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Abstract

The analyses of large volumes of metagenomic data extracted from aggregate populations

of microscopic organisms residing on and in the human body are advancing contemporary

understandings of the integrated participation of microbes in human health and disease.

Next generation sequencing technology facilitates said analyses in terms of diversity, com-

munity composition, and differential abundance by filtering and binning microbial 16S rRNA

genes extracted from human tissues into operational taxonomic units. However, current sta-

tistical tools restrict study designs to investigations of limited numbers of host characteristics

mediated by limited numbers of samples potentially yielding a loss of relevant information.

This paper presents a Bayesian hierarchical negative binomial model as an efficient tech-

nique capable of compensating for multivariable sets including tens or hundreds of host

characteristics as covariates further expanding analyses of human microbiome count data.

Simulation studies reveal that the Bayesian hierarchical negative binomial model provides a

desirable strategy by often outperforming three competing negative binomial model in terms

of type I error while simultaneously maintaining consistent power. An application of the

Bayesian hierarchical negative binomial model using subsets of the open data published by

the American Gut Project demonstrates an ability to identify operational taxonomic units sig-

nificantly differentiable among persons diagnosed by a medical professional with either

inflammatory bowel disease or irritable bowel syndrome that are consistent with contempo-

rary gastrointestinal literature.

Introduction

The microbiome was first described as an “ecological community of commensal, symbiotic,

and pathogenic microorganisms that literally share our body space” [1]. In more exact termi-

nology, this definition is expressed as the totality of microbiota and associated genetic infor-

mation interacting within an individual [2]. The current breadth of microbiome research is
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founded upon recent advances in next generation sequencing (NGS) technology. Namely, the

accurate identification of microbes that constitute the microbiota and metagenome drives the

potential to effectively understand the complex interactions and immense variability within

and between the microbial colonies residing on and in the human body [3]. Of particular

interest, NGS technology has supported large-scale endeavors such as the Human Microbiome

Project [4] and MetaHIT [5], which collectively represent the aim to stimulate studies of the

microbiome role in medical and public health settings. Significant relationships between

microbes and disease have been identified, for example, in cases of inflammatory bowel disease

(IBD) [6–8], diabetes [9–12], periodontal disease [13–15], and various cancers [16–19], among

other medical conditions. Additionally, evidence has been presented to suggest significant

changes associated with both demographic traits such as age [20–23] and race/ethnicity [20,

24, 25] and behavioral traits such as dietary habits [26–28] and antibiotic usage [26, 29–31]. A

number of important questions concerning the commonalities and divergences in the micro-

biome, however, have yet to be addressed.

Microbial organisms are known to outnumber human cells by a ratio of at least ten to one

with the majority of species present within the gastrointestinal tract [32]. One of the most

commonly employed approaches to managing these extensive data is referred to as 16S rRNA

gene amplicon sequencing. Through the utilization of a computational pipeline (e.g. QIIME,

Mothur), amplified and sequenced hypervariable regions of the gene are filtered and binned

into operational taxonomic units (OTUs) representing identifiable microbial taxa [3, 33–35].

Note that targeted amplicon sequencing does not reflect the sequence of the full genome, but,

rather an inference of phylogeny by means of comparison to an existing 16S rRNA gene refer-

ence sequence database (e.g. GreenGenes, SILVA, Ribosomal Database Project) given a simi-

larity threshold. The resulting human microbiome count data are then used to complete

microbial diversity, community composition, and differential abundance analysis. Our pri-

mary interest involves the latter type of study. That is, our aim is to assess whether OTUs are

significantly differentiable among subjects identified to have a disease or condition of interest

in comparison to healthy controls by explicitly adjusting for dependencies between covariates

(and also potential confounders, mediators, and moderators). More specifically, we employ

the Bayesian hierarchical regression framework to complete differential abundance analyses of

OTUs one-by-one by isolating relationships of interest while simultaneously controlling for

multivariable sets of host characteristics as covariates.

Current literature shows that differential abundance analysis is complicated due to charac-

teristics of microbiome count data such as over-dispersion and fluctuating library size. Fortu-

nately, both of these challenges have been widely studied in the context of microarray and

RNA-Seq experiments [36]. For example, analytical tools such as the R Bioconductor packages

edgeR [37] and DESeq2 [38, 39] have been developed so to adjust various library sizes by incor-

porating complex normalization techniques into the classical negative binomial (NB) model,

which is known for handling over-dispersion. In contrast, software constructed in the context

of microbiome count data such as the R Bioconductor package metagenomeSeq controls for

similar challenges by transforming outcomes to relative abundance prior to modeling with a

zero-inflated Gaussian mixture model [40]. These open-source packages are easily extended to

a matrix-like format via wrapper functions of the R Bioconductor package phyloseq [41]. How-

ever, the assurance of an identifiable solution that is both precise and unbiased when utilizing

said methods is severely limited by sample size. For example, edgeR and DESeq were developed

with the small samples typical of RNA-Seq experiments in mind such that execution of the

incorporated algorithms becomes overly time-consuming as the rows of a dataset increase. In

the event that the number of host characteristics equals or exceeds the number of samples,

methods of data reduction such as principal components or partial least squares incorporated
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into the multiple linear regression framework can offer a solution to this problem; yet, relevant

information can be lost by selecting a pre-specified number of eigenvalue components or fac-

tors to accommodate the sample size. In order to address the complexities associated with

modeling multivariable sets of tens or hundreds of host characteristics as covariates, we pres-

ent a Bayesian hierarchical negative binomial (HNB) model capable of efficiently providing a

comprehensive solution in respect to coefficient estimation without compromising type I

error.

As we proceed, the Materials and Methods section will further describe the structure and

challenges associated with human microbiome count data. Additionally, the parameterization

and fitting of the proposed model will be specified followed by subsequent introduction of the

American Gut Project (AGP) data. In the Results and Discussion section, we will discuss the

results of extensive simulation studies in terms of performance criteria such as type I error,

power, and false discovery rate. Application of the Bayesian HNB model in comparison to

three competing NB models will be carried out on subsets of participants of the AGP including

those individuals diagnosed by a medical professional with the gastrointestinal issues of

inflammatory bowel disease and irritable bowel syndrome (IBS) compared to individuals

deemed healthy. Through this application, we aim to highlight OTUs known to be significantly

associated with the stated diseases while adjusting for numerous host characteristics such as

dietary behaviors and systemic practices as covariates. The software necessary to carry out the

proposed model is incorporated into the R package BhGLM, which can be freely downloaded

at the GitHub repository, https://github.com/nyiuab/BhGLM.

Materials and methods

Attributes and challenges of human microbiome count data

Human microbiome count data is typically comprised of three basic components.

1. Counts, denoted as cij, represent of the observed number of microbes for the ith sample and

jth feature. For our purposes, a feature refers to an OTU or microbial taxon specified at any

taxonomic level (e.g. species, genus, family).

2. Total reads, denoted as Ti, are equivalent to the total number of counts observed for the ith

sample, i.e. Ti ¼
Pm

j¼1
cij. This component is also referred to as library size.

3. Host characteristics, denoted as Xi, represent clinical, physiological, environmental, behav-

ioral, demographic, and/or genetic sample attributes. Note that k is used in the following

text to stand for the multivariable set of tens or hundreds of host characteristics for a given

sample, i.e. Xi = (xi1,xi2,. . .,xik) where p = 1,2,. . .,k.

An example of the preceding components is found in Table 1, which highlights the goal to

detect associations between features cij and host characteristics Xi.

Table 1. Structure of human microbiome count data.

Feature 1 Feature 2 � � � Feature m Total

Reads

Host

Characteristics

Sample 1 c11 c12 � � � c1m T1 X1

Sample 2 c21 c22 � � � c2m T2 X2

..

. ..
. ..

. . .
. ..

. ..
. ..

.

Sample n cn1 cn2 � � � cnm Tn Xn

https://doi.org/10.1371/journal.pone.0220961.t001
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Human microbiome count data are subject to a number of challenges that require the

development of adapted statistical tools. First, currently available NGS technologies do not

have the ability to specify an exact number of sequences to be measured [34, 42]. This fluctuat-

ing library size yields OTU variability across samples that is not considered to be associated

with any biological feature [43]. Hence, total reads should be accounted for prior to or as a

part of statistical analysis via implementation of a normalization technique such as rarefying,

scaling, or inclusion of a modeling offset to adjust a parametric generalized linear model

(GLM). Note that the Bayesian HNB model employs the latter approach. A second challenge is

that observed counts are over-dispersed, i.e. the variance of features is greater than the

expected value. Therefore, standard Poisson models commonly used for analyzing count data

are not appropriate, and models that have the ability to account for over-dispersion should be

considered. Note that the Bayesian HNB model utilizes the NB distribution, which is known

for handling over-dispersion to overcome this challenge. Lastly, due to modern capacities for

data collection, human microbiome count data face the challenge in which the number of host

characteristics can equals or exceeds the number of samples, and in many cases, the correlation

among said multivariable host characteristics is complex.

Negative binomial model

Similar to many existing methods, we aim to determine whether the abundance of a microbial

taxon is statistically associated with host characteristics when testing features is completed

one-by-one. For the simplicity of notation, we denote the count response for an analyzed

microbial taxon as yi = cij. We assume the count response follows the NB distribution:

yi � NBðyijmi; yÞ ¼
Gðyi þ yÞ
GðyÞyi!

�
y

mi þ y

� �y

�
mi

mi þ y

� �yi

ð1Þ

where μi and θ represent the mean and dispersion parameters, respectively, and Γ(�) is the

standard gamma function. It is well-known that E(yi) = μi and Var(yi) = μi+μi/θ. We can see

that Var(yi)�E(yi), and thus the NB distribution provides a way to deal with over-dispersion.

NB models relate the mean parameters μi to the predictors Xi via the link function loga-

rithm:

logmi ¼ Xib ð2Þ

where Xiβ = β0+xi1β1+� � �+xikβk. To account for the variablilty in library sizes among samples,

we incorporate total reads Ti of each sample into the NB model by assuming that:

yi � NBðyijTiri; yÞ ð3Þ

logri ¼ Xib ð4Þ

where ri is the rate of the OTU of interest observed in the library of subject i and Tiri is the

mean parameter. Thus, the model is equivalent to:

yi � NBðyijmi; yÞ ð5Þ

logðmiÞ ¼ logðTiÞ þ Xib ð6Þ

where log(Ti) is the modeling offset correcting for the variability in library sizes.
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Hierarchical negative binomial model

The classical NB model described above cannot adjust for multivariable sets of tens or hun-

dreds of host characteristics equaling or exceeding the number of samples. Thus, we propose a

Bayesian HNB model in which the coefficients are themselves modeled, i.e. given prior distri-

butions [44, 45]. Appropriate prior distributions can constrain the coefficients to lay within a

reasonable range, which allows the Bayesian HNB model to handle many, highly correlated,

covariates. We describe the Bayesian HNB model with commonly utilized Student’s t priors,

although other priors can be used. The Student’s t distribution tnð0; s2
pÞ is expressed as a mix-

ture of a Normal distribution in which unknown variances follows an inverse-χ2 distribution.

That is,

bp � Nð0; t2

pÞ; where t
2

p � inverse � w2ðn; s2

pÞ ð7Þ

where ν>0 and sp>0 denote the hyper-parameters for the degrees of freedom and scale,

respectively [44, 45].

Note that ν and sp are responsible for the amount of shrinkage imposed on the βp regression

coefficient estimates. We usually set ν to be the value of 1, which leads to a Cauchy prior.

Then, smaller values of sp induce stronger shrinkage forcing βp closer to zero [46]. It is recom-

mended that users consider the results of several prior scale values covering a reasonable range

to ensure selection of an optimal model in terms of an adjusted Akaike’s information criteria

(AIC) based on the effective number of parameters [47]. Moreover, sp can be set differently for

each covariate to induce varying amounts of shrinkage relative to biological importance. How-

ever, if no information is available, a common scale hyper-parameter s is acceptable for all vari-

ables.

EM-IWLS algorithm for fitting the Bayesian HNB model

The Bayesian HNB model is fit by finding the posterior modes of the parameters, i.e. estimat-

ing the parameters by maximizing the posterior density. The log joint posterior distribution is

derived as:

log pðb; y; t2jyÞ ¼ log pðyjb; yÞ þ
Xk

p¼0

log pðbpjt
2

pÞ þ
Xk

j¼p

log pðt2

pjs
2

pÞ

/
Xn

i¼1

NBðyijmi; yÞ �
Xk

p¼0

log t2
p

2
þ
b

2

p

2t2
p

 !

þ
Xk

p¼1

n

2
log s2

p �
nþ 2

2
log t2

p �
ns2

p

2t2
p

 !

:

ð8Þ

An expectation-maximization (EM) algorithm incorporated into a modified iterative

weighted least squares (IWLS) process is employed to fit the model as follows.

1. Initialize the model parameters (β,θ,σ) and unknown variances τ2 with plausible values.

2. For t = 1,2,. . .

a. E-step: Calculate the conditional expectation of (8) by updating t� 2
p according to its con-

ditional posterior expectation. For the Student’s t distribution, the conditional posterior

distribution is written as a scaled inverse-χ2:

t2

pjbp; s
2

p � Inv� w2 1þ n;
ns2

p þ b
2

p

1þ n

 !

ð9Þ
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yielding the conditional posterior expectation of

Eðt� 2

p jbp; s
2

pÞ ¼
1þ n

ns2
p þ b

2

p

: ð10Þ

Note that only the conditional posterior expectation of t� 2
p is necessary given its relation-

ship to βp through t� 2
p .

b. M-step: Based on βt−1 and θt−1, approximate the pseudo-responses zti and pseudo-

weights wt
i according to NBðyijmi; yÞ � NðzijZi;w� 1

i s
2Þ in which ηi = log(Ti)+Xiβ. Note

that zti and wt
i are calculated according to the IWLS algorithm for fitting the classical NB

model. Update β and σ by executing the hierarchical weighted normal regression,

zðtÞi � NðlogðTiÞ þ Xib;w
� 1ðtÞ
i s2Þ where b � Nð0; t2

pÞ ð11Þ

More specifically, the updated value of β is determined by deriving the conditional poste-

rior mode that maximizes the expectation of the log conditional posterior distribution:

log pðbjy; y; t2Þ /
Xn

i¼1

logNðzijZi; w
� 1

i s
2Þ þ

Xk

p¼0

logNðbpj0; t
2

pÞ ð12Þ

for which t2
p is the value found via the E-step. Conditional on β, the dispersion parameter

θ is updated by maximizing the NB likelihood lðyÞ ¼
Pn

i¼1
NBðyijm̂i ; yÞ using the New-

ton-Raphson algorithm.

3. Repeat the preceding step until convergence is achieved. That is, |d(t)−d(t−1)|/(0.1+|d(t))<�

where d(t) = −2NB(y|μ(t),θ(t)) represents the tth deviance estimate of the iteration and � is a

small value (e.g. 10−5).

Following the convergence of the EM-IWLS algorithm, hypothesis testing is possible

through the maximum likelihood estimation of the coefficients, denoted as b̂. These values are

used calculate the test statistics Up ¼ b̂p=
p
Varðb̂pÞ, which are known to approximately follow

the standard Normal distribution. Thus, significance tests with null and alternative hypotheses,

H0:βp = 0 and Ha:βp6¼0, respectively, are available to return both p-values and confidence inter-

vals at a pre-specified significance level.

A diagram of the Bayesian HNB model described above is provided in S1 Fig to aide inter-

pretation of the relationships between hyper-parameters and parameters.

Software availability

The proposed Bayesian HNB model is implemented using the function bglm, which is a part of

the R package BhGLM. In addition to the Student’s t prior described above, the bglm function

can also utilize three other prior distributions: double-exponential, spike-and-slab mixture

Student’s t, and spike-and-slab mixture double-exponential. Again, BhGLM is freely available

from the GitHub repository, https://github.com/nyiuab/BhGLM, which includes step-by-step

guidelines for downloading BhGLM and implementing its functions.

The American Gut Project

In order to demonstrate the usefulness of the proposed model, it was applied to subsets of the

AGP as published to its publicly accessible repository on May 18, 2017 (ftp://ftp.microbio.me/

AmericanGut/latest/11-packaged.zip). This link, organized by rarefaction depth and sequence
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trim length, contains numerous forms of the latest versions available for fecal, oral, and integu-

mentary body sites. Our primary interest includes the 35580 OTUs observed across 12546

individuals provided for the fecal body site given unrarefied, untrimmed reads before binning.

A total of 987 unique taxa at the species-level were observed for this dataset. These taxa belong

to 1273 genera, 407 families, 309 orders, 164 classes, 65 phyla, and 2 kingdoms. Note that more

genera were detected because a large number of taxa were not identifiable at the species-level.

The minimum, lower quantile, median, upper quantile, and maximum of total reads across all

individuals was found to be 1.00, 9290.75, 17420.00, 27475.75, and 517243.00, respectively. At

this point, it is important to note that the AGP datasets are built upon polymerase chain reac-

tion targeted gene amplicon sequencing of a 150 base pair segment of the 16S rRNA gene V4

region. OTU picking and taxonomic assignment were determined at a 97% species-level

sequence identity clustered against Greengenes version 13.8 following application of the Sort-

MeRNA 2.0 alignment tool. Note that a more complete description of microbiome samples

and associated collection protocols are available at (https://github.com/biocore/American-

Gut/blob/master/ipynb/).

Among the 204 host characteristics collected by the AGP self-administered questionnaire

were history of IBD and IBS diagnoses. Accepted responses were comprised of “I do not have

this condition,” “Self-diagnosed,” “Diagnosed by a medical professional (doctor, physician

assistant),” and “Diagnosed by an alternative medicine practitioner”. In order to ensure valid-

ity, only those participants who reported “I do not have this condition” and “Diagnosed by a

medical professional (doctor, physician assistant)” were considered for application. Samples

were excluded if the criteria shown in Table 2 were not satisfied. The remaining samples

resulted in a slightly elevated rate of IBD among AGP participants (2.96%) compared to the

American adult population (1.3%) [48]. Alternatively, the rate of IBS among AGP subjects

(5.21%) was slightly deflated below the expected range (5.70%-11.70%) among American

adults dependent on diagnosis criteria [49]. These deviations are thought to be linked to moti-

vation for participation. For example, persons diagnosed with some gastrointestinal condi-

tions, IBD known to be more severe than IBS, are more likely to engage in human microbiome

research [50, 51]. Hence, any generalizations of the proceeding results should be treated with

utmost caution. Summary statistics for the AGP subsets following and prior to application of

the criteria shown in Table 2 are found in S1 Table and S2 Table.

Results and discussion

Simulation study design

Extensive simulation studies were completed to evaluate the performance of the proposed

Bayesian HNB model to better understand its statistical properties and behaviors. As a means

of comparison, the NB model was additionally considered in the form of three competing

models. First, the classical NB model was implemented by the function glm.nb incorporated

into the R package MASS. Then, two modified NB models implemented via edgeR and

DESeq2 were considered to reflect the broad utilization of these analytical tools in the analysis

Table 2. Exclusion criteria for American Gut Project application.

Corrected age between 18 and 69

Country of residence reported as United States

No self-reported history of antibiotic usage in the past year

No self-reported history of cancer

No self-reported history of diabetes

https://doi.org/10.1371/journal.pone.0220961.t002
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of human microbiome count data. In order to minimize any possible bias and yield reasonable

responses similar to real human microbiome count data, a wide range of parameter values

were considered.

Following the framework laid out in [52], human microbiome count data was simulated

from the NB distribution defined in (1) for n = 50,100,200, and 500 samples and k = 1,50,100,

and 200 covariates. That is, for X representative of a n×k simulated design matrix and β repre-

sentative of a k×1 vector of simulated coefficient estimates, subject-specific systematic compo-

nents were generated as:

Zi ¼ mi þ Xib ¼ ðlogðTiÞ þ mÞ þ Xib ð13Þ

such that

yi � NBðyijexpfZig; yÞ ¼
Gðyi þ yÞ
GðyÞyi!

�
y

expfZig þ y

� �y

�
expfZig

expfZig þ y

� �yi

ð14Þ

for i = 1,2,. . .,n. Note that this simulation was facilitated by the functions, sim.x, sim.eta, and

sim.y, each implemented in BhGLM. The n×k simulated design matrix was populated using a

random number generator for the multivariate normal distribution with a mean equal to 0

and a covariance matrix represented by V. Specifically, V was designed to be the product of a

single simulated correlation coefficient ρ and a k×k identity matrix. The correlation coefficient

ρ was simulated for each set of human microbiome count data from the uniform distribution

as either strong negative from range (−0.8,−0.5), weak from range (−0.1,0.1), or strong positive

from range (0.5,0.8). With Ti and μ respectively representative of total reads and overall mean,

the modeling offset log(Ti) was ensured to fall in the range (7.1,10.5) by randomly sampling

the scaling factor log(Ti)+μ from the uniform distribution with range (0.1,3.5) and setting μ to

the value of −7. The dispersion parameter θ was set to be uniformly sampled from the range

(0.1,5.0) yielding moderate or large levels of over-dispersed counts. A total of nine prior scales,

s = 0.01,0.05,0.10,0.15,0.25,0.50,0.75,1.00, and 2.00, were considered without allowance for

varying covariate importance. For each combination of parameter values (i.e. 84 combina-

tions), data simulation was iterated 100 times prior to application of the models (i.e. 12 models

per iteration). The ranges of all simulated parameters are further summarized in Table 3.

Under the hypotheses of H0:βp = 0 versus Ha:βp6¼0, simultaneous significance testing of

coefficient estimates was completed based on a significance level of 0.05. In the setting of k = 1,

four sets of simulations were executed with a single coefficient estimate equated to the value of

0 or a non-zero effect size uniformly drawn from small range (0.01,0.15), moderate range

(0.20,0.35), or large range (0.40,0.55). Moreover, in the settings of k = 50,100, and 200, a single

Table 3. Summary of simulation study parameter ranges.

Parameter Range

Sample Size, n 50, 100, 200, 500

Number of Coefficients, k 1, 50, 100, 200

Effect Size, βp Zero: 0

Non-zero small: Uniform(0.01,0.15)

Non-zero moderate: Uniform(0.20,0.35)

Non-zero large: Uniform(0.40,0.55)

Modeling Offset, log(Ti) Uniform(7.1,10.5)

Dispersion, θ Uniform(0.1,5)

Correlation, ρ Strong negative: Uniform(−0.8, −0.5)

Weak: Uniform(−0.1,0.1)

Strong Positive: Uniform(0.5,0.8)

Prior Scale, s 0.01, 0.05, 0.10, 0.15, 0.25, 0.50, 0.75, 1.00, 2.00

https://doi.org/10.1371/journal.pone.0220961.t003

Bayesian HNB for microbiome

PLOS ONE | https://doi.org/10.1371/journal.pone.0220961 August 22, 2019 8 / 23

https://doi.org/10.1371/journal.pone.0220961.t003
https://doi.org/10.1371/journal.pone.0220961


coefficient estimate was assigned to have a non-zero effect uniformly sampled from each of the

stated ranges to yield analogous comparisons. In the proceeding discussion, arbitrarily selected

covariates labeled with β15, β30, and β45 represent the three non-zero effect sizes, respectively.

All additional effect sizes were set to be the value of 0.

Type I error and power were calculated for zero and non-zero coefficient estimates one-by-

one. Then, aggregate performance was evaluated using false discovery rate (FDR), measured as

the expectation of false discovery proportion (FDP) relative to nominal thresholds, and

receiver operating characteristic (ROC) curves, measured as true positive rate (TPR) plotted

against false positive rate (FPR) under different p-value thresholds. The accuracy of coefficient

and over-dispersion estimation was assessed according to mean deviations. The numeric and

graphic descriptions of the described simulation studies depended upon R version 3.5.0 and

the high-performance computing resources of the University of Alabama at Birmingham

Cheaha cluster and the following R packages: reshape, ggplot2, colorspace, grid, and gridExtra.

The reproducible simulation code used to generate the whole simulation data and to complete

these studies is available at https://github.com/ahpendegraft/HNB.

Simulation study results

Fig 1 displays coefficient estimates, standard errors, and p-values for a comparative application

of the Bayesian HNB and classical NB models on a single simulation of human microbiome

count data. The results from the two models are markedly different. Both approaches were

capable of identifying the three non-zero effects; however, the classical NB model yielded more

false positives as shown in Fig 1B. This stand-alone example precedes our expectation that the

Bayesian HNB model outperforms the classical NB model in terms of type I error while main-

taining consistent power.

Prior to our assessment of multivariable sets involving tens or hundreds of covariates, it is

important to assess type I error and power in the setting of human microbiome count data

with k = 1. No significant difference in either of the said statistical properties appears to be sub-

ject to selection of the Bayesian HNB model over the three competing models. Type I error

ranges from 0.01 to 0.04 between the prior scales of s = 0.01 to s = 2.00 for the Bayesian HNB

model and is observed to be 0.05, 0.04, and 0.09 for MASS, edgeR, and DESeq2, respectively. As

anticipated, increases in the sample size, in general, decrease type 1 error and increase power

as shown in S2 Fig. Moreover, the effect size is noticeably influential on power given on aver-

age 25%, 80%, and 95% of small, moderate, and large simulated non-zero effects are detected,

respectively. Though the classical NB model maximizes said estimations of power estimated to

be 70% on average, the Bayesian HNB model performs consistently with results indistinguish-

able for prior scales of s = 0.50 to s = 2.00 with ranging from 69% to 70%. DESeq2 provides

noticeably reduced power estimated to be 58% on average.

Fig 2 presents a comparison of the Bayesian HNB model and three competing models by

taking into account the simulation of human microbiome count data with 50 covariates. The

term frequency, shown on the x-axis, corresponds to type I error for simulated zero effects and

power for simulated non-zero effects. More specifically, each row of the depicted panels pro-

vides information about an individual coefficient estimate such that the stated measures are

computed according to univariate formulations. Only the joint fitting of 50 covariates is graph-

ically provided; additional results involving larger multivariate sets of 100 and 200 covariates

are shown in S3 Fig and S4 Fig, respectively.

Type I error and power for the proposed Bayesian HNB model considering coefficient esti-

mates one-by-one are both significantly influenced by prior scale and sample size. For exam-

ple, type I error increases from 1% to 5% and power decreases from 33% to 8% across
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increases in prior scale from s = 0.01 to s = 2.00 for the Bayesian HNB model when sample size

and covariates are held constant at n = 50 and k = 50, respectively. At this point, it is important

to reiterate the classical NB model is non-identifiable in cases of n�k explaining the absence of

blue points of along the first row of panels in Fig 2. In contrast, type I error increases from 1%

to 12% and power increases from 64% to 73% across increases in prior scale from s = 0.01 to

s = 2.00 for the Bayesian HNB model for the larger sample size of n = 200 and k = 50 fixed. The

classical NB model for said parameters results in a type I error estimation of 12% and a power

estimation of 76%. Moreover, edgeR and DESeq2 yield type I error estimates of 6% and 11%

and power estimates of 66% and 55%, respectively. These comparisons support the hypothesis

that the proposed Bayesian HNB model provides a viable alternative model in situations of

multivariable sets of host characteristics Given larger sample sizes such as n = 500, type 1 error

rate fluctuates between 1% and 7% on average across increases in prior scale from s = 0.01 to

s = 2.00 for the proposed model; a performance that is at or markedly below the MASS and

DESeq2 type I error rate estimations of 7% and 10%, respectively. Note that edgeR performs

comparably for n = 500 given a type I error rate estimation of 5%. Power is additionally affected

by the correlation coefficient and effect sizes imposed on the simulated covariates. That is, for

strong negative, weak, and strong positive settings, power to detect small non-zero effects is

observed to be approximately 59%, 62%, and 33% on average when sample size is held constant

at n = 500 with minimal fluctuations across increases in prior scales. The competing models

result in a similar trend with power observed to be approximately for the stated parameter set-

tings with a minimized power provided by DESeq2 observed for the strong positive setting. In

Fig 1. Comparison of the Bayesian HNB and classical NB models in respect to a single simulation of human

microbiome count data. Jointly fitting 200 samples in relationship to 50 covariates based on a design matrix simulated

using weak correlation coefficient, ρ2(−0.10,0.10), with (A) the Bayesian HNB model and (B) the classical NB model.

All nine prior scales were considered for the fitting of the Bayesian HNB model with s = 0.01 selected based on a

minimized adjusted AIC of 1149.94. The three simulated non-zero effects, β152(0.01,0.15), β302(0.20,0.35), and

β452(0.40,0.55), are displayed in red. The points, spanning lines, and right-hand side numbers represent coefficient

estimates, ±2 standard errors, and p-values, respectively.

https://doi.org/10.1371/journal.pone.0220961.g001
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Fig 2. Comparison of the Bayesian HNB model and three competing models taking into account the simulation of human microbiome count data with

50 covariates. Jointly fitting 50 covariates using the Bayesian HNB model (yellows, oranges, and reds) compared to MASS (green), edgeR (blue), and DESeq2
(purple) stratified by sample size (right) and correlation (top). Increasing prior scale is represented by an increasing sequential palette detailed in the legend.

Each row of the individual panels represents one of the 50 covariates with the gray dashed lines associated with β152(0.01,0.15), β302(0.20,0.35), and

β452(0.40,0.55) corresponding to the three simulated covariates assigned to have non-zero effects from small, moderate, and large range, respectively.

Frequency along said gray dashed lines represents power. All additional effects were simulated to be the value of 0 such that frequency represents type I error.

https://doi.org/10.1371/journal.pone.0220961.g002
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contrast, power to detect moderate and large non-zero effects for the same correlation coeffi-

cients is greater than the nominal level of 80% on average for both the Bayesian HNB model

and three competing models given a sample size greater than or equal to n = 200.

The ability to control FDR was assessed for the Bayesian HNB model compared to the clas-

sical NB model. As shown in Fig 3A, FDR was markedly elevated for the Bayesian HNB model

with weak shrinkage ranging between s = 0.10 and s = 2.00 as well as for classical and modified

NB models relative to nominal significance levels between 0.00 and 0.20. Looking more closely,

FDR control worsened for said models at higher nominal values. In contrast, the Bayesian

HNB model with strong shrinkage ranging between s = 0.01 and s = 0.10 achieved better FDR

control, though slight FDR inflation was observed for all approaches. Next, power was com-

pared using ROC curves. Fig 3B displays average TPR for the Bayesian HNB model to be

higher than average TPR for the classical NB model given average FPR fixed at or below 0.15,

0.04, and 0.02 for sample sizes of n = 100, n = 200, and n = 500, respectively, regardless of prior

scale. Moreover, the Bayesian HNB model showed significantly larger area under the curve

than edgeR while MASS and DESeq2 performed on par for sample size greater than or equal to

n = 200. In light of these aggregate performance criteria, the Bayesian HNB model with prior

scale between s = 0.01 and s = 0.10 yielded the best FDR control without compromising power.

The accuracy of coefficient and over-dispersion estimation for the proposed Bayesian HNB

model in comparison to the classical NB model is presented in Fig 4. It is notable that estimates of

β are close to the corresponding simulated values given all parameter settings with mean differ-

ences maintained between -0.28 and 0.22 on average. These mean deviations are largest for the

prior scales of s = 0.01 and s = 0.05 when the number of covariates is set to equal or exceed the sam-

ple size for the Bayesian HNB model. Moreover, increases in sample size from n = 50 to n = 500

and decreases in the number of covariates from q = 200 to q = 1 reduce deviations to be values

nearly indistinguishable from the value of 0; that is decreases in differences on average drop from

-0.06 to -0.01 and from -0.03 to -0.02, respectively. Increases in effect size induce underestimated

coefficients, whereas the simulated correlation coefficient provided no obvious effect. Opposite

trends are observed for the accuracy of dispersion estimation. That is, estimates of θ incurred larger

mean differences from the simulated values for larger scaling factors reaching a maximum of 13.55

when considered on the log plus 1 scale. These results support that the proposed Bayesian HNB

model is capable of yielding an accurate fit even while robustly dealing with vast over-estimations

of the over-dispersion parameter provided by classical and modified versions of the NB GLM.

In summary, our extensive simulation studies indicate that the Bayesian HNB model con-

sistently results in better performance than the classical NB model implemented in MASS and

the modified NB model implemented in DESEq2 when considering type I error and FDR;

edgeR showed provided similarly conservative estimates of said performance criteria However,

this statistical property potentially comes at the cost of reduced power for the results of

BhGLM (and edgeR) given patterned under-estimation of coefficients in parameter settings

where prior scale and sample size are small as shown in Fig 4A. This trade-off must be carefully

weighed according to scientific hypotheses of interest. In cases of multivariable sets of tens or

hundreds of host characteristics exceeding sample size, the proposed method is often best

given its ability to efficiently converge to an acceptably accurate model fit by shrinking the esti-

mates of unimportant parameters with an optimal prior scale. More detailed information

regarding computation time and convergence are available in S5 Fig and S6 Fig.

Application to the American Gut Project

Differential abundance analysis was performed using the Bayesian HNB and classical NB mod-

els in order to determine whether the AGP data provide evidence to suggest OTUs are

Bayesian HNB for microbiome

PLOS ONE | https://doi.org/10.1371/journal.pone.0220961 August 22, 2019 12 / 23

https://doi.org/10.1371/journal.pone.0220961


Fig 3. Performance criteria for the simulation of human microbiome count data with 50 covariates. (A) FDR

control, shown as the expectation of FDP against nominal thresholds, and (B) power comparisons, shown as ROC

curves of TPR against FPR under different p-value thresholds, for jointly fitting 50 covariates using the Bayesian HNB

model (yellows, oranges, and reds) compared to MASS (green), edgeR (blue), and DESeq2 (purple) stratified by sample

size (right). Increasing prior scale is represented by an increasing sequential palette detailed in the legend. Each

iteration included three covariates simulated to have non-zero effect sizes defined as β152(0.01,0.15), β302(0.20,0.35),

and β452(0.40,0.55).

https://doi.org/10.1371/journal.pone.0220961.g003
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significantly differentiable between persons diagnosed by a medical professional with the gas-

trointestinal issues of IBD and IBS compared to healthy controls. These models allowed for the

explicit adjustment for dependencies between covariates (and also potential confounders,

mediators, and moderators) such as dietary behaviors and systemic practices. In order to repli-

cate the scenario in which the number of host characteristics equals or exceeds the sample size,

propensity score matching was utilized as implemented by the function matchit incorporated

Fig 4. Accuracy of coefficient and overdispersion estimation for the simulation of human microbiome count data

with 50 covariates. Deviations between estimated and simulated (A) coefficients and (B) over-dispersions for jointly

fitting 50 covariates using the Bayesian HNB model (yellows, oranges, and reds) stratified by sample size (right).

Increasing prior scale is represented by an increasing sequential palette detailed in the legend. The points and spanning

lines represent means and ±2 standard errors, respectively.

https://doi.org/10.1371/journal.pone.0220961.g004
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into the R package MatchIt version 3.0.2. Specifically, logistic regression was employed to esti-

mate distance measures prior to nearest neighbor matching based on a one to one ratio. No

subjects were discarded before matching based on the host characteristics of age (in years),

body mass index, race (Caucasian, African American, all other races), and gender (male,

female). The sample sizes for the differential abundance analysis of IBD and IBS were reduced

by this technique to 76 and 126, respectively. Summary statistics for the reduced AGP subsets

are found in S1 Table. Note that we excluded edgeR and DESeq2 from these applications given

similar results to BhGLM and MASS, respectively, as pointed out in the preceding discussion

of simulation studies.

A multivariable set of 38 host characteristics operationalizing 32 dietary behaviors and 6 systemic

practices were utilized as covariates for the differential abundance analysis of reduced AGP subsets.

All said covariates were converted into indicator variables yielding 117 coefficients to be estimated

beyond the intercept. Moreover, 104 missing values were imputed by corresponding sample means

of the data prior to modeling. All nine prior scales, s = 0.01,0.05,0.10,0.15,0.25,0.50,0.75,1.00, and

2.00, were considered for the Bayesian HNB model with the value producing minimized adjusted

AIC selected as optimal (S3 Table). All p-values were adjusted for multiple comparisons using the

Benjamini-Hochberg procedure. The reproducible application code used to complete these analyses

is available at https://github.com/ahpendegraft/HNB.

Alternative applications of the Bayesian HNB model were performed using full AGP subsets

to be compared to the results provided by MASS. Age, body mass index, race, and gender were

additionally included in the multivariable set of host characteristics for the differential abun-

dance analysis of full AGP subsets increasing the number of coefficients to be estimated

beyond the intercept to 121. Summary statistics for the full AGP subsets are found in S2 Table;

adjusted AIC statistics and OTUs determined to be significantly differentially abundant for

IBD and IBS are found in S3 Table and S4 Table, respectively.

After excluding taxa with a mean relative abundance < 0.1%, 20 species, 49 genera, 37 fami-

lies, 21 orders, 15 classes, and 8 phyla remained for differential abundance analysis of IBD. Fig

5 shows the resultant microbial taxa identified to be significantly differentially abundant based

on a decision rule of 0.10 with corresponding coefficient estimates, standard errors, and p-val-

ues. Of particular interest are the family-level taxon, Rikenellaceae, and the genus-level taxon,

Paraprevotella, which present effects with opposing directions. Namely, Rikenellaceae was

found to have a large negative coefficient estimate of -2.2138 and Paraprevotella was found to

have a small positive coefficient estimate of 0.0302. These findings are consistent with current

literature which reports the said microbiota are depleted and enriched in the colonic mucosa

of IBD patients, respectively, particularly those diagnosed with Crohn’s disease [53, 54]. Other

significantly differentially abundant OTUs included the species-level taxon, B. plebeius. This

microbe,found to have a large negative coefficient estimate of -3.5289, conflicts with current

literature, which suggests decreases in this OTU among patients in remission following ileoco-

lonic resection for Crohn’s disease [55]. It is worthwhile to mention that insufficient evidence

was provided to conclude a significant difference for the previously noted microbe F. prausnit-
zii. Also, OTUs at the species, genus, and family-level occupying large proportions of bacterial

compositions failed to produced significant signals implying that the microbes shown in Fig 5

make up only a small portion of the total number of OTUs observed within the AGP subset

focused on analysis of IBD. These results emphasize the importance of completing differential

abundance analysis on features beyond those which comprise large proportions of observa-

tions and difficulty of identifying consistent signals warranting further development of effi-

cient microbiome data analysis techniques [54].

Taxa were again filtered according to a mean relative abundance < 0.1% before the differ-

ential abundance analysis focused on the samples allocated to the second question shown in S1
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Table. This resulted in the consideration of 18 species, 37 genera, 30 families, 17 orders, 13

classes, and 7 phyla. Those microbial taxa identified to be significantly differentially abundant

based on a decision rule of 0.10 are shown in Fig 6 with corresponding coefficient estimates,

standard errors, and p-values. Notably, the majority of differences between the diseased and

non-diseased groups was attributed to the OTUs nested within the phylum-level taxon, Acti-

nobacteria, which itself was found to be enriched when all other coefficient estimates are held

constant. More specifically, sufficient evidence was provided to conclude that those persons

who self-reported to have been diagnosed with IBS by a medical professional saw significantly

increased values of the log of expected counts for the genus-level taxa, Collinsella, Akkerman-
sia, and Bifidobacterium, compared to persons who self-reported to have not been diagnosed

with IBS by a medical professional. The coefficient estimates in this case were computed to be

0.6010, 0.7231, and 1.0526, respectively. These results are consistent with contemporary litera-

ture, which supports that these bacteria play a role in the mediation of IBS [56–58]. The

microbe C. aerofaciens was found to have a large positive coefficient estimate of 0.8964 sup-

porting its established association with the digestive symptoms of IBS and the presence of colo-

rectal carcinoma tissue [17, 57]. The microbe A. mucinophila was found to have a large

positive coefficient estimate of 0.7231 supporting its relationship with degradation of the

mucus layer covering the gastrointestinal tract [7]. And, lastly, the microbe B. adolescentis was

found to have a large positive coefficient estimate of 0.7410 supporting its usage as a chemical

treatment for colitis [54]. Another significantly differentially abundant OTU worth mention-

ing is the genus-level taxon, Prevotella. Though consistent signals linking these microbes to

IBS have yet to be presented, relationships with dietary behaviors such as increased consump-

tion of red meat and whole grain carbohydrates are established [20, 28].

The numbers of overlapping significant associations found by each method using reduced

and full AGP subsets are presented in S7 Fig. We emphasize the Bayesian HNB model applied

to reduced AGP subsets was able to identify 9 and 57 OTUs significantly associated with

IBD and IBS, respectively. In contrast, the classical NB model was non-convergent for the dif-

ferential abundance analysis of IBD using the reduced AGP subsets given the numbers of

Fig 5. OTUs determined to be significant based on the differential abundance analysis of IBD utilizing the

reduced AGP subsets. Coefficient estimates, ±2 standard errors, and p-values for differentially abundant taxa between

participants specifying to have been diagnosed with IBD by a medical professional compared to participants specifying

to have not been diagnosed with IBD by a medical professional. Statistical significance judged according to a

significance level of 0.10 following the Benjamini-Hochberg correction for multiple comparisons. Taxonomic level and

OTU name (left); coefficient estimate ±2 standard errors (middle); p-value (right).

https://doi.org/10.1371/journal.pone.0220961.g005
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Fig 6. OTUs determined to be significant based on the differential abundance analysis of IBS utilizing the

reduced AGP subsets. Coefficient estimates, ±2 standard errors, and p-values for differentially abundant microbial

taxa between participants specifying to have been diagnosed with IBS by a medical professional compared to

participants specifying to have not been diagnosed with IBS by a medical professional. Statistical significance judged

according to a significance level of 0.10 following the Benjamini-Hochberg correction for multiple comparisons.

Moreover, results represent (A) the Bayesian HNB model using optimal prior scale and (B) the classical NB model.

Taxonomic level and OTU name (left); coefficient estimate ±2 standard errors (middle); p-value (right).

https://doi.org/10.1371/journal.pone.0220961.g006
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coefficients to be estimated exceeded the number of samples). For the differential abundance

analysis of IBS using the reduced AGP subsets, the classical NB model found 15 OTUs to be

significant. Of these 15 OTUs, 11 were identified by the Bayesian HNB model.

We restate that it is necessary to interpret these results with utmost caution. This follows a

number of limiting characteristics innate to the AGP such as self-selection for participation,

potentially motivated by extreme dietary tendencies or painful effects of gastrointestinal issues,

and self-administration for data collection utilized to sample both the microbiome and associated

host characteristics, just to name a few. In light of these potential biases, it is possible to design a

number of future microbiome analyses based on these data given rigorous development of exclu-

sion criteria and scientific questions. Consistency with current literature supports that the pro-

posed Bayesian HNB model is a useful tool for the detection of differentially abundant features

which should be considered as means for downstream analysis for these projected studies.

Conclusions

Previously developed methods designed for the statistical analysis of microbiome count data

when considering OTUs one-by-one have heavily depended upon the incorporation of com-

plex normalization techniques such as rarefying and scaling into NB models (e.g. MASS,

edgeR, DESeq) or transformation of outcomes to relative abundance prior to utilization of the

zero-inflated Gaussian mixture model (e.g. metagenomeSeq). The Bayesian HNB model avoids

these steps allowing for the direct modeling of raw counts through the incorporation of library

sizes as a modeling offset. More specifically, we have shown the proposed method is capable of

simultaneously adjusting for multivariable sets of tens or hundreds of clinical, physiological,

environmental, behavioral, demographic, and/or genetic sample host characteristics, which is

not always attainable by the classical NB model implemented in MASS or modified NB models

implemented in edgeR or DESeq2 when the number of samples is restricted. This capacity

yields the Bayesian HNB method a desirable strategy, particularly in the context of the large

volumes of human microbiome data collectable by modern research practices. As verified by

our extensive simulation studies, the proposed method provides an advantageous control over

type I error by minimizing the number of false positives with a stringent prior scale hyper-

parameter. However, said conservatism must be weighed in light of the scientific hypotheses of

interest to ensure that the power necessary to detect all meaningful OTUs is available. More-

over, the analysis of AGP subsets highlighted that the selection of the prior scale hyper-param-

eter should be carefully considered over a range of reasonable values so to ensure the selection

of an optimal model. As illustrated in the Application to the American Gut Project section, we

recommend the use of the adjusted AIC statistic proposed by [47] to avoid the introduction of

user bias. That is, degrees of freedom are adjusted to the effective number of parameters prior

to calculation of the classical AIC statistic for each application of the Bayesian HNB model

with minimized values providing stronger evidence for model selection. Moreover, real data

analysis resulted in the identification of a number of microbes significantly differentially abun-

dant in the guts of persons diagnosed by a medical professional with IBD and IBS compared to

those persons self-reported to be unaffected. As a final remark, we mention that the Bayesian

HNB model is applicable for other types of count data including RNA-Seq experiments which

broadens the strength of this analytical tool into other disciplines of medical and public health

research.

Supporting information

S1 Fig. Diagram of the Bayesian HNB model. Hierarchical diagram of the relationships

between hyper-parameters and parameters involved in the EM-IWLS algorithm for fitting the
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Bayesian HNB model.

(PDF)

S2 Fig. Comparison of the Bayesian HNB model and the classical NB model taking into

account the simulation of human microbiome count data with 1 covariate. (A) Type I error

and (B) power for fitting a single covariate using the Bayesian HNB model compared to the

three competing modeling over combinations of sample size and effect size. The Bayesian

HNB model using nine prior scales is represented by an increasing sequential palette of yel-

lows, oranges, and reds while MASS is represented by green, edgeR is represented by blue, and

DESeq2 is represented by purple.

(PDF)

S3 Fig. Comparison of the Bayesian HNB model and three competing models taking into

account the simulation of human microbiome count data with 100 covariates. Jointly fitting

100 covariates using the Bayesian HNB model (yellows, oranges, and reds) compared to MASS
(green), edgeR (blue), and DESeq2 (purple)stratified by sample size (right) and correlation

(top). Increasing prior scale is represented by an increasing sequential palette detailed in the

legend. Each row of the individual panels represents 1 of the 50 covariate with the gray dashed

lines associated with β152(0.01,0.15), β302(0.20,0.35), and β452(0.40,0.55) corresponding to

the three simulated covariates assigned to have non-zero effects from small, moderate, and

large range, respectively. Frequency along said gray dashed lines represents power. All addi-

tional effects were simulated to be the value of 0 such that frequency represents type I error.

(PDF)

S4 Fig. Comparison of the Bayesian HNB model and three competing models taking into

account the simulation of human microbiome count data with 200 covariates. Jointly fitting

200 covariates using the Bayesian HNB model (yellows, oranges, and reds) compared to MASS
(green), edgeR (blue), and DESeq2 (purple) stratified by sample size (right) and correlation

(top). Increasing prior scale is represented by an increasing sequential palette detailed in the

legend. Each row of the individual panels represents 1 of the 50 covariates with the gray dashed

lines associated with β152(0.01,0.15), β302(0.20,0.35), and β452(0.40,0.55) corresponding to

the three simulated covariates assigned to have non-zero effects from small, moderate, and

large range, respectively. Frequency along said gray dashed lines represents power. All addi-

tional effects were simulated to be 0 such that frequency represents type I error.

(PDF)

S5 Fig. Computation time. Mean ±2 standard error computation time for the Bayesian HNB

model (orange) compared to MASS (green), edgeR (blue), and DESeq2 (purple) stratified by

sample size (top) and reported in minutes.

(PDF)

S6 Fig. Convergence. Mean ±2 standard error convergent iterations for the Bayesian HNB

model (orange) compared to MASS (green), edgeR (blue), and DESeq2 (purple) stratified by

sample size (right) and number of covariates (top).

(PDF)

S7 Fig. Overlap of differentially abundant OTUs for application of the Bayesian HNB

model and three competing models to reduced and full AGP subsets. Venn diagrams dis-

playing the numbers of differentially abundant OTUs identified by the Bayesian HNB model

utilizing (A) reduced and (B) full AGP subsets compared to the classical NB model utilizing

(C) reduced and (D) full AGP subsets.

(PDF)
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