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ABSTRACT Adaptation depends critically on the effects of new mutations and their dependency on the genetic background in which
they occur. These two factors can be summarized by the fitness landscape. However, it would require testing all mutations in all
backgrounds, making the definition and analysis of fitness landscapes mostly inaccessible. Instead of postulating a particular fitness
landscape, we address this problem by considering general classes of landscapes and calculating an upper limit for the time it takes for
a population to reach a fitness peak, circumventing the need to have full knowledge about the fitness landscape. We analyze
populations in the weak-mutation regime and characterize the conditions that enable them to quickly reach the fitness peak as a
function of the number of sites under selection. We show that for additive landscapes there is a critical selection strength enabling
populations to reach high-fitness genotypes, regardless of the distribution of effects. This threshold scales with the number of sites
under selection, effectively setting a limit to adaptation, and results from the inevitable increase in deleterious mutational pressure as
the population adapts in a space of discrete genotypes. Furthermore, we show that for the class of all unimodal landscapes this
condition is sufficient but not necessary for rapid adaptation, as in some highly epistatic landscapes the critical strength does not
depend on the number of sites under selection; effectively removing this barrier to adaptation.
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THEquestionofhowlong it takes foranatural population to
evolve complex adaptations has fascinated researchers for

decades (Haldane 1957; Kimura 1961; Grant and Flake
1974; Valiant 2013). The evolution of populations can be
seen as an adaptive walk across the “mutational landscape”
(Gillespie 1984), the space of all possible genotypes. The
speed of adaptation critically depends on how the fitness
values of all genotypes are organized in this space. In partic-
ular, it depends on the number and shape of the paths leading
to the optimum on this landscape. This raises both empirical
and theoretical difficulties for the study of the speed of ad-
aptation. Empirically, measuring the fitness of every possible
genotype is virtually impossible. For this reason, most em-
pirical studies focused on distributions of effects of single

mutants (Eyre-Walker and Keightley 2007). However,
organisms are not just the sum of their genes: gene interac-
tions (epistasis) are pervasive and the effects of mutations
will change depending on the background in which they occur
(Phillips 2008). The difficulty of measuring mutational effects
across multiple backgrounds grows combinatorially with the
length of the genotype, and most studies are restricted to
studying the effects of interactions in a local neighborhood
of some genotype. In part because of this lack of knowledge
about the structure of the fitness landscape, and in part due to
the added difficulty of analyzing correlated landscapes, most
theoretical studies have focused on landscapes in which either
the fitness of genotypes (Gillespie 1983, 1984; Kauffman and
Levin 1987; Orr 2002) or the effects of new mutations (Wilke
2004; Desai et al. 2007; Fogle et al. 2008) are drawn from a
randomdistribution. The first case, adaptation on random land-
scapes, leads to extremely short adaptive walks and may be
realistic only when the population is very close to a fitness peak
(Orr 2006). In the second case, adaptation in linear landscapes,
such as when the effects of mutations are drawn from a random
distribution, ignores potential correlations between mutational
neighborhoods and any kind of interaction between mutations.
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Most studies on the speed of adaptation have focused on
the limits imposedbycompetitionbetweenmultiplebeneficial
mutations (Gerrish and Lenski 1998). Because of this, most
models assume that populations evolve in a continuous space
under a never-ending supply of beneficial mutations (Orr
2000; Wilke 2004; but see Kim and Orr 2005 for a model
of a finite genome), when in reality the stage in which evo-
lution proceeds is comprised of discrete genotypes. This fact
results in a number of new and important features for the
dynamics of adaptation. First, in a discrete space of geno-
types, the supply of new beneficial mutations naturally de-
creases as adaptation occurs as a consequence of the finite
size of the genome. Second, and consequently, as the popu-
lation becomes more adapted, the potential for deleterious
mutations increases as more and more sites become adapted.
Models analyzing adaptive walks typically assume that the
population or selection strength are large enough such that
the probability of fixation of deleterious mutations is zero,
effectively disregarding the growing difficulty of maintaining
the acquired adaptations. Finally, fitness landscapes can dis-
play strong correlations between mutational neighborhoods,
making the effects of new mutations not necessarily constant
across the fitness landscape nor simply drawn from a random
distribution. Previous attempts at analyzing the speed of ad-
aptation in correlated neighborhoods (Kryazhimskiy et al.
2009) assumed an infinite supply of beneficial mutations
and strong selection, disregarding the growing difficulty of
finding new beneficial mutations and maintaining previously
acquired ones. As we will show, these effects impose strong
constraints to adaptation.

Other studies have focused on the properties of adaptive
walks, which explicitly consider the discrete nature of the
genotype space (Kauffman and Levin 1987; Orr 2002; Park
et al. 2016). Many of these studies have focused on models of
fitness landscapes that can display high levels of ruggedness,
such as the house-of-cards model (Kingman 1978), in which
fitness values are drawn randomly from some distribution; the
rough Mount Fuji (Aita et al. 2000), in which fitness effects,
combined with a deterministic part of fitness, are drawn ran-
domly; or the NK model, in which the fitness effect of a locus
depends, in some randomly prescribed way, on the state of
K other loci (Kauffman and Weinberger 1989). Both of these
classes of models lead to landscapes exhibiting multiple
peaks. For this reason, these studies have focused mainly
on the length of the adaptive walk, the number of substitu-
tions that occurs before the process reaches a local peak, and
how this depends on the number of local peaks in the land-
scape. Even though this is an empirically measurable quan-
tity, it does not directly address the question of how long a
population takes to reach this peak and how this depends on
the shape of the paths leading up to it. Note that the number
of substitutions is not equivalent to the time it takes to reach a
peak: new mutations, even if beneficial, can be lost, and del-
eterious mutations can be fixed. Here, we directly address
this question by asking how much time a population requires
to reach a fitness peak.

To do this, instead of considering the rate of adaptation in
specific fitness landscapes, which may not be informative of
real trajectories since their details are unknowable; we con-
sider classes of fitness landscapes, including many patterns of
gene interactions, and focus on upper bounds for the time to
reach a fitness peak. We focus on traits encoded by many
genes and study how this time depends on the number of
sites under selection. We argue that the scaling of this time
with the length of the target sequence quantifies the com-
plexity or “hardness” for a natural population to perform an
adaptive walk on a class of landscapes. Similar to previous
approaches (Gillespie 1983, 1984; Orr 2002, 2005, 2006) we
consider a monomorphic population in the weak-mutation
regime. However, to address the difficulties outlined above,
we consider that this population evolves in a sequence space
and under the combined action of mutation, selection, and
drift; allowing for the possibility that deleterious mutations
are fixed.

To analyze the dynamic properties of the adaptive trajec-
tory, we take advantage of tools commonly used in the theory
of randomized and evolutionary algorithms (Paixão et al.
2015b). Using these tools, we first calculate an upper bound
for the time to reach an adaptive peak in a simple landscape
with equal, additive contributions of all sites (loci) as a func-
tion of the number of such sites contributing to the trait. We
focus on the crucial distinction between a polynomial and an
exponential scaling of this time with the number of sites un-
der selection, and argue that these two qualitatively distinct
regimes correspond to situations in which adaptation is “ef-
ficient” or “inefficient,” respectively. We find conditions on
selection strength that separate these two regimes, and show
that populations in the weak-mutation regime (WM) can
adapt efficiently, but the critical selection strength growswith
the number of sites under selection, effectively setting a limit
to adaptation. We generalize these results to a large family of
fitness landscapes that includes very general forms of inter-
actions between the sites under selection, only excluding
forms of interactions that create multiple fitness peaks. We
derive an upper limit to the time to reach afitness peak, setting
a speed limit to adaptation in these landscapes. Finally, we an-
alyze in detail one instance of this class, an extreme form of
epistasis in which mutations need to be accumulated in a par-
ticular order. We show that in this case, despite a slower speed
of adaptation, the critical selection strength enabling efficient
adaptation does not depend on the number of sites under se-
lection; eliminating the limits to adaptation previously identi-
fied for simpler landscapes.

Methods

Transition probabilities

To investigate the speed of adaptation we assume the weak-
mutation regime. In this regime, a newmutation is either lost
or fixed in the population, replacing the previous genotype
beforeanyothermutationarises in thepopulation.Weassume
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that the genotype x is composed of n biallelic loci or sites xi;
and consider a trait fðxÞ; which is a function of the genotypic
sequence x; under constant selection gradient b such that
fitness is WðxÞ ¼ 1þ bfðxÞ: The number of adapted sides in
each genotype is denoted x.

In ourmodel, at each iterationexactlyonemutationoccurs,
which can be either beneficial with probability pþmðxÞ; harmful
with probability p2mðxÞ; or neutral with the remaining proba-
bility p0mðxÞ ¼ 12 pþmðxÞ2 p2mðxÞ: These probabilities depend
on the current genotype and the number of adapted sites x,
and thus may change during the course of adaptation. Note
that one iteration in our model does not correspond to a bi-
ological generation, but rather represents onemutation event
(which takes on the order of 1=NU generations to occur,
where U is the genomic mutation rate).

Amutation isfixedor lost according toKimura’s probability
of fixation (Kimura 1962),

pfixðDfÞ ¼
12 e22bDf

12 e22NbDf ; (1)

which depends on both the population size (N) and the fitness
difference to the resident genotype (the selection coefficient in
the traditional formulation, bDf Þ; and allows for the fixation of
deleterious mutations. This model is obtained as a limit of many
other models, such as the Wright–Fisher model or the Moran
model, and was previously introduced in other contexts (Berg
et al.2004; Sella andHirsh 2005; Tuğrul et al. 2015). Thismodel
is valid as long as the time for amutation to be eitherfixed or lost
is short compared to the time between mutations ð� 1=NUÞ:
This will always depend on the population size (N) and on
the minimum absolute selection coefficient in the landscape.

Fitness landscapes

We start our analysis with a simple additive fitness landscape,
in which all mutations have the same effect on the trait (and
consequently on fitness). Fitness is formalized by the function
feqðxÞ ¼

Pn
i¼1xi;which counts the number of correct matches

(x) in a genome of length n.
We then generalize to all additive fitness landscapes by

relaxing the condition of equal contributions. Fitness is de-
fined as faddðxÞ:¼

Pn
i¼1xiwi; where each site contributes a

weight wi .0 to the trait, such that
Pn

i¼1wi ¼ W:

Finally,wegeneralize our analysis even further and include
all functions with a single maximum: unimodal fitness func-
tion. These functions allow arbitrary forms of epistasis, only
excluding some types of reciprocal-sign epistasis which may
lead to multiple peaks (Weinreich et al. 2005; Poelwijk et al.
2007). In particular, it excludes reciprocal-sign epistasis that
occurs when the sign of the effect of a substitution depends
on the background in which it occurs, and may lead to mul-
tiple peaks (see Poelwijk et al. 2011 for the necessary condi-
tions and Crona et al. 2013 for the sufficient conditions for
multiple peaks). We analyze in detail one instance of this
class exhibiting an extreme form of epistasis, defined as
fridgeðxÞ:¼

Pn
i¼1

Qi
j¼1xj: This function requires mutations to

be accumulated in a particular order. See Figure 1 for illus-
tration of used fitness functions.

Drift analysis

To estimate the time that a populationneeds tofind thefitness
peak and its dependence on the number of genes n, we employ
tools from theoretical computer science, in particular the
so-called drift analysis (He and Yao 2001; Lehre and Witt
2013). In this context, drift refers to the expected progress of
a population toward the fitness peak and is not to be confused
with genetic drift, as traditionally used in population genetics.

Drift—the expected progress of a population toward the
fitness peak in one time step—is usually denoted by DðxÞ and
can be calculated as the sum of the expected forward progress
Dþ (forward drift: the product of the probability of occur-
rence and fixation of beneficial mutations with their effect)
and the expected negative progress D2 (negative drift: the
same but for deleterious mutations). In our analysis, we ex-
press drift in terms of number of mutations (or states) that
the population has to accumulate on its path toward the
optimum.

The intuitive idea behind drift analysis is simple: it starts
by underestimating (i.e., obtaining a lower bound for)
the minimum expected progress toward some target state
at every genotype. Then, given an initial distance to the tar-
get state, which can be pessimistically estimated as the max-
imum distance, one calculates an overestimation (i.e., an
upper bound) of the expected time to reach this state. This
is analogous to integrating a differential equation to obtain
the time to reach a particular state. However, these methods
are tailored to stochastic processes and can be used even for
non-Markovian processes (although here we do not make use
of this fact). The main advantage of these methods over more
traditional Markov-chain techniques is that these allow for
simple expressions for the expected time to reach some state.
Traditional Markov-chain techniques can be used to this end,
but they typically produce unwieldy expressions which allow
for little analytical insight into the parameters that affect the
earliest time to reach some state. The techniques we use here
make use of controlled simplifications to the expectation of
progress of the stochastic process to produce simple, but
rigorous, bounds on this time (Appendix C).

Drift theorems use upper or lower bounds on the net expec-
tation of progress, DðxÞ ¼ DþðxÞ þ D2ðxÞ; to obtain bounds on
the time to reach particular genotypes (Appendix C). In our
analysis we use its two specific instances: variable and negative
drift theorems. The variable drift theorem (Johannsen 2010) can
be applied when, for any state of the system x, the expected

Figure 1 Used fitness functions applied to the same genotype. Values of
contributing loci are highlighted in red.
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change between two consecutive states fE½DðxÞ�g is at least
some positive nonincreasing function of the current state hðxÞ;

E½DðxÞ�$ hðxÞ. 0:

In such a case, the variable drift theorem (generalized from
Johannsen 2010; see Appendix C) states that the expected
time until the state with distance less than a from the target
sequence is reached, starting at an initial distance of X0; is

E½Tmax�# a
hðaÞ þ

Z X0

a

1
hðxÞ dx: (2)

Note that the variable drift theorem is applied to the de-
creasing distance to the optimum and has to be expressed
accordingly in terms of decreasing number of states that have
to be crossed (i.e., number of mutations necessary to reach
the fitness peak). The upper integral boundary X0 is pessimis-
tically given by the longest path of strictly increasing fitness
leading to the optimum, i.e., the maximum number of muta-
tions that the population has to accumulate to reach the fit-
ness peak. Using this theorem, we can calculate an upper
bound on the time to reach any distance a to the optimum
(lower integral boundary). By setting a ¼ 1;we can calculate
an upper bound for reaching the optimum.

Conversely, the negative drift theorem (Oliveto and Witt
2011; Rowe and Sudholt 2014) can be applied when the
expected change between two consecutive states is negative
for all states within a given interval, i.e., the population is
expected to move away from the fitness peak in some region
of the state space. The negative drift theorem (Oliveto andWitt
2011; Rowe and Sudholt 2014) states the conditions on the size
of this interval and on the transition probabilities that lead to an
exponential time to reach the optimum. Specifically, if the
transition probabilities show an exponential decay in the
jump length, the time for crossing this interval is exponential
in the length of the interval, with overwhelming probability.
The exact statement is given in Appendix C. To express these
scalings, we use asymptotic notation as explained in Cormen
et al. (2009).

Simulations

All simulations were initialized from the ð0; . . . ; 0Þ genotypic
sequence, and parameters N and b were kept constant
throughout the run, unless stated otherwise. At every itera-
tion of a run, one site was chosen uniformly at random to
mutate, changing its value xi to 12 xi: The fitness difference
of the resulting genotype to the resident genotype is evalu-
ated and Equation 1 is used to compute the probability that it
replaces the resident genotype. We ran this cycle until either
the fittest genotype is fixed, some fraction of the maximum
fitness is reached, or some threshold number of iterations is
reached (6 3 104, Figure 2B; or 108, Figure 4).

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully

within the article. Code to perform simulations is available
upon request.

Results

In this manuscript, we investigate how the time to adaptation
varies with the number of sites under selection for sev-
eral classes of fitness landscapes corresponding to different
choices of the trait function f ðxÞ: It should be noted that the
time we refer to here is measured in number of mutations
that are “tried” before the target genotype is reached, and so
it is measured in units of mutation rate 1=NU; where U is the
genomic mutation rate.

We start by showing that on a simple landscape, in which
all mutations have the same effect on the trait (and sub-
sequently on fitness), there is a critical selection strength that
allows populations to efficiently reach or approach the fitness

Figure 2 (A) Time required to reach the fitness peak in function feq as a
function of genome size. Solid black line represents the mean of 100 runs
for given n and shaded area their SDs. Dashed line represents the theo-

retical upper bound on this expectation: ð1þ 1
2b

ÞnlnðnÞ þ n: Nb was set

to 100. (B) A sharp threshold on the strength of selection for the speed of
adaptation. Black line represents the mean time to reach the fitness peak
for a constant genome size ðn ¼ 500Þ and selection strength ðb ¼ 0:1Þ;
with increasing population size N, and shaded areas represent the SD.
Dashed line represents the critical value of selection strength
½2ðN21Þb ¼ lnn� separating the polynomial and exponential regimes
for the time to reach the fitness peak. Simulations were stopped if they
took longer than 63 104 iterations.
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peak. This threshold grows with the number of sites under
selection, effectively setting a limit to the number of sites that
can be adapted under constant selection. We then generalize
our results to general additive landscapes, independent of the
distribution of mutational effects. Next, we show that for the
class of all landscapes with a single peak, which includes very
general forms of gene interactions, this critical threshold is
sufficient, but not necessary, to obtain an upper bound on the
time to reach the fitness peak. We demonstrate that there are
landscapes for which a constant selection strength allows
efficient adaptation of arbitrary numbers of sites.

Adaptation time in simple additive landscapes

One of the simplest scenarios for adaptation is when all sites—
genes or loci—contribute equally to fitness. This leads to a
fitness landscape where the fitness of a genotype depends
only on the number of correct matches to a target sequence.
We formalize this scenario by the function feqðxÞ ¼

Pn
i¼1xi;

which counts the number of correct matches (x) in a genome
of length n (Figure D1). This function induces a structure in
sequence space in which the fraction of beneficial muta-
tions decreases linearly as a function of the distance to
the optimum. We use this function to determine under
which conditions populations can efficiently climb simple
fitness peaks.

For each new mutation, the probability that it is beneficial
depends only on the number of beneficial mutations already
fixed (x), and therefore the expectation of increase in fitness
(forward drift) is DþðxÞ ¼ ðn2 xÞ=n � pfixð1Þ: The probability
of occurrence of a deleterious mutation grows with the num-
ber of beneficial mutations already fixed, x=n; and thus the
negative drift is D2ðxÞ ¼ ½ð2x=nÞ � pfixð21Þ� Therefore, the
net expectation of progress DðxÞ is:

DðxÞ ¼ pfixð1Þ �
�
n2 x
n

2
x
n
� pfixð21Þ
pfixð1Þ

�

¼ pfixð1Þ �
�
n2 x
n

2
x
n
� e22ðN21Þb

� (3)

(see Appendix B, Lemma 2). This expectation is always
positive as long as 2ðN2 1Þb$ lnðcnÞ; for some constant
c. 1: This condition states that, for the expectation of prog-
ress to be always positive, the selection differential
f½pfixð1Þ=pfixð21Þ� ¼ e2ðN21Þbg needs to be large enough to
counteract the deleterious mutation pressure in the worst
possible case [which occurs at a genotype which is one mu-
tation away from the optimum, when x ¼ n2 1 and so
pþm ¼ 1=n and p2m ¼ 12 ð1=nÞ, 1�: If this condition is met
we can write:

DðxÞ$ pfixð1Þ �
�
n2 x
n

2
1
cn

�
¼ hðxÞ$ 0: (4)

We can nowapply Equation 2 (seeMethods; Johannsen 2010)
to the decreasing number of zeros z ¼ n2 x (number of
remaining mutations that need to be accumulated), to obtain

an upper bound on the expected time Tmax to reach the fitness
peak:

Tmax#
1

pfixð1Þ
�
�

cn
c2 1

þ
Z n

1

cn
zc2 1

dz
�

#
1

pfixð1Þ
�
�

cn
c2 1

þ n � ln
�
cn2 1
c2 1

��

#
1

pfixð1Þ
� ½nlnðnÞ þ OðnÞ�

where the maximum number of mutations that are required
to reach the fitness peak is n.

This expression quantifies the impact of the length of the
target sequence on the time (in units of mutation rate) to
attain it. It shows that the time required to evolve adaptations
involving larger numbers of sites will simply require a poly-
nomial number of extra mutational “trials” (Figure 2A).

A critical threshold for efficient adaptation

Our analysis above shows that for a population in the WM to
be able to reach the fitness peak efficiently, it is sufficient that
selection strength grows logarithmically with the number of
sites under selection ½2ðN2 1Þb$ lnðcnÞ�:We next show that
if selection strength is below this threshold, these popula-
tions cannot efficiently find the optimum, as the time re-
quired to reach the optimum on feq becomes exponential in
n with overwhelming probability. Populations in the WM
therefore exhibit a phase transition behavior: changing 2Nb
by a constant factor leads to a difference between polynomial
and exponential expected time to reach the optimum on feq:

To show this, we consider a genotype some distance away
from the optimum, x ¼ n2 ne=2; for some small positive e. At
this point, the fraction of mutations that are beneficial
becomes ðn2 xÞ=n#ne=221: Correspondingly, the fraction
of deleterious mutations is ðx=nÞ$ 12 ne=221: Now, if selec-
tion strength is between 1#Nb# ð12 eÞ=2 lnn; we can
bound e62Nb to obtain the probabilities of fixation of benefi-
cial or deleterious mutations pfixð1Þ# 2b=ð12 e22Þ and
pfixð21Þ$ 2bne21; respectively. Substituting in the net expec-
tation of progress (Equation 3) we obtain:

DðxÞ# 2b
12 e22 � ne=221 2

2b � ne
n

�
�
12 ne=221

�
# 2 c � b � ne21;

where c is a positive constant. This means that, if selection
strength Nb is between 1#Nb# ð12 eÞ=2lnðnÞ then, as
the population approaches the optimum, there will be a re-
gion ðx$ n2 ne=2Þ where the expectation of progress is neg-
ative. This happens because selection is not strong enough to
counteract the deleterious mutation pressure that has built
up. We can then apply the negative drift theorem to the
number of zeros on an interval of ½0; ne=2� and show that the
expected time to reach the peak is exponential in the num-
ber of loci (see Appendix D for details). This shows that
if selection strength Nb is below ð12 eÞ=2 lnðnÞ; more
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complex adaptations, involving a larger number of sites,
will take exponentially longer to evolve (Figure 2B).

This result sets a limit to the complexity that can be
evolved: for a fixed selection strength, there is a maximum
number of sites that can be efficiently adapted. Typically,
selection is deemed efficient when Ns. 1 (corresponding to
Nb in our framework). Our result defines the conditions for
which selection is efficient in a multilocus setting, taking
mutational pressure into account. It shows that even if
Nb. 1 at every locus, for selection to be able to drive a
population to the fitness peak, Nb needs to scale nonlinearly
with the length of the target sequence ½2Nb. lnðcnÞ�:
Efficient approach to the optimum

The results above show that the time required to reach the
optimum scales nonlinearly with the number of sites under
selection. However, it can be argued that populations do not
have to reach the optimum, they only need to get sufficiently
close.

Using Equation 4 together with Equation 2, we show that
the population can reach a genotype in which at least n2 a
sites are well adapted, where a. 1 is the number of mu-
tations to the optimum. The population reaches such a
genotype in:

Tmax#
a

hðaÞ þ
Z n

a

1
hðxÞ dx

#
1

pfixð1Þ
�
�

acn
ac2 1

þ
Z n

a

nc
zc2 1

dz
�

#
1

pfixð1Þ
� ½n lnðn=aÞ þ OðnÞ�: (5)

This means that the time to reach a genotype with a constant
fraction of well-adapted sites (for example, at which 99% of
sites are adapted, a = 0.01n) is linear on the length of the
target sequence. This is a significant improvement over the
time to actually reach the fitness peak, showing that this time
is dominated by the last few steps. It should be noted that the
time to reach any constant distance from the optimum (say
n 2 a, with a constant) is of the form nlnn:

General additive fitness landscapes

We now generalize the previous results to linear landscapes
regardless of their distribution of mutational effects. When all
mutations contribute equally to the trait, it is sufficient that
selection strength is such that 2ðN21Þb$ lnðcnÞ for the pop-
ulation to be able to reach the fitness peak in polynomial
time. More generally, if each site contributes a weight
wi . 0 to the trait, such that faddðxÞ:¼

Pn
i¼1xiwi andPn

i¼1wi ¼ W for a certain selection strength, there will be a
critical weight w* such that all n2 n* sites of weight wi .w*
will be able to be reached in polynomial time, reaching a
fitness of at least W* ¼ W2n*w*:

Analogously to the equal-effects case (Equation 3), we can
write the net expectation of progress on these n2 n* “large
effect” sites:

DðxÞ$ pfixðw*Þ
hn2 n*2 x

n
2 e22ðN21Þbw*

i
:

This expression is positive on x 2 ½0; n2 n*� as long as
2ðN21Þbw*. lnðcnÞ for some constant c. 1; which deter-
mines the critical threshold: w*. lnðcnÞ=½2ðN2 1Þb� This
leads to the lower bound on the expectation of progress:

DðxÞ$ pfixðw*Þ �
cðn2 n*2 xÞ2 1

cn
:

As before, we can use Equation 2 to obtain an upper bound for
the expected time to reach fitness at least W*#W2 n*w*
(see Appendix E, Equation E2):

TW* #
1

pfixðw*Þ
cn

cðn2 n*Þ2 1
þ n ln

�
cðn2 n*Þ2 1

c2 1

�� 	

¼ n lnðnÞ þ OðnÞ
pfixðw*Þ

:

Since the n2 n* sites of large effect behave essentially like
the equal-effects case, for a constant selection strength there
is a maximum fitness that can be reached in OðnlnnÞ: Reach-
ing a fraction of this fitness takes linear time (Equation 5);
while adapting further requires exponential time, which we
confirmed with simulations (Figure 3). Without knowledge
of the actual distribution of effects, it is impossible to deter-
mine n* and hence the fitness level that is guaranteed to be
reached in polynomial time. However, since all effects are
drawn from the same distribution, n* will always be a con-
stant fraction of n [since n* is simply the fraction of weights
below w*, n* ¼ CDFðw*Þ � n�: These scalings are valid for any
distribution of effects and represent hard limits on this class
of fitness functions.

Adaptation in a general class of landscapes

We now turn to a general class of fitness landscapes: uni-
modal functions. This class includes all functions that have
only one maximum; meaning that it includes functions
displaying arbitrary forms of epistasis, only excluding some
types of sign epistasis which may lead to multiple peaks
(Weinreich et al. 2005; Poelwijk et al. 2007), as mentioned
before.

The defining feature of the members of the unimodal class
is that any genotype other than the peak has at least one
mutational neighbor (a genotype that differs exactly by one
mutation) of higher fitness value. We denote the minimum of
these trait increases (or decreases) in the landscape by d.
Because each genotype necessarily has at least one neighbor
that increases the trait value by at least dwe can bound the
expectation of improvement by Dþ $ ½ðd=nÞpfixðdÞ� In this
class of functions, there are potentially n2 1 deleterious
mutations, each contributing ½ðDfi=nÞ � pfixð2DfiÞ� to the to-
tal backward expectation. If the population size is N$ 3
we can bound pfixð2DfiÞ# e22bðDfi2dÞ � pfixð2dÞ (see Appen-
dix B, Lemma 3; and Appendix F), which implies that pfix
decreases exponentially for deleterious mutations, and
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the worst case of these mutations is actually when
Dfi ¼ maxf1; dg; yielding a backward expectation of
D2 $ 2 ð1þ dÞpfixð2dÞ and a total expectation of
improvement:

DðxÞ$ d � pfixðdÞ
�
1
n
2

1þ d

d
� pfixð2dÞ
pfixðdÞ

�

$ d � pfixðdÞ
�
1
n
2 ð1þ 1=dÞ � e22ðN21Þbd

�
: (6)

This net expectation of progress is positive as long as
2ðN2 1Þbd$ ln½ð1þ 1=dÞcn�; for some constant c. 1:
Therefore, for some constant g. 0 this expectation then
becomes simply:

DðxÞ$ g � d � pfixðdÞ
n

: (7)

We can then use Equation 2with themaximumandminimum
fitness differences (d and d, respectively) as integral limits to
calculate an upper bound for all functions in this class. Note
that in this case we are applying the drift analysis with respect
to the fitness rather than to the number of one-bits in the
trait:

Tunimodal#O

"
nd

d � pfixðdÞ

#
þ O

"Z d

d

n
d � pfixðdÞ

dx

#

¼ O
�

n
pfixðdÞ

� d
d

�
: (8)

This bound depends on the length d, and as such is not
independent of the instance of the function class we are
considering. It should be noted that the upper bound of
Equation 8 can be loose, as can be seen by comparing to
the previous results for linear function (which are part of
the unimodal function class): the fitness range d is of size

n, entailing a bound for the time to adaptation of Oðn2Þ
when, in reality, the time on the linear function class grows
slower OðnlnnÞ: Moreover, this bound does not guarantee
that the time to reach the peak is polynomial: there could
exist members of the unimodal function class for which
d=d is exponential; e.g., when d is constant but the Ham-
ming path leading to the optimum is exponential, then d

will be exponentially small (Rudolph 1997b; Droste et al.
2002), making the bound exponential. Next, we focus on
one particular member of this function class for which this
bound is tight.

One extreme formof epistatic landscape iswhenmutations
need to be accumulated in a particular order, having no effect
outside of this order (Kondrashov and Kondrashov 2001).
This creates a landscape in sequence space characterized by
a fitness ridge and vast neutral plateaus leading to the opti-
mum (Figure 4A). We formalize this landscape by the func-
tion fridgeðxÞ ¼

Pn
i¼1

Qi
j¼1xj; which counts the number of

leading ones in a bit string (Rudolph 1997a). To increase
its current fitness, it is necessary to flip the first zero in the
genome to one. Flipping any other zero to one will result in a
mutant offspring with the same fitness as its parent, while
flipping any of the leading ones into zero can result in a
drastic fitness loss. In this landscape, the fitness range d has
size n (see Figure 4A), which, according to the bound from
Equation 6, leads to a time of Oðn2Þ: We now show that this
bound is tight.

In this landscape, the probability of a beneficialmutation is
1=n; as only flipping the first zero in the genome will result in
a fitness increase. However, as more ones can follow this
locus (neutral mutations that may have fixed neutrally),
the increase in trait value can be higher than one. This means
that we can bound the expectation of forward progress by
DþðxÞ$ ½ð1=nÞ � pfixð1Þ� Mutating the j-th position of the x
already well-adapted sites will result in a fitness decrease
of size k ¼ x2 jþ 1 yielding: D2 $ 2 1

n

Pn21
k¼1k � pfixð2kÞ:

However, as long as N$ 3 the fixation probability decreases
exponentially for deleterious mutations and can overcome
the linear impact k of mutation. Specifically, we can bound
each pfixð2kÞ# e22bðk21Þpfixð21Þ (see Appendix B, Lemma 3;
and Appendix F) and, using b$ 1=2 and the fact thatPN

k¼1k � e2ðk21Þ ¼ ½e2=ðe21Þ2�# 3; we can write for the net
expectation of progress:

D$
1
n
pfixð1Þ

�
123 � pfixð21Þ

pfixð1Þ
�

$
1
n
pfixð1Þ

h
12 3 � e22ðN21Þb

i
:

Since N$ 3 and b$1=2 then 2ðN21Þb$ 2; the expectation
of progress is always positive and reduces to

D$
6
8
� pfixð1Þ

n
:

We can use Equation 2 to obtain an upper bound on the
expected time to reach the fitness peak:

Figure 3 Time to reach different fractions of the total fitness for an
exponential distribution of effects. For a fixed selection strength, there
is a maximum fraction of the fitness that can be reached in OðnlnnÞ
mutational trials. The time to reach lower fractions of this fitness scales
linearly, while the time to adapt further scales exponentially. Data points
correspond to means of 1000 runs, and lines correspond to the indicated
scalings. N was set to 20, b ¼ 0:1; and the effects were distributed as
wi � Expð1Þ:
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Tmax#
8n

6pfixð1Þ
þ 8n
6pfixð1Þ

Z n

1
1  dx ¼ O

�
n2

pfixð1Þ
�
:

This shows that even if the path to the optimum is narrow and
mutations have to occur in a specific order, populations in the
WM are able to climb the fitness peak relatively fast in poly-
nomial time (Figure 4B). Remarkably, this result holds for any
selection strength above a constant value; indicating that, for
landscapes of this type, there are no limits to the number of
loci that can be adapted in polynomial time, as long as selec-
tion strength is above this constant value. The main reason
for this is that even though the number of deleterious muta-
tions still increases as the population approaches the opti-
mum, most of them are much less likely to be fixed due to
their strong deleterious effects. This leads to a much less
pronounced slowdown of the speed of adaptation as the pop-
ulation approaches the optimum. Notice that in this family of
landscapes, the time to reach a fraction of the maximum
fitness is also Oðn2Þ:

Discussion

There are at least two ways in which a trait can be considered
“complex”: in the number of sites contributing to it, by anal-
ogy with complex traits as defined in quantitative genetics;
and in the way that it is coded for by the sites that contribute
to it, i.e., the complexity of the landscape in which it exists. In
this manuscript we address the limits imposed by both of
these factors.

Wehave shown that for a large class offitness landscapes, it
is sufficient that selection strength Nb is above a threshold
ðlnnÞ for populations to be able to climb to the fitness peak
efficiently. We proved that in the class of additive landscapes,
this condition is both sufficient and necessary; implying a
limit to the number of sites that can be efficiently adapted
at a constant selection strength. Nevertheless, this critical

threshold does not seem severe: selection strength should
increase logarithmically with the number of sites under se-
lection, indicating that a small increase in selection gradient
or population size translates to an exponential increase in the
length of the sequences that can be evolved efficiently. More-
over, this condition is not always necessary: when consider-
ing a class of epistatic landscapes characterized by a single
mutational path of strictly increasing fitness, we found that
this limit no longer applies. A constant selection strength will
enable a population to climb to the optimum, albeit at a
slower rate than in an additive landscape, regardless of the
number of sites contributing to the trait. These results quan-
tify the complexity of adaptive walks beyond linear land-
scapes or uncorrelated mutational neighborhoods. They
illustrate how the structure of the fitness landscape can im-
pose limits to adaptation and how these stem directly from
how the landscape conditions the distribution of effects of
single mutants, in particular of deleterious mutations. Fur-
thermore, they reveal how the buildup of mutational pres-
sure that necessarily counteracts selection imposes a limit on
the selection strength required for populations to overcome
the entropic effects of mutation and make progress toward
fitter genotypes.

Sewall Wright (1932) introduced the concept of fitness
landscape mostly as a metaphor for the adaptation of popu-
lations, since at the time there was no hope of measuring the
fitness associated with each individual genotype. Even then,
this metaphor was incredibly successful at shaping evolution-
ary thought (Provine 2001). It is not surprising then that
more recently, with the increased availability of genetic ma-
nipulation techniques, this metaphor has been taken seri-
ously and is now the subject of experimental study (see de
Visser and Krug 2014 for a recent review). The fitness land-
scapes of several experimental systems have now been at
least partially mapped. Most of these landscape reconstruc-
tions have been performed for a small number of genes. For
example, Khan et al. (2011) have reconstructed the fitness
landscape defined by five beneficial mutations that fixed in a
long-term evolution experiment. However, new techniques
are allowing for the reconstruction of much larger fitness
landscapes. For example, Kinney et al. (2010) constructed
and determined the phenotype of 100s of 1000s of mutants
of the lac-operon, enabling them to partially reconstruct its
expression landscape. Our results inform about the conse-
quences these fitness landscapes can have for the adaptation
of populations. They speak not just about the time to reach a
fitness peak, but also informs about how quickly mutations
are accumulated on the way (by using Equation 2 to calculate
the time required to get to a fixed distance to the optimum).
If the structure of the landscape is such that many paths lead
to the optimum, then the time to fix the next beneficial mu-
tation should increase with nlogn=ðn2 xÞ (Equation 5),
where x is the current number of fixed beneficial mutations.
On the other hand, if relatively few paths leading to an opti-
mum exist, our results suggest that the time until the next
beneficial mutation is fixed is best described by a power law

Figure 4 Time to reach the fitness peak of fridge; a member of the uni-
modal class of functions. (A) A visualization of the landscape induced by
this function for n ¼ 8: z-coordinate represents trait values (bottom clus-
ter z = 0, top genotype z = n). Links between genotypes (•) represent
mutations with the only path of strictly increasing fitness from 0n to the
peak highlighted in black. (B) Symbols represent averages (of 100 runs) of
the time to reach the peak (•) or to reach 50% of the maximum fitness
(n). Shaded areas represent their SDs. Dashed line represents the bound
Oðn2Þ: Parameters were set to N ¼ 100 and b ¼ 0:1:
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(Appendix F, Figure F2). These results suggest that long-term
evolution experiments could be used to identify the class of
landscapes on which the population is evolving. In fact, it is
interesting to note that the fitness dynamics of a long-term
evolution experiment is actually best described by a power
law, rather than by a hyperbolic curve (Lenski et al. 2015).
Even though other explanations are possible, such as a com-
bination of diminishing returns epistasis with clonal interfer-
ence (Wiser et al. 2013); our results show that this could also
be explained by a fitness landscape inwhich fitness effects are
highly conditional on the background, such that most dele-
terious mutations are of large effect and very few paths uphill
exist. The existence of extensive diminishing returns epistasis
(Khan et al. 2011) in this landscape would not be enough to
explain this pattern of fitness increase. Whether clonal inter-
ference or the existence of many highly deleteriousmutations
is responsible for this specific pattern of fitness increase
could be tested experimentally by closer inspection of the
population dynamics and mutational assays of the evolved
populations.

The results we show here are related to Fisher’s “cost of
complexity” (Fisher 1930). Fisher defined the cost of com-
plexity as the slowdown of adaptation due to the diminishing
probability of generating beneficial mutations as the number
of traits under selection increases. This has been attributed to
the pleiotropic nature of mutations in the geometric model
(Wagner et al. 2008), since mutations simultaneously affect
all traits under selection. Our approach is similar in the sense
that we study the dependency of the speed of adaptation on
the number of sites under selection. One could think of each
site of a genetic sequence as a trait under selection, albeit
taking only discrete values, and mutations acting on one trait
only (since we consider single mutations only). Our results
show that pleiotropy is not the only source for this cost of
complexity since, even when mutations act on single “traits,”
there is a penalty for having longer sequences. Instead, our
results highlight that mutational pressure and the structure
of the fitness landscape play an important role on this cost of
complexity. This is a direct consequence of the fact that we
deal with discrete sequence spaces and not with a continuous
trait space, as in traditional formulations of Fisher’s geomet-
ric model.

The distinction between polynomial and exponential time
is crucial to the question of the evolution of complexity: if only
a few mutations need to fix to reach a fitness peak, this
distinction is less relevant since the times would be short.
This distinction becomes relevantwhen dealingwith complex
adaptations involving many sites or genes. Chatterjee et al.
(2014) investigated the adaptation time in a landscape in
which genotypes are assigned one of two possible fitness
values (high and low) and no smooth fitness gradients exist.
They show that even when the fraction of high-fitness geno-
types is large, populations will take at least exponential time
to reach one of them. Their results relate directly to the in-
feasibility of evolving complex innovations, adaptations that
cannot be reached by gradual steps. However, for many such

apparent innovations, paths of gradually increasing fitness
actually do exist, such as in the case of de novo gene evolu-
tion, where duplications and insertions or deletions are
believed to pave the way for new genes (Tautz and Domazet-
Lošo 2011). Instead, we focused on adaptations for which at
least one (potentially tortuous) path exists and show that
for these natural selection can efficiently evolve them. For
this reason, we have only dealt with constant unimodal
landscapes, that is, landscapes in which a single peak exists
and that remain constant over evolutionary time (in fact we
have provided upper bounds for the adaptation time for all
such landscapes). The results we present here, however,
allow for insight on how populations climb any peak, re-
gardless of which peak is approached.

Many measures have been proposed to characterize the
structure of fitness landscapes (Szendro et al. 2013), ranging
from the roughness to slope ratio ðr=sÞ (Aita et al. 2001) or
correlations of fitness effects (Ferretti et al. 2016), to Fourier
decompositions of the landscape (Stadler 1996). These are
often seen as measures of hardness of a landscape or prob-
lem, the intuition being that it will be more difficult for a hill
climber to reach a fitness peak in more epistatic landscapes.
Under this reasoning, the “easiest” landscape would be one
where each locus contributes equally and independently to
fitness, such as feq in the present manuscript. Indeed, this is
the case for hill climbers in which mutations are determinis-
tically accepted or rejected based onwhether they increase or
decrease fitness (Droste 2002), regardless of the magnitude
of their effect (random adaptive walks), or in which the best
available mutation is always accepted (greedy hill climbers)
(Macken and Perelsont 1989; Park et al. 2016). However,
such adaptive walks may not be adequate models of natural
adaptation, except perhaps when the fitness effects of all
mutations are extremely large. In fact, we have previously
shown that the time to reach a fitness peak can differ signif-
icantly between a deterministic hill climber and themodel for
the evolution of natural populations that we use here (Paixão
et al. 2015b). This shows that the dynamics of adaptation
depend not only on the structure of the fitness landscape
but also on the mode of evolution, and suggests that perhaps
a more meaningful classification of landscapes should in-
clude information about the dynamics of the populations
evolving on it, in addition to the landscape’s geometric prop-
erties. The results we present here open the door to such
classification, at least for the weak-mutation regime.

Crucially, we assume theWM in which mutations are fixed
or lost sequentially. This assumes that population sizes or
mutation rates are low enough that no newmutations appear
before the previous one has either been fixed or lost. When
populations are large enough so that several segregating
mutations coexist, the time it takes for a single beneficial
mutation to fix increases since it necessarily competes with
other beneficial mutations (Gerrish and Lenski 1998). How-
ever, the rate of adaptation will continue to increase with NU;
at least until the infinite population regime is reached, since
the time between mutations will decrease faster than the
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time to fixation of beneficial mutations (Park et al. 2010).
Thus, the upper bounds for the time to reach a fitness peak
should hold, albeit being less tight than for the weak-mutation
regime, even for larger populations.

There has been a renewed interest in computational ap-
proaches to the theory of evolution (Valiant 2013; Chastain
et al. 2014). In this manuscript, we have introduced methods
developed and commonly used in evolutionary computation
for the analysis of randomized algorithms to the evolutionary
biology community and show that these can be successfully
applied to problems in this field. These methods facilitate the
study of adaptive walks on complex fitness landscapes. Such
a collaboration between both fields, enabled by the recent
development of a unifying framework for evolutionary
processes (Paixão et al. 2015a), has the potential to shed light
on more complex evolutionary processes. For example, sim-
ilar mathematical tools exist that allow for the analysis of
polymorphic populations which could allow for the explora-
tion of the adaptive process beyond the WM in arbitrary fit-
ness landscapes (Corus et al. 2014). These results have the
potential to illuminate a number of other fundamental limits
to adaptation by natural populations.
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Appendix A: Weak-Mutation Regime as an Algorithm

To analyze the rate of adaptation in WM using drift analysis, we apply techniques from the analysis of stochastic processes and
randomized algorithms. To this end, we cast WM as a randomized algorithm as follows:

Algorithm 1. WM. Choose x 2 f0; 1gn uniformly at random.
repeat
y)mutate(x)
Df ¼ f ð yÞ2 f ðxÞ

Choose r 2 ½0; 1� uniformly at random
if r, pfixðDfÞ then
x)y
end if
until stop

Appendix B: Probability of Fixation Inequalities

Here we derive the upper and lower bounds for pfixðDf Þ that are used throughout the manuscript. The bounds for Df . 0 show
that pfix is roughly proportional to the fitness difference between solutions bDf :

Lemma 1: Probability of fixation. For every b 2 ℝþ and N 2 ℕþ the following inequalities hold. If Df . 0 then

2bDf
1þ 2bDf

# pfixðDf Þ#
2bDf

12 e22NbDf : (B1)

If Df , 0 then

22bDf
e22NbDf # pfixðDfÞ#

e22bDf

e22NbDf 2 1
: (B2)

Proof. In the following, we frequently use 1þ x# ex and 12 e2x # 1 for all x 2 ℝ as well as ex # 1=ð12 xÞ for x, 1:
If Df . 0;

pfixðDfÞ ¼
12 e22bDf

12 e22NbDf $ 12 e22bDf $ 12
1

1þ 2bDf
¼ 2bDf

1þ 2bDf

as well as

pfixðDf Þ ¼
12 e22bDf

12 e22NbDf #
2bDf

12 e22NbDf :

If Df , 0; using the fact that e2x 2 1# e2x:

pfixðDf Þ ¼
e22bDf 2 1
e22NbDf 2 1

#
e22bDf

e22NbDf 2 1
:

Similarly:

pfixðDfÞ ¼
e22bDf 2 1
e22NbDf 2 1

$
e22bDf 2 1
e22NbDf $

22bDf
e22NbDf :

The next lemma shows that the probability of accepting an improvement ofDf is exponentially bigger ðin NbDfÞ than accepting
its symmetric fitness variation 2Df :

Lemma 2: Probability of fixation ratio. For every b 2 ℝþ; Df 2 ℝ; and N 2 ℕþ

pfixð2Df Þ
pfixðþDf Þ ¼ e22ðN21ÞbDf : (B3)
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Proof.

pfixð2Df Þ
pfixðþDf Þ ¼

e2bDf 2 1
e2NbDf 2 1

� 12 e22NbDf

12 e22bDf

¼ e2bDf

e2NbDf
¼ e22ðN21ÞbDf ;

where we have applied the relation ðex 2 1Þ=ð12 e2xÞ ¼ ex:

Lemma 3: Exponential decrease of the probability of fixation. Let N 2 ℕ\{0,1, 2}, d 2 ℝþ; b 2 ℝþ; and Df . 0; then

pfixð2DfÞ$ e2bd � pfixð2Df 2 dÞ

Proof. Using the definition of pfix we can rewrite the statement as:

e2bDf 2 1
e2bNDf 2 1

$ e2bd � e2bðDfþdÞ 21
e2bNðDfþdÞ 2 1

;

defining x:¼ e2bDf and y:¼ e2bd we can simplify the expression to

⇔
x2 1
xN 2 1

$ y � xy2 1

ðxyÞN 2 1

using the result for the sum of a geometric series
PN21

k¼0 x
k ¼ ðxN 2 1Þ=ðx2 1Þ yielding:

⇔
1PN21

k¼0 xk
$ y � 1PN21

k¼0 ðxyÞk
⇔

XN21

k¼0

ðxyÞk $
XN21

k¼0

xky:

If we extract the first and last term of both sums we obtain

⇔ 1þ ðxyÞN21 þ
XN22

k¼1

ðxyÞk $ y þ xN21y þ
XN22

k¼1

xky: (B4)

Let us focus now on the left-hand side of the previous equation. Since x,y. 1, we have that (xy)k. xky for k$ 1 and therefore

1þðxyÞN21 þ
XN22

k¼1

ðxyÞk$ 1þ xN21 yN21 þ
XN22

k¼1

x ky


y þ xN21y2 y2 xN21y ¼ 0

�

¼ y þ xN21y þ 1þ xN21yN21 2 y2 xN21y þ
XN22

k¼1

x ky

¼ y þ xN21y þ ð12 yÞ þ 

yN22 2 1

�
xN21y þ

XN22

k¼1

x ky


N$ 3⇒ yN22$ y

�

$ y þ xN21y þ ð12 yÞ þ ðy2 1ÞxN21y þ
XN22

k¼1

x ky

¼ y þ xN21y þ ðy2 1Þ � 
xN21y2 1
�þ XN22

k¼1

x ky


y. 1  and  xN21. 1

�

$ y þ xN21y þ
XN22

k¼1

x ky:
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Then, the claim (B4) is proven and so is the lemma’s statement.

Appendix C: Drift Theorems

The additive drift theorem was first introduced by He and Yao (2001). For simplicity we show the formulation from Lehre and
Witt (2013).

Theorem 4: Additive drift, theorem 1 in Lehre and Witt 2013. Let ðXtÞt$ 0 be a stochastic process over some bounded state
space S4ℝþ

0 ; and T0:¼ minftjXt # 0g the first hitting time of state 0. Assume that EðT0jX0Þ,N: Then:

i. If EðXt 2Xtþ1jX0; . . . ;Xt;Xt . 0Þ$ du then EðT0jX0Þ#X0=du:

ii. If EðXt 2Xtþ1jX0; . . . ;XtÞ# dl then EðT0jX0Þ$X0=dl:

Both results are conditioned to a starting point X0; but by applying the law of total expectation we can avoid the starting
condition obtaining EðT0Þ# EðX0Þ=du and EðT0Þ$EðX0Þ=dl for the first and second result, respectively. The proof (in Lehre and
Witt 2013) mainly makes use of Doob’s optional-stopping theorem that can be found in standard textbooks onmartingales (for
example in Williams 1991, theorem 10.10).

Theorem 5: Generalized variable drift theorem. Consider a stochastic process Xt on ℕ0: Suppose there is a monotonic
increasing function h: ℝþ/ℝþ such that the function 1=hðxÞ is integrable on [1, m], and with expected progress toward the
optimum Dk such that

Dk$ hðkÞ

for all k 2 fa; . . . ;mg: Then the expected first hitting time of any state from f0; . . . ; a2 1g for a a 2 ℕ is at most:

a
hðaÞ þ

Z m

a

1
hðxÞ dx:

Proof. The following proof is adapted from the proof of Rowe and Sudholt (2014), theorem 1.
Let

gðxÞ ¼

x
hðaÞ if   x, a

a
hðaÞ þ

Z x

a

1
hðzÞ   dz if   x$ a:

8>><
>>:

Note that g is strictly monotone increasing and hence invertible. Whenever the random sequence g(Xt) hits state 0, this implies
that Xt has hit a state in f0; . . . ; a2 1gHence, the hitting time of any state f0; . . . ; a2 1g is no larger than the first hitting time of
the random sequence gðXtÞ of the state 0.

If x$ a and y$ a then

gðxÞ2 gðyÞ ¼
Z x

y

1
hðzÞ dz$

x2 y
hðxÞ

(since 1/h(z) is positive and monotone decreasing) and if x$ a and y, a then

gðxÞ2 gðyÞ ¼ a
hðaÞ þ

Z x

a

1
hðzÞ dz2

y
hðaÞ$

a2 y
hðaÞ þ x2 a

hðxÞ $
x2 y
hðxÞ :

So, for any k 2 f1; . . . ;mg;
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E½gðXtÞ2 gðXtþ1ÞjgðXtÞ ¼ gðkÞ�
¼ E½gðXtÞ2 gðXtþ1ÞjXt ¼ k�
$ E½ðXt 2Xtþ1Þ=hðXtÞjXt ¼ k�

¼ Dk

hðkÞ$ 1:

So by the additive drift theorem (Theorem 4), the first hitting time of 0 by the sequence gðXtÞ is bounded above by g(m). The
result follows.

In themanuscript, we use the negative drift theoremwith self-loops presented in Rowe and Sudholt (2014) (an extension of
the negative drift theorem byOliveto andWitt 2011, 2012, to stochastic processes with large self-loop probabilities). It is stated
here for the sake of completeness.

Theorem 6: Negative drift with self-loops. Consider a Markov process X0;X1; . . . on f0; . . . ;mg and suppose there exists
integers a, b with 0, a, b#m and e. 0 such that for all a# k# b the expected drift toward 0 is

Eðk2Xtþ1jXt ¼ kÞ, 2 e �
�
12 pk;k

�

where pk;k is the self-loop probability at state k. Further assume there exists constants r; d.0 (i.e., they are independent of m) such
that for all k$ 1 and all d$ 1

pk;k2d; pk;kþd #
r
�
12 pk;k

�
ð1þ dÞd

where pk;l is the transition probability from state k to state l. Let T be the first hitting time of a state at most a, starting from X1 $ b:
Let l ¼ b2 a: Then there is a constant c . 0 such that

Pr
�
T#2cl=r

�
¼ 22Vðl=rÞ:

Appendix D: Adaptation Time in Simple Additive Landscapes

In ourmanuscript, simple peaks are represented by function feqðxÞ:¼
Pn

i¼1xi that assumes that all alleles (bits) contribute to the
fitness with weight equal to 1 (Figure D1). Each mutation therefore increases or decreases the fitness by 1.

Theorem 7: Efficiently climbing simple peaks. If 2ðN2 1Þb$ lnðcnÞwith b 2 ℝþ and c. 1; then the expected optimization
time of WM on feq with local mutations is

n lnðnÞ þ OðnÞ
pfixð1Þ

#

�
1þ 1

2b

�
� ½n lnðnÞ þ OðnÞ�

for every initial search point.
Proof. Let us denote by x the number of one-bits. The drift can be expressed as a combination of a forward and a backward

drift

DðxÞ ¼ DþðxÞ2D2ðxÞ;

where the forwarddrift is the probability ofmutationflipping a zero-bit ðn2 x=nÞmultiplied by the probability of accepting such
a mutation ½pfixð1Þ�: Note that all mutations in this fitness landscape will change the state x by61. Analogously, the backward
drift is given by the probability of a negative mutation occurring ðx=nÞ and fixing in the population with probability ½pfixð21Þ�:
Therefore, the total expected progress is
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Figure D1 feq function. Fitness increases linearly with increasing number of ones.

DðxÞ ¼ n2 x
n

� pfixð1Þ2
x
n
� pfixð21Þ

¼ pfixð1Þ �
�
n2 x
n

2
x
n
� pfixð21Þ

pfixð1Þ
�
:

Using Lemma 2 we get

DðxÞ ¼ pfixð1Þ �
hn2 x

n
2

x
n
� e22ðN21Þb

i

and since 2ðN2 1Þb$ lnðcnÞ with c. 1; we can bound DðxÞ from below by

DðxÞ$ pfixð1Þ �
�
n2 x
n

2
1
cn

�
. 0:

To find the upper bound on the expected time thatWMneeds to find the fitness peak, we apply the variable drift theorem to the
decreasing number of zerosz ¼ n2 x :

DðxÞ$ pfixð1Þ �
zc21
cn

¼ hðzÞ:

The number of zeros changes from n (in the worst case scenario) to 1 (the last state that is not optimum), defining the
boundaries of the integral

EðTjX0Þ# 1
hð1Þ þ

Z n

1

1
hðzÞ dz

¼ 1
pfixð1Þ

� cn
c2 1

þ
Z n

1

1
pfixð1Þ

� cn
zc2 1

dz

¼ 1
pfixð1Þ

�
�

cn
c2 1

þ n � ln
�
cn2 1
c2 1

��

#
1

pfixð1Þ
�
�
OðnÞ þ n � ln

�
n � c

c2 1

��

¼ 1
pfixð1Þ

�
�
OðnÞ þ n � lnðnÞ þ n � ln

�
c

c2 1

��

¼ n lnðnÞ þ OðnÞ
pfixð1Þ

: (D1)
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Alternatively, we can use pfixbounds (B1) to obtain

EðTjX0Þ#
�
1þ 1

2b

�
� ½n lnðnÞþOðnÞ�: (D2)

Theorem 8: Efficient approach to the optimum. If 2ðN2 1Þb$ lnðcnÞ with c. 1 and b 2 ℝ*; then the expected time of WM
on feq to first reach a solution quality of at least n2 a is

n lnðn=aÞþOðnÞ
pfixð1Þ

#

�
1þ 1

2b

�
� ½n lnðn=aÞþOðnÞ�

for every initial search point.
Proof. The proof is as before, showing that the drift with regards to the number of zeros is at least hðzÞ ¼ pfixð1Þ � zc2 1

cn
for

search points with z zeros, for a positive constant c. Then, by applying Theorem 5 to the number of zeros, we get an upper bound of

EðTjX0Þ ¼ a
hðaÞ þ

Z n

a

1
hðzÞ dz

¼ 1
pfixð1Þ

� acn
ac2 1

þ n
pfixð1Þ

�
Z n

a

c
zc2 1

dz

¼ 1
pfixð1Þ

�
�

acn
ac2 1

þ n � ln
�
cn2 1
ca2 1

��

¼ 1
pfixð1Þ

� fOðnÞ þ n � ln½Oðn=aÞ�g

¼ 1
pfixð1Þ

� ½OðnÞ þ n � lnðn=aÞ�

using pfix bounds (B1)

EðTjX0Þ#
�
1þ 1

2b

�
� ½n lnðn=aÞ þ OðnÞ�: (D3)

Corollary 9. For a# n12e for e. 0; the upper bound from Theorem 8 is O½ðn lognÞ=pfixð1Þ� For a ¼ VðnÞ; e. g., a= 0.001n,we get
O½n=pfixð1Þ� For a ¼ Qðn=logknÞ for any constant k . 0 we get O½ðn log lognÞ=pfixð1Þ�

Theorem 10: A critical threshold for hill climbing. If 1#Nb# 12 e
2 ln n for some 0, e, 1; then the optimization time of

WM with local mutations on feq is at least 2cn
e=2

with probability 12 22Vðne=2Þ; for some constant c.0:
Proof. To prove this theorem, the negative drift theorem (Theorem 6)will be applied, taking the number of zeros as distance

function to the optimum.Our notation refers to numbers of ones for simplicity. Let px;x61 be the probability thatWMwill make a
transition from a search point with x ones, to one with x 6 1 ones, and assuming x$ n2 ne=2; then the expected drift toward
the optimum is bounded as follows

px; xþ1 ¼ n2 x
n

� pfixð1Þ# ne=221 � pfixð1Þ

since pfixð1Þ# 2b
12 e22Nb

#ne=221 � 2b
12 e22Nb# ne=221 � 2b

12 e22:

On the other hand,
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px; x21$
x
n
� pfixð21Þ$ n2 ne=2

n
� pfixð21Þ

¼ pfixð21Þ �
�
12 ne=221

�

using e2Nb # eð12eÞln n ¼ n12e

$
2b � ne

n
�
�
12ne=221

�
:

The expected drift DðxÞ is hence at most

DðxÞ# 2b
12 e22 � ne=2212

2b � ne
n

�
�
12 ne=221

�
¼ 2b � ne=221 �

h 1
12 e222 ne=2 �

�
12 ne=221

�i
¼ 2V



b � ne21�:

Now, the self-loop probability is at least px;x ¼ 12 px;xþ1 2 px;x21 ¼ 12Oðbne21Þ; hence the first condition of the drift theorem
is satisfied. Since there are only local mutations, the second condition on exponentially decreasing transition probabilities
follows immediately. The negative drift theorem, applied to the number of zeros on an interval of ½0; ne=2�; proves the claimed
result.

Appendix E: General Additive Fitness Landscapes

General additive fitness landscape is defined by the function faddðxÞ:¼
Pn

i¼1xiwi;where wi . 0 is a weight with which each site
contributes to the trait, such that

Pn
i¼1wi ¼ W:

For feq; we showed that 2ðN2 1Þb$ lnðcnÞ for c. 1 is sufficient to get a positive drift. In a more general sense, for a bit of
weight wwe get a positive drift on that bit if 2ðN21Þbw$ lnðcnÞ: Call all such bits large effect sites or heavy, then, by the same
arguments as for feq;WMoptimizes all heavy bits in the same time bound as for feq: The only sites we cannot guarantee to fix in
polynomial time are those with effect smaller than w*; where w* defines a threshold on the distribution of effects separating
the loci “easily” adapted from the “small effect” ones. The total contribution of these sites is at most nw*:

Theorem 11: General additive fitness landscapes. Let w1; . . . ;wn andW:¼ Pn
i¼1wi: Then,WMwith 2ðN2 1Þbw*$ lnðcnÞ

and c. 1 finds a solution of fitness at least

Xn2n*

i¼1

wi $W2 n*w*$W2 nw*¼ W
�
12w*

n
W

�

in expected time at most

n lnðnÞ þ OðnÞ
pfixðw*Þ

#

�
1þ 1

2bw*

�
� ½n lnðnÞ þ OðnÞ�

where w* is the minimum weight we want to optimize and n* the number of weights with value less than w*:
Proof. If w*$ ðW=nÞ; the statement is trivial as then the lower bound on the fitness is nonpositive.
Without loss of generality, we assume that the weights are ordered in ascending order: w1 #w2 # . . . #wn: Now, when

w*, ðW=nÞ and ignoring the n* weights such that wi ,w*; i ¼ 1; . . . ; n*; fnote that w* 2 ½ lnðcnÞ
2ðN2 1Þb;

W
n Þg; we lower bound the

positive drift by the probability of flipping one of the zero-bits with a weight bigger than w* times the fixation probability,
underestimated for the case where that bit has exactly a weight of w*:

DþðxÞ$ n2 n*2 x
n

� pfixðw*Þ:
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Where x is the number of one-bits. For the backward drift, we look to the worst expected impact of one single bit
ð1=nÞ � pfixð2w*Þ; then by applying linearity of expectations we obtain

D2ðxÞ$ 2 pfixð2w*Þ:

The total expectation of the progress toward the optimum is therefore

DðxÞ$ pfixðw*Þ
�
n2n*2 x

n
2

pfixð2w*Þ
pfixðw*Þ

�
:

Using Lemma 2 and then introducing 2ðN2 1Þbw*$ lnðcnÞ; we get

DðxÞ$ pfixðw*Þ
�n2 n*2 x

n
2 e22ðN21Þbw*

�
$ pfixðw*Þ �

�
n2 n*2 x

n
2

1
cn

�

¼ pfixðw*Þ �
cðn2n*2 xÞ2 1

cn
. 0: (E1)

Nowwe apply the variable drift theorem to the number of zeros z in the n2 n* bits thatwewant to optimize, i.e., z ¼ n2n*2 x:

DðxÞ$ pfixðw*Þ �
cz2 1
cn

¼ hðzÞ;

which is always positive if c. 1: The integral range will go from the farthest point to the optimum (all of the n 2 n* heaviest
weights being zero) to the closest (only one bit of the n 2 n* heaviest weights being zero)

EðTjX0Þ# 1
hð1Þ þ

Z n2n*

1

1
hðzÞ dz#

1
hð1Þ þ

Z n

1

1
hðzÞ dz ¼

1
pfixðw*Þ

� cn
c2 1

þ
Z n

1

1
pfixðw*Þ

� cn
cz2 1

dz

¼ 1
pfixðw*Þ

�
�

cn
c2 1

þ n � ln
�
cn2 1
c2 1

��
#

1
pfixðw*Þ

�
�
OðnÞ þ n � ln

�
cn

c2 1

��

¼ 1
pfixðw*Þ

�
�
OðnÞ þ n � ln

�
c

c2 1

�
þ n lnðnÞ

�
¼ n lnðnÞ þ OðnÞ

pfixðw*Þ
:

Alternatively, using pfix bounds (B1) we can get an alternative expression

EðTjX0Þ#
�
1þ 1

2bw*

�
� n lnðnÞ þ OðnÞ

w*
: (E2)

Appendix F: Adaptation in Unimodal Landscapes

Theorem 12. WM with b$ 1=2; N 2 ℕ\f0; 1; 2g; and 2ðN2 1Þbd$ ln½ð1þ 1=dÞcn� with c. 1 can optimize every unimodal
function in at most

O
�

n
pfixðdÞ

� d
d

�
¼ O

�
n � d

d
�
�
1þ 1

2bd

��

where d; d 2 ℝþ are respectively the maximum and minimum fitness difference between any two search points.
Proof. Usually the variable drift theorem is applied over the genotype space, i.e., the Boolean hypercube (or some charac-

teristic of it like the number of ones), however in this proof we will apply it on the phenotypic level, i.e., the fitness function.
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Let us denote by x any nonoptimal search point. Mutation can only produce points in the Hamming neighborhood, we
pessimistically assume that only flipping one of these n points leads to an improvement (the remaining n 2 1 Hamming
neighbors will have a worse fitness) and that its size is the minimum possible value d; then the forward drift can be bounded by

DþðxÞ$ d

n
� pfixðdÞ:

For the backward drift, we consider all the remaining n2 1 Hamming neighbors and denoting by g(k). 0 the absolute fitness
difference between the new and the old search point when flipping bit k we obtain:

D2ðxÞ$ 2
Xn21

k¼1

1
n
� gðkÞ � pfix½2 gðkÞ�:

Since N$3; we can apply Lemma 3 which means that pfix decreases exponentially for deleterious mutations. Specifically, we
can bound pfix½2gðkÞ�# e22b½gðkÞ2d� � pfixð2dÞ obtaining

D2ðxÞ$ 2
1
n
�
Xn21

k¼1

gðkÞ � e22b½gðkÞ2d� � pfixð2 dÞ

since gðkÞ$ d; we can introduce b$ 1=2 yielding

D2ðxÞ$ 2
1
n
�
Xn21

k¼1

gðkÞ � e2½gðkÞ2d� � pfixð2 dÞ: (F1)

The value of gðkÞ. 0 that maximizes gðkÞ � e2½gðkÞ2d� is gðkÞ = 1, however, when d. 1 is not a feasible solution [note that
gðkÞ$ d� and the maximum will be at g(k) = d: Therefore,

gðkÞ � e2½gðkÞ2d�#
�
ed21 # 1 if   0, d# 1
d if   d. 1:

We can upper bound these two cases by its sum ð1þ dÞ: Introducing this back in (F1) yields

D2ðxÞ$ 2
1
n
�
Xn21

k¼1

ð1þ dÞ � pfixð2dÞ$ 2 ð1þ dÞ � pfixð2dÞ:

Now we can compute the total drift

DðxÞ$ d

n
� pfixðdÞ2 ð1þ dÞ � pfixð2dÞ

$ d � pfixðdÞ
�
1
n
2 ð1þ 1=dÞ � pfixð2dÞ

pfixðdÞ
�
:

And following the usual steps, applying Lemma 2 and introducing 2ðN2 1Þbd$ ln½ð1þ 1=dÞcn�; we obtain
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$ d � pfixðdÞ �
�
1
n
2 ð1þ 1=dÞ � e22ðN21Þbd

�

$ d � pfixðdÞ �
�
1
n
2

1
cn

�

since c. 1; the previous expression is positive and we can state

DðxÞ ¼ V

�
d � pfixðdÞ

n

�
:

Finally, we apply the variable drift theorem with integral limits for the biggest fitness difference (d) and the minimum (d)
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using pfix bounds (B1) we obtain an alternative formula
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:

Climbing Fitness Ridges

The function fridge that counts the number of leading ones in a bit string is defined as fridgeðxÞ ¼
Pn

i¼1
Qi

j¼1xj: To increase current
fitness by mutation, it is necessary to flip the leftmost zero-bit to one. Flipping any other zeros to one will result in a mutant
offspring with the same fitness as its parent, while flipping any of the leading ones can result in a drastic fitness loss (Figure F1).

Theorem 13: Expected optimization time for fridge. The expected optimization time (Figure F2) of WMwith local mutations,
b$ 1=2; and N 2 ℕ\f0; 1; 2g on fridge is

O
�

n2

pfixð1Þ
�
¼ O

�
n2 �

�
1þ 1

2b

��
:

Figure F1 fridge function, various mutations, n = 8. For each genotype, only one mutation is positive, while many are either neutral or negative. Red color
represents new mutations, green color represents free riders, which are loci adding to fitness that had no fitness effect before a suitable mutation occurred.
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Proof. For this problem, x will denote the number of leading ones in the bit string. We lower bound the forward drift by the
probability of mutation choosing the first nonzero bit ð1=nÞ and its acceptance probability of being flipped ½pfixð1Þ�: For the
backward drift, notice that flipping the j-th leading one will imply a fitness decrease of k ¼ x2 jþ 1 ðnote that 1# k# n21Þ
but, as wewill show, the exponential decrease of pfix for deleteriousmutationswill overcome this effect, yielding a total positive
drift toward the optimum:

DþðxÞ$ 1
n
� pfixð1Þ

D2ðxÞ$ 2
1
n
�
Xn¼1

k¼1

k � pfixð2 kÞ:

Since N$ 3; we can call Lemma 3 to simplify the backward drift by using pfixð2kÞ# e22bðk21Þ � pfixð21Þ yielding

D2ðxÞ$ 2
1
n
�
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k � e22bðk21Þ � pfixð2 1Þ:

Introducing b$ 1=2; we obtain
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k � e2ðk21Þ
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n
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$ 2
3
n
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Now we compute the total drift,

DðxÞ$ 1
n
� pfixð1Þ2

3
n
� pfixð21Þ

¼ pfixð1Þ
n

�
�
12 3 � pfixð21Þ

pfixð1Þ
�
;

calling Lemma 2 yields

Figure F2 Fitness as a function of time for different ge-
nome sizes for fridge. Solid gray lines represent the mean of
100 simulations for n = 500, 1000, and 5000, and dashed
black lines represent best-fit power laws of the form a � tb:
Fitness is scaled by the maximum fitness (n) and time
scaled by n2: This shows that the time to reach the peak
is well estimated by Oðn2Þ; and that the rate of approach is
well approximated by a power law. Parameters were set to
N ¼ 100 and b ¼ 0:1:

824 J. P. Heredia et al.



DðxÞ$ pfixð1Þ
n

�
h
12 3 � e22ðN21Þb

i
;

using N$ 3 and b$ 1=2 we can lower bound 2ðN2 1Þb by 2 obtaining
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:

Finally, we apply the variable drift theorem to the number of bits after the x leading ones z ¼ n2 x
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Using the bounds on pfix (B1) one gets
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:
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