 
an increase of 57 % since 2002 (OIV, 2020). Considering the positive 
trends, it can be assumed that the production of sparkling wines will 
represent an increasingly important place in the segment of the total 
production and wine market which also makes them more susceptible to 
analysis and research. 

The spectroscopic methods applied in the field of wine analysis 
include a broad range of techniques, covered by atomic spectroscopic 
methods such as atomic absorption spectrometry (AAS), and inductively 
coupled plasma techniques (ICP-OES, ICP-MS) (Fabani et al., 2009; ̌Selih 
et al., 2014). Several molecular spectroscopic methods such as infrared- 
and ultraviolet/visible spectrophotometry, mass spectrometry (MS), and 
nuclear magnetic resonance (NMR) spectroscopy are included, as well 
(Cooper & Marshall, 2001; Edelmann et al., 2001; López-López et al., 
2015; Matviychuk et al., 2021). NMR is a powerful analytical tool for 
both targeted and non-targeted analysis widely used in wine analysis for 
studying metabolomics and tracing the geographical origin and 
authenticity of wine (Godelmann et al., 2013; Solovyev et al., 2021). It 
has quickly gained popularity in wine analysis due to a simple and non- 
invasive sample preparation when compared to other classical or 
instrumental methods. Furthermore, DOSY NMR spectroscopy can 
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separate wine components according to their translational properties 
and diffusion coefficient without physical separation. DOSY NMR is a 
pseudo-two-dimensional technique where one dimension displays pro-
ton chemical shifts while the other represents translational diffusion 
coefficients. This technique has widely been used to study complex 
chemical mixtures and can further be exploited to assess the hydrody-
namic radius and size of a specific molecule (Parlov Vuković et al., 2017; 
Raljević et al., 2021). When coupled with statistical methods such as 
artificial neural network one can reveal many hidden data and gain 
useful information on wine characteristics such as origin, authenticity, 
grape variety, fermentation procedure, and vintage (Le Mao et al., 2023; 
Nyitrainé Sárdy et al., 2022). 

Deep learning using artificial neural networks (ANN) is increasingly 
used in the field of NMR with significant growth in the last few years 
(Cobas, 2020). Different algorithms are applied for classification or 
regression problems (Ibrahim et al., 2021; Schartner et al., 2023; Wang 
et al., 2020). The aim of this paper was to trace the geographical origin 
by using the deep learning classification of sparkling wines based on 
their ICP-MS and DOSY NMR spectra represented in the reduced space. 
The dimensionality of ICP-MS or DOSY NMR spectra is huge, but the 
tensor reduction methods are able to reduce this dimensionality on 
much lower values still retaining the majority of the original 
information. 

Here we present new approach for analyzing and classifying spar-
kling wine samples from all relevant wine producers in Zagreb County 
which is a part of Croatian Uplands wine region. We sought to establish a 
classification model that can be useful when limited number of samples 
is available as usually is the case for micro or sub-geographical regions 
and when simpler statistical methods fail to produce reliable data. This 

approach independently combines results obtained by spectroscopic 
methods (NMR or ICP-MS) and advanced tensor decomposition algo-
rithms with state-of-the-art deep reinforcement learning procedures. The 
method is applied to a relatively small data set to demonstrate a proof-of- 
concept that the deep reinforcement learning classification model 
trained on a relatively small set of samples could be accurately extrap-
olated to other similar samples. The proposed method works remarkably 
well even in the case of a demanding and unbalanced sample set. 

2. Materials and methods 

2.1. Sparkling wine samples 

A total of 34 Croatian commercial sparkling wines originating from 
four different wine-growing hills within the Croatian Uplands wine re-
gion, in the central part of northwestern Croatia: Plešivica-Okić (n =
22), Zelina (n = 9), Krašić (n = 2) and Voloder-Ivanić Grad (n = 1) 
(Fig. S1). The wine samples categorized in three groups according to the 
color − 22 white, 10 rosé and two red sparkling wines with composition 
and geographical origin information are shown in Table 1. 

A total of 34 sparkling wine samples were collected from all regis-
tered producers in Zagreb County. The wines were derived from 
different vintages (2010–2017) and different grape varieties. All sam-
ples were produced by the traditional (champenoise) method, except 
sample No. 12 obtained by charmat method. The analyzed sparkling 
wines were in the extra brut and brut category with alcoholic strength 
between 11.0 and 12.8 % v/v. 

Table 1 
The sparkling wine samples used in the study.  

Sample No. Sample label Vintage Category Alcohol (% v/v) Variety Wine-growing hill 

White 
1 BAR-23 2017 Extra brut  12.0 Manzoni Krašić (K) 
2 PUH-29 2017 Brut  11.5 Kraljevina Zelina (Z) 
3 PUH-30 2016 Brut  11.5 Kraljevina Zelina (Z) 
4 KOS-32 2014 Brut  12.5 Chardonnay, Rhein Riesling, Kraljevina Zelina (Z) 
5 BED-27 2014 Brut  11.0 Kraljevina, Semillon Zelina (Z) 
6 BED-26 2017 Brut  11.5 Muscat Zelina (Z) 
7 KUR-14 2013 Brut  12.8 Chardonnay, Pinot Noir Plešivica-Okić (P) 
8 GRIF-17 2017 Brut  11.5 Müller Thurgau Plešivica-Okić (P) 
9 BAR-24 2016 Brut  12.0 Manzoni Krašić (K) 
10 KUR-13 2014 Brut  12.6 Chardonnay, Grüner Silvaner, Furmint Plešivica-Okić (P) 
11 JAG-2 2014 Brut  12.0 Chardonnay, OVP§, Rhein Riesling Plešivica-Okić (P) 
12 P-1 2017 Brut  11.5 OVP§ Plešivica-Okić (P) 
13 SKR-25 2013 Extra brut  11.8 Škrlet Voloder-Ivanić (I) 
14 KOS-31 2015 Brut  12.5 Chardonnay, Rhein Riesling, Kraljevina Zelina (Z) 
15 SEM-7 2014 Brut  12.5 Chardonnay, Pinot Blanc, Plavec žuti Plešivica-Okić (P) 
16 COR-21 2013 Brut  11.5 Chardonnay Plešivica-Okić (P) 
17 K-4 2014 Brut  12.5 Chardonnay, Pinot Noir Plešivica-Okić (P) 
18 SEM-8 2016 Brut  12.5 Chardonnay, Pinot Blanc, Plavec žuti Plešivica-Okić (P) 
19 K-3 2015 Brut  12.5 Chardonnay, Pinot crni Plešivica-Okić (P) 
20 GRIF-18 2013 Brut  11.5 Chardonnay Plešivica-Okić (P) 
21 TOM-12 2016 Extra brut  12.5 Chardonnay, Plavec žuti Plešivica-Okić (P) 
22 TOM-11 2010 Extra brut  12.5 Chardonnay, Plavec žuti Plešivica-Okić (P) 
Rosé 
23 K-34 2015 Brut  12.5 Pinot Noir Zelina (Z) 
24 KO-6 2014 Brut  12.5 Pinot Noir Plešivica-Okić (P) 
25 GR-19 2016 Brut  11.5 Blauer Portugieser Plešivica-Okić (P) 
26 S-9 2016 Brut  12.5 Pinot Noir Plešivica-Okić (P) 
27 VB-28 2017 Brut  11.0 Syrah, Tannat Zelina (Z) 
29 KO-5 2015 Brut  12.5 Pinot Noir Plešivica-Okić (P) 
30 KU-15 2016 Brut  12.5 Pinot Noir, OVP§ Plešivica-Okić (P) 
31 K-33 2016 Brut  12.5 Pinot Noir Zelina (Z) 
33 GRIF-19 2016 Brut  11.5 Blauer Portugieser Plešivica-Okić (P) 
34 S-10 2017 Brut  12.5 Pinot Noir Plešivica-Okić (P) 
Red 
28 GR-16 2016 Brut  11.5 Blauer Portugieser Plešivica-Okić (P) 
32 CD-20 2016 Brut  11.5 Blauer Portugieser Plešivica-Okić (P)  

§ OVP = Old varieties from Plešivica (Heunisch Weiss, Kraljevina, Harslevelue, Roter Veltliner, Grüner Silvaner, Neuburger). 
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2.2. ICP-MS 

An ICP-MS instrument (ICP-MS 7900, Agilent Technologies, 
Singapore) was used for elemental analysis of sparkling wines. Optimal 
operating conditions for multielemental analysis are shown in Table S1. 

2.2.1. Sample solutions 
All samples of sparkling wines were degassed and filtered through 

0.45-µm membrane filters. Filtered samples were diluted 10-fold using 2 
% (v/v) nitric acid (HNO3, Suprapur®, Merck, Darmstadt, Germany). A 
blank solution consisting of 2 % HNO3 was prepared as well to check the 
occurrence of possible cross-contamination. Samples were analyzed as 
duplicates. Distilled deionized water (18 MΩ cm) was used throughout 
the research and it was produced with a Milli-Q® system from Millipore 
(Bedford, MA, USA). 

Multi-element calibration standard IV-ICP-MS-71A (Inorganic Ven-
tures, USA) containing 10 mg/L of Ag, Al, As, Ba, Be, Ca, Cd, Ce, Co, Cr, 
Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ho, K, La, Lu, Mg, Mn, Na, Nd, Ni, P, Pb, 
Rb, S, Se, Sm, Sr, Th, Tl, Tm, U, V, Yb, Zn was used for the preparation of 
calibration solutions. 

For the purpose of analytical accuracy control, the certified reference 
sample of trace elements in water (NIST SRM 1643f) was diluted with 2 
% HNO3 and analyzed in a similar manner as the samples. The resulting 
recoveries of measured elements comprised values from 97 to 102 %, 
which was within the accepted limits of 80–120 % and therefore proved 
satisfactory for the method applied. 

2.2. NMR sample preparation and measurements 

For NMR sample preparation, a slightly modified procedure reported 
by Magdas et al., 2019 was used. Briefly, 450 μL of wine was diluted 
with 50 μL of a buffered D2O (99.90 % D, Eurisotop, Saclay, France) 
solution containing 1 M KH2PO4 (Kemika, Zagreb, Croatia), 0.1 % 3- 
(trimethyl-silyl)-propionic acid-d4 sodium salt (TSP-d4, 98 % D, Eur-
isotop, Saclay, France) and 3 mM NaN3 (extra pure, Sigma Aldrich, St. 
Louis, MO, USA). The pH of the prepared solution was measured on a 
Mettler Toledo SevenCompact S210 pH meter and set to 3.10 using1 M 
H3PO4 (Riedel-de Haën, Seelze, Germany) and 1 M NaOH (T.T.T., Sveta 
Nedjelja, Croatia). 

NMR experiments were performed on a Bruker Avance Neo 600 NMR 
spectrometer at 298 K equipped with a 5 mm Prodigy cryoprobe and 
chemical shifts were reported relative to TSP-d4 internal standard. One- 
dimensional 1H NMR spectra were recorded with 32 scans, 9.6 kHz 
spectral width, 32 K time domain and 2 s relaxation delay. The sup-
pression of water and ethanol signals was achieved by presaturation 
during relaxation delay in a noesygppr1d pulse sequence. The spoil 
gradient and suppression pulse lengths were 1 ms and 1 s, respectively 
and the mixing time was set to 5 ms. 1H DOSY NMR spectra were ac-
quired with 16 scans, 7.1 kHz spectral width, 28 K time domain, 600 μs 
spoil gradients, 200 μs gradient recovery and 5 ms eddy current delays. 
Solvent suppression and convection compensation were carried out 
using a dstebpgp3spr pulse sequence. The gradient strength was varied 
from 5 % to 95 % in 16 steps, while both the small (2.8 ms) and the big 
(70.0 ms) delta were kept constant. 

2.3. Principal component analysis 

Principal component analysis (PCA) was used as a dimensionality 
reduction and classification tool and performed using a NIPALS algo-
rithm implemented in our own program moonee (Hrenar, 2023; Jović 
et al., 2013; Jović et al., 2016; Novak et al., 2011; Parlov Vuković et al., 
2017). In the PCA data matrix, X of rank r is decomposed as a sum of r 
matrices tipτ

i of rank 1: 

X =
∑r

i=1
tipτ

i  

PCA enables one to find the best linear projections for a high- 
dimensional set of data in the least-squares sense. Scores ti represent 
projections of the original points on the principal component (PC) di-
rection and can be used for classification or building of probability 
distributions, whereas loadings pτ

i represent the eigenvectors of data 
covariance (or correlation) matrix and can be used for the identification 
of variability among the data. 

2.4. Multi-way analysis 

Multi-way analysis (MWA) presents the decomposition of multidi-
mensional datasets represented as multidimensional numerical arrays 
(or a higher-order data tensor). It could be considered as an extension of 
principal component analysis (Hrenar et al., 2017). A data tensor is 
composed of sequences of numbers dependent on different physical di-
mensions or ways. In our case, the 3rd-order tensor consists of two- 
dimensional DOSY NMR spectra for different sparkling wine samples. 

Each DOSY NMR spectrum was extracted with 2048 × 2048 records 
which was the maximal possible amount of data to be exported (to 
preserve as many details as possible). Total dimensions of the 3rd-order 
data tensor were: 34 × 2048 × 2048. The data in this 3rd-order tensor 
depend on three independent variables: chemical shift, magnetic 
gradient pulse amplitude, and diversity of a sample (Parlov Vuković 
et al., 2017). To extract the quantitative classification information, we 
used MWA as a tool that will allow the detection of variabilities among 
all investigated samples based on their 2-dimensional DOSY NMR data 
sets. After tensor decomposition, each 2-dimensional DOSY NMR spec-
trum is finally represented as one point in reduced space. 

MWA on the set of DOSY NMR spectra placed in the 3rd order tensor 
was carried out using the 3-way decomposition model TUCKER3 
(Tucker, 1966): 

X = AG(C ⊗ B)τ
+E  

where A, B, and C are 1st-way, 2nd-way, and 3rd-way loadings matrices, 
respectively (symbol ⊗ represents Kronecker matrix product) (Fig. S2). 

The G matrix is the core array and is associated with the amount of 
variation explained by loadings in the different modes. Multi-way anal-
ysis was performed by using our code moonee developed in-house. 

2.6. Deep learning 

Deep reinforcement learning (DRL) was applied separately to the set 
of DOSY NMR and ICP-MS spectra previously reduced in dimension by 
using MWA and PCA, respectively. 3 dimensions in the reduced space of 
ICP-MS and 3 dimensions in the reduced space of 2D DOSY NMR spectra 
were used as an input vector for DRL. The network architecture con-
sisted of the input layer, 10 hidden layers whereas the output layer was a 
single classification geographical descriptor. An initial assessment of the 
ANN was performed on an untrained network. Then the ANN was 
trained starting with 2 input samples in the training set and the network 
was tested on a validation set (2 samples from the data set different from 
the ones in the training set) and on a complete set of samples (all 34 
samples). Since the performance of the classification obviously depends 
on the samples chosen for the training set, for the agent to learn the best 
policy we allowed the full combinatorial spread of all investigated 
samples. This allowed the reward function (classification accuracy over 
the entire set) to be fully maximized because, in each reinforcement 
iteration, the agent selected new samples based on a complete explo-
ration of the sample set. In each iteration step, the training and vali-
dation sets were gradually increased by 2 additional samples (samples 
not in the training set were selected for the validation set). The back-
propagation algorithm was used for network training and classification 
accuracy was monitored during reinforcement learning. 
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3. Results and discussion 

3.1. ICP-MS 

The elemental concentrations measured by ICP-MS method were 
auto-scaled and logarithmically transformed. All variables denoted 
elemental concentrations of Mg, Al, P, Mn, Fe, Cu, Zn, V, Cr, Ni, As, Se, 
Cd, Tl, Pb, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, and Yb. Based on 
univariate statistical testing (Tukey test), the elemental distribution 
within the set of analyzed samples of sparkling wines was obtained and 
it is graphically presented in Fig. 1A. Major constituents of all analyzed 

samples encompass Mg and P. The elements of the middle concentration 
range are: Al, Mn, Fe, Cu, and Zn. Trace and ultra-trace levels comprise 
the content of V, Cr, Ni, As, Se, Cd, Tl, Pb, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, 
Ho, Er, Tm, and Yb. 

For the purpose of clarification of relations between sample groups, 
hierarchical cluster analysis (HCA) on the same dataset was performed 
(Benutić et al., 2022; Pérez-Álvarez et al., 2019). Euclidean distance 
matrix and complete linkage rule of agglomeration were applied. The 
relations between samples are presented with a tree diagram in Fig. 1B, 
which shows the pattern of similarity between the samples. 

It can be observed from Fig. 1B that all examined samples were 

Fig. 1. (A) Elemental profiles of sparkling wines (major, minor, and trace elements) represented by box-plot of auto-scaled and logarithmically transformed con-
centration data; median value (square in the box), 25th and 75th percentiles, and whiskers at ± 1.5H; (B) dendrogram generated from HCA for 34 samples of 
sparkling wines. 
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classified in three clusters. In the first cluster we can observe wine 
samples originating from Plešivica wine-growing hill, which are mostly 
derived from Chardonnay and Blauer Portugieser grape varieties (Blo-
tevogel et al., 2019). The second cluster consisted of sparkling wine 
samples from the same wine-growing area that were produced from 
mixed grape varieties, mostly “old grape varieties from Plešivica” 
(Heunisch Weiss, Kraljevina, Harslevelue, Roter Veltliner, Grüner Sil-
vaner, Neuburger). The third cluster consisted of sparkling wine samples 
from Zelina, Krašić and Voloder-Ivanić wine-growing hills, along with 
several samples from Plešivica hill. This cluster is generally represented 
by a mixture of grape varieties where Pinot Noir prevailed in the 
observed samples. 

3.2. NMR spectroscopy 

Proton and DOSY NMR spectra of selected sparkling wines are dis-
played in Figs. 2 and 3, respectively. 

A NOESY presaturation technique was applied to suppress the water 
and ethanol signals. A close inspection of the spectra reveals regions of 
typical wine components such as alcohols, amino acids, organic acids, 
sugars, polyols, phenolic compounds etc. Although spectra are very 
similar, it can be noticed that slight changes in signal intensities and 
chemical shifts occur also within the same varieties but different 
vintages. 

As can be seen from Fig. 3, in DOSY spectra different wine compo-
nents can be separated in the diffusion dimension and diffusion co-
efficients D can be determined. For sparkling wines diffusion coefficients 
span the range from 2.5⋅10–8 m2/s to 3.5⋅10–10 m2/s, reflecting the 
presence of molecules with different sizes. Small molecules move faster 
than larger ones and hence possess higher diffusion coefficient values. In 
Fig. S3 DOSY spectra of the same grape variety but different hills are 
displayed. It can be noticed that the spectra are all different, indicating 
variations in chemical composition which was not the case for proton 
spectra (Fig. 2B) where the spectral difference between the same vari-
eties is not that straightforward. 

However, we were not keen here to identify specific wine compo-
nents e.g. metabolites or other molecules present in wine but rather to 
use a whole pseudo-two-dimensional matrix as a unique wine chemical 
fingerprint for statistical analysis. 

3.3. Principal component analysis of ICP-MS and 1H NMR spectra 

To find any significant way of classification, principal component 
analysis was applied separately on ICP-MS data and on a set of 1H NMR 
spectra with NOESY suppression of solvent signals (water and ethanol). 
For ICP-MS data the first 3 principal components described 68 % of the 

total variance whereas the results for 1H NMR spectra with NOESY 
suppression of solvent signals (water and ethanol) were much worse. For 
each investigated case, the obtained results were inspected visually in a 
three-dimensional reduced space of the principal component (Fig. S4). 
Although we expected grouping based on geographical origin for ICP- 
MS data, there was no clear evidence of sample grouping on the basis 
of any parameter (variety, production year, or geographical origin). This 
was a clear indication that linear transformations were not sufficient to 
investigate this problem and we decided to try to solve it using non- 
linear methods through the concept of deep reinforcement learning. 

3.4. Multi-way analysis of 2D DOSY NMR spectra 

Using the TUCKER3 decomposition model for DOSY NMR spectra 
with NOESY suppression of solvent signals, we performed a progressive 
decomposition model search starting from the model (1,1,1). The search 
passed through all models up to the final decomposition model (5,5,5), 
which described more than 99 % of the total variance. Each dimension 
was gradually increased by 1 giving the total number of the models 5 ×
5 × 5 = 125. 

Model (5,5,5) was chosen for further analysis, and from this model, 
the first three components were used for the classification of samples, 
visualization, and later on deep neural network training. These three 
components describe 99 % of the total variance, and their loadings plots 
are presented in Fig. 4. This percentage is high enough to ensure that the 
most important properties of the investigated systems important for the 
proper analysis were retained. Analysis of scores in reduced space of the 
first three principal components shows clustering into two main clusters 
of samples. Classification based on geographical origin prevails, but 
there is still no clear sample grouping based on any parameter. 

3.5. Deep reinforcement learning classification based on geographical 
origin 

To establish a classification model of the geographical origin of 
sparkling wines based on their ICP-MS or DOSY NMR spectra, deep 
neural networks containing twelve layers (ten hidden layers along with 
input and output layers) were trained using reinforcement learning 
protocol. 

Although the number of samples in our set was relatively small with 
some imbalances within, it could serve as an excellent example of a 
challenging data set for testing our new protocol for creating a classi-
fication model based on the geographical area. We were particularly 
interested in whether the model could be extrapolated to other similar 
samples and for this reason, we have chosen the deep reinforcement 
learning method where neural network training in each iteration will be 

Fig. 2. 1H NMR spectra of (A) different sparkling wine varieties: 1) No. 1, K; 2) No. 2, Z; 3) No. 6, Z; 4) No 8, P; 5) No. 13, I; 6) No. 16, P; 7) No. 23, Z; 8) No. 25, P 
and (B) the same variety grown on two different wine-growing hills: 1) No. 24, P; 2) No. 29, P; 3) No. 26, P; 4) No. 34, P; 5) No. 23, Z; 6) No. 31, Z. 
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reinforced with additional samples until all samples in the set were 
included. 

Initially, the untrained neural network was tested on a validation set 
and a complete set of samples. Further on, the network was separately 
trained with all possible subsets of two selected samples. There were 
(

34
2

)

= 561 possible subsets of dimension 2. After the training, the 

accuracy for the training set was 100 % (as expected) whereas the ac-
curacies for the complete set were 29 % and 76 % for DOSY NMR spectra 
and ICP-MS, respectively (Fig. 5A and 5B). Classification accuracies for 
the validation set (which did not include samples from the training set) 
were 0 % and 100 %. In each step of the reinforcement learning, the 
training set was iteratively increased and, in each iteration, all possible 
additional subsets of 2 samples were tested. The reinforcement agent 
selected the subset of 2 samples that maximized the classification ac-
curacy in this one and all other iterations. The validation set was also 
incrementally increased in each iteration by additional samples not 
included in the training set (this is the reason that the validation curve 
finishes on half of the sample set size, Fig. 5). 

Classification accuracies for the complete set reached 71 % and 94 % 

already at the point where the training set was built with half of the 
complete set size (Fig. 5). This clearly demonstrated the trend that even 
the small training sets were able to predict geographical classification 
for most sparkling wines. As expected, the IPC-MS data proved to be a 
better description of geographical origin because they reflect the min-
eral composition of soils at different locations providing a superior 
classification model. The DOSY NMR data reflects differences in the 
overall chemical composition of studied wines thus providing a slightly 
weaker description of geographical origin. 

4. Conclusion 

This study showed that a combination of experimental ICP-MS and 
NMR data and advanced tensor decomposition algorithms with state-of- 
the-art deep reinforcement learning procedures can provide a new and 
reliable classification model for the prediction of sparkling wines’ 
geographical origin in a micro-region, especially in cases when other 
statistical methods such as cluster analysis fail. Tensor decomposition 
methods (PCA and MWA) enabled the description of the data in a 
significantly reduced space while retaining most of the data variations. 

Fig. 3. Representative 1H DOSY NMR spectrum of sample No. 25, P with 1D projections of selected spectral regions.  

Fig. 4. Classification of sparkling wine samples spanned in the space of first three principal components calculated by TUCKER3 decomposition of 2D DOSY NMR 
spectra with NOESY suppression of solvent signals (water and ethanol). 
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Moreover, the decomposition removed the linear dependence within the 
data providing a clean input with no ambiguities for machine learning 
processing. A proof-of-concept of utilizing deep reinforcement learning to 
build effective classification models for sparkling wines according to 
their geographic region was clearly demonstrated. This approach holds 
potential for broader applicability beyond wine classification issues. 
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