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Abstract
BADH1 and BADH2 are two homologous genes, encoding betaine aldehyde dehydroge-

nase in rice. In the present study, we scanned BADHs sequences of 295 rice cultivars, and

10 wild rice accessions to determine the polymorphisms, gene functions and domestication

of these two genes. A total of 16 alleles for BADH1 and 10 alleles for BADH2 were detected

in transcribed region of cultivars and wild species. Association study showed that BADH1
has significant correlation with salt tolerance in rice during germination stage, the SNP (T/A)

in exon 4 is highly correlated with salt tolerance index (STI) (P<10−4). While, BADH2 was

only responsible for rice fragrance, of which two BADH2 alleles (8 bp deletion in exon 7 and

C/T SNP in exon 13) explain 97% of aroma variation in our germplasm. Theses indicate that

there are no overlapping functions between the two homologous genes. In addition, a large

LD block was detected in BADH2 region, however, there was no large LD blocks in a 4-Mb

region of BADH1. We found that BADH2 region only showed significant bias in Tajima’s D

value from the balance. Extended haplotype homozygosity study revealed fragrant acces-

sions had a large LD block that extended around the mutation site (8 bp deletion in exon 7)

of BADH2, while both of the BADH1 alleles (T/A in exon 4) did not show large extended LD

block. All these results suggested that BADH2 was domesticated during rice evolution,

while BADH1 was not selected by human beings.

Introduction
Betaine aldehyde dehydrogenase (BADH) is an enzyme found in a large number of plant spe-
cies, and its catalyst glycine betaine (GB) is a powerful osmoprotectant associated with salt and
drought stress tolerance [1]. In many plant species, such as mangrove, spinach (Spinacia olera-
cea L.), amaranth (Aramanthus spp.), barley (Hordeum vulgare L.) and sorghum (Sorghum
bicolor L.), BADH plays a role in abiotic stress tolerance through the accumulation of GB from
betaine aldehyde (BA). Conversely, plant species such as tobacco (Nicotiana tabacum L.),
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tomato (Solanum lycopersicum L.) and rice (Oryza sativa L.) reportedly do not accumulate GB
due to insufficient BA [1–3].

Rice is regarded as a typical non-glycine betaine-accumulating species with two functional
genes coding BADH (EC 1.2.1.8). BADH1 (Os04g0464200) is located on chromosome 4 and
BADH2 (Os08g0424500) is found on chromosome 8 [1,4]. Both genes have 15 exons and show
75% sequence homology at the amino acid level [5]. In vitro studies showed that rice BADH1
has very low activity on BA but the function and mechanism of BADH1 are uncertain [6]. The
rice BADH1 has been reported close correlation with salt tolerance [7], while as Singh et al.
(2010) argued BADH1 is associated with rice fragrance [1]. In contrast, BADH2 has been iden-
tified as a recessive gene conferring fragrance in rice, rather than abiotic stress tolerance[8].
The loss of function of BADH2 is the reason for aromatic rice, accumulating the main flavoring
components 2-AP (2-acetyl-1-pyrroline).

Fitzgerald et al. (2008) reported that as the salt concentration increased, the transcript level
of BADH1 increased significantly in leaf tissues of both non-fragrant and fragrant rice, while
no consistent relationship was observed between BADH2 transcript levels and salt concentra-
tion during the seedling stage [5]. However, Fitzgerald et al. (2010) found a highly significant
difference in the ability to produce mature seed between the fragrant and non-fragrant rice in
the presence of salt [2]. Thus, BADH1 and BADH2may be responsible for salt stress tolerance,
but at different growth stages.

BADH2 has been extensively studied at the genetic and molecular levels for rice fragrance.
Many studies on the BADH2 have been reported since Bradbury et al. (2005) found a strong
allele with eight base-pairs deletion in exon 7, causing 2AP-dependent strong fragrance in rice
[8]. Numerous BADH2 alleles, at least 15 alleles in transcribed region, have been detected in
diverse rice germplasms [8–16]. However, BADH1 has not been studied as extensively as
BADH2. Only three single-nucleotide polymorphisms (SNPs) have been reported so far [1].

Investigating the domestication of the agriculturally important gene is one of the methods
to enlighten the rice evolutionary history, which are receiving increasing research attention in
recent years [11,17–19]. In rice, a number of genes have been proved as the domesticated
genes, such as sh4 [20], rc [21], prog1 [22], GS3 [23] including badh2 [11].The badh2.1 allele
has been significantly selected during the aromatic rice evolution [11]. The evolutionary path
of BADH1, however, has not been fully explored. It is of great interest to explore whether rice
BADH1 gene was also involved in the domestication.

The goal of this study were to: (1) identify sequence polymorphism in the BADH1 and
BADH2 gene from 295 cultivated rice and 10 wild rice by re-sequencing and (2) investigate the
function of BADHs on the salt tolerance at germination stage and rice fragrance, and their
overlapping functions. Lastly, we (3) investigated evolutionary path of BADHs in Asian rice.

Materials and Methods

Plant materials
Two hundred and ninety-five rice varieties used for the present study were collected from RDA
gene bank of Korea. Among the 295 accessions, 137 accessions were selected from worldwide
4,046 accessions, based on 15 SSRs by a heuristic approach using PowerCore software [24,25],
the rest 158 accessions were selected from Korean breeding varieties. All rice accessions were
planted in a paddy field at Kongju National University, Korea, in 2012 and 2013.

Salt stress evaluation
Seeds of each accession were sterilized in sodium hypochlorite (1%) solution for 10 min and
then washed twice with deionized distilled water. Then, the seeds were placed in petri dishes
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with two-layer filter paper and soaked in 200 mMNaCl solution, which was previously deter-
mined as an the optimal concentration (data not shown) to distinguish salt stress tolerance and
sensitivity. The salt tolerance index (STI) was used to evaluate salt stress tolerance, where STI
(%) = (total dry weight of the samples/total dry weight of the control) × 100.

Assay of rice fragrance
The aroma of rice grains and leaves were measured by a sensory evaluation according to the
method of Amarawathi et al. (2008) with minor modifications. Ten milled rice grains were
placed in a 15 ml tube containing 8 ml of 1.7% KOH and incubated at 30°C water bath for
10 min with lids on. The lids were then opened and samples were smelled. The aroma of young
leaves was checked by the same method to confirm the results for rice grain.

Resequencing of 295 rice accessions and allele detection for BADH1
and BADH2
HiSeq 2000 and HiSeq 2500 were employed for whole-genome resequencing of the 295 rice
accessions. Raw sequences were first processed to obtain an average of quality score (QS) per
read� 20 by trimming 3'-end of reads using SICKLE (https://github.com/najoshi/sickle).
High-quality reads were aligned to the rice reference genome IRGSP-1.0 (http://rapdb.dna.
affrc.go.jp/download/irgsp1.html) using the Burrows-Wheeler Aligner (BWA) (version 0.7.5a)
with default parameters [26]. The reads that does not meet BWA quality criteria or not match
the reference genome were removed. PCR duplicate reads were removed by using PICARD
(version 1.88) (http://broadinstitute.github.io/picard/). By using Genome Analysis Toolkit
(GATK) (version 2.3.9 Lite) [27], regional realignment and quality score recalibration were car-
ried out. SNPs and InDels were, then, identified with� 3X of read depth coverage. Overall, the
mapping depth about 9X in average. Sequence data for 10 WT rice accessions (5 Oryza rufipo-
gon and 5 Oryza nivara) were downloaded from the National Centre for Biotechnology Infor-
mation Sequence Read Archive 023116 [19]. The polymorphisms of BADH1 and BADH2 were
purified from whole-genome resequencing data.

Association study
Genotypic and phenotypic data files were prepared and imported to TASSEL4.0 [28] for associ-
ation test. The general linear model (GLM), containing the SNP tested as a fixed effect, was
applied to test the association between phenotypic variation (aroma and STI) and 19 alleles,
which located in transcribed region of BADHs without any missing data. To get reliable results,
P-value� 0.001 was considered to have a significant effect on each trait.

Linkage disequibrium (LD) block detection, nucleotide diversity, Tajima’s
D analysis and extended haplotype homozygosity (EHH) analysis
To identify LD blocks in both wild and cultivated rice populations, we used Haploview software
with “-dprime–minMAF 0.05 –hwcutoff 0.001 –blockoutput GAB –pairwiseTagging” parame-
ters [29]. Average pairwise divergence within the population was estimated in a 4-Mb interval
of BADH genes. Sliding windows of 1 kb and 3k were used to estimate nucleotide diversity for
the 4-Mb region of each gene. In each window, the π and Tajima’s D value was calculated using
VCFtools [30]. The pattern of the results were plotted using R scripts. Extended haplotype
homozygosity (EHH) was calculated using the R package rehh [31].
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Results

Salt stress tolerance and rice fragrance
A total of 205 rice accessions, without any missing sequence information of BADH1 and
BADH2, were evaluated for salt stress index and rice fragrance. The average STI is 1.14. Among
these, RWG-140 had the highest stress tolerance (STI, 1.50). However, RWG-222 had the low-
est STI (0.26), which is salt stress sensitive. In the rice aroma test, total 12 accessions were eval-
uated to be fragrant rice (S3 Table).

Polymorphisms of BADH1 and BADH2
In this study, we used the whole genome resequencing data to study BADH1 and BADH2.
From our resequencing data set (cultivated rice), seven SNPs were found in the exon region,
three SNPs and one insertion were in the untranslated region (UTR) in BADH1 (S1 Table). For
BADH2, three SNPs, two deletions and one insertion were located in exon part, while four
SNPs and three insertions were detected in untranslated region (S2 Table). When we checked
those regions in the wild rice, we found, to our surprise, very high sequence diversity in
BADH1 gene region, including four SNPs in UTR and twelve SNPs in exon region. However,
only four heterozygous SNPs were found in BADH2 exon part and five heterozygous SNPs and
one insertion in UTR (S1 and S2 Tables).

Among the 16 exonic SNPs of BADH1, only seven were non-synonymous mutations, others
were synonymous mutations. In our rice germplasm, five non-synonymous mutations were
detected. Here we are using “P1” and “P2” to represent the gene positions in BADH1 and
BADH2, respectively. The five mutations are described as follows: 1) one G/A SNP (P1141) in
exon 1 leading to substitution from arginine to histidine; 2) one T/A SNP (P11483) in exon 4
leading to asparagine to lysine substitution; 3) one C/A SNP (P13605) in exon 11 leading to sub-
stitution from glutamine to lysine; 4) one T/C SNP (P13612) in exon 12 leading to substitution
from isoleucine to threonine; 5) one G/T SNP (P13883) in exon 12 leading to substitution from
glutamic acid to aspartic acid. Two non-synonymous mutations were represented in wild type
as heterozygous SNPs. One is T/A SNP (P11232) in exon 3 leading to a substitution from aspar-
tic acid to glutamic acid, the other was a G/T SNP (P13672) leading to a substitution from argi-
nine to leucine in exon 11 (S1 Table).

Eighteen alleles were detected in BADH2 transcribed region. Ten of 18 were located in cod-
ing region, and eight were located in untranslated region. In our materials, 1) 8-bp deletion in
exon 7 (P23036) leading to premature transcription termination; 2) one C/A SNP (P24488) in
exon 10 leading to amino acid substitution from alanine to glutamic acid; 3) three base-pair
deletion (P25240) in exon 12 leading to loss of one amino acid; 4) one C/T SNP (P25390) in exon
13 leading to substitution from alanine to valine; and 5) one base pair insertion in exon 14
resulting in frameshift and premature transcription termination have been detected. One syn-
onymous SNP (P24528) in exon 10 has been found in two varieties. Two non-synonymous
SNP were detected in wild rice, 1) C/G SNP (P2205) in exon 1 resulting to alanine to glycine
substitution; and 2) C/T SNP (P22685) in exon 5 resulting to alanine to valine substitution.
Those two alleles were heterozygous and initially detected in BADH2. In the UTR, three InDels,
P214 (1 bp insertion), P236 (1 bp deletion) and P241 (insertion in the 5’UTR) and two SNPs
(P224 C/T in the 3’UTR and P26038 in the 3’UTR) were detected.

Association analysis of salt tolerance, aroma and BADHs alleles
Due to the limitations of whole-genome resequencing, missing sequence data were inevitable.
In this study, we sequenced total 295 rice samples, most had high sequencing coverage both in
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BADH1 and BADH2 region, but some accessions had low coverage or missing sequence in
these gene regions. After removing accessions with missing sequence data, a total of 205 acces-
sions remained. Among these 205 accessions, totally 19 SNPs and InDels were detected in
BADH1 and BADH2 transcribed regions (S3 Table), and subsequently used for the association
studies (Table 1).

The association study demonstrated a relatively high correlation (R2) of 0.12 between
P11483/P13605/P14811 and STI (P<10−4) in BADH1 (Table 1 and Fig 1), while no correlation
was observed in BADH2 in this regard. On the other hand, it was found that two BADH2 alleles
(P23036, P25390) explain 97% of aroma variation in our germplasm. However, no association
existed between aroma and BADH1 (S4 Table). It is suggested that BADH1 and BADH2 have
different functions in rice.

Extended haplotype homozygosity study
According to the association study, P23036 (8-bp deletion in exon 7) is the major allele which is
associated with rice fragrance (S4 Table). P23036 also called badh2.1 by Kovach et al. (2009). Here
we follow the method which was used by Kovach et al. (2009) for domestication study. Firstly,
we divided the whole 205 accessions into two subgroups: the one that have 8-bp deletion in exon
7 (badh2.1), and without 8-bp deletion (Wild). Then we investigated the extended haplotype
homozygosity of BADH1 and BADH2 regions to find the evidence for artificial selections. We
calculated the EHH for BAHD2 gene by comparing the haplotypes of fragrant (badh2.1) and
wild type (with functional BADH2 gene) group. The badh2.1 had a large LD block that extended
around the mutation site, while LD decreased rapidly around the wild type alleles (Fig 2B).

Since the P11483 (T/A) allele was significantly correlated with salt tolerance, we separated
the 205 individuals into two subgroups, one included “T” allele (Allele_T group), another one

Table 1. The association study of salt tolerance index and candidate regions.

Marker Locus Locus_pos Marker_F Marker_P Marker_R2

rs-01 BADH1 46 0.24703 0.7814 0.00295

rs-02 BADH1 87 16.44522 7.65E-05 0.08916

rs-03 BADH1 101 7.53E-04 0.97814 4.48E-06

rs-04 BADH1 181 0.24703 0.7814 0.00295

rs-05 BADH1 1483 11.39543 2.30E-05 0.12008

rs-06 BADH1 3605 11.39543 2.30E-05 0.12008

rs-07 BADH1 3883 0.22252 0.63774 0.00132

rs-08 BADH1 4811 11.39543 2.30E-05 0.12008

rs-09 BADH2 14 0.05781 0.81028 3.44E-04

rs-10 BADH2 24 0.05781 0.81028 3.44E-04

rs-11 BADH2 36 6.5564 0.01133 0.03756

rs-12 BADH2 41 0.05781 0.81028 3.44E-04

rs-13 BADH2 42 0.49606 0.48221 0.00294

rs-14 BADH2 49 3.97914 0.0205 0.04549

rs-15 BADH2 115 0.49606 0.48221 0.00294

rs-16 BADH2 3036 1.22893 0.2692 0.00726

rs-17 BADH2 4488 0.05781 0.81028 3.44E-04

rs-18 BADH2 4528 0.06933 0.79264 4.13E-04

rs-19 BADH2 5390 0.37313 0.54213 0.00222

Locus_pos: Physical distance from the transcription initiation site of the gene.

doi:10.1371/journal.pone.0134801.t001
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included “A” allele (Allele_A group). STI values of the “T” allele subgroup were significantly
higher than the “A” allele subgroup (P<0.05; Fig 3). The EHH study for the BADH1 gene was
compared the extended haplotypes of (P11483 A) and wide type (P11483 T). However, these two
groups carrying A or T alleles did not exhibit large difference, both of them did not show large
extended LD block, reducing rapidly around P11483 (Fig 2A).

LD block, nucleotide diversity and Tajima’s D analysis in different
subpopulations
In order to find more evidence whether the domestication rate for BADH1 and BADH2 are dif-
ferent, we analyzed the LD block, nucleotide diversity and Tajima’s D for each subgroup. For
BADH2, it clearly showed that wild group has no block in badh2 gene region, while badh2.1
group had the block which over 7 kb in the gene region (Fig 4B). The nucleotide diversity study
showed that wild group had higher diversity than badh2.1 in both the flanking 2 Mb of BADH2
and BADH2 gene region. Interestingly, the nucleotide diversity in BADH2 gene region was
reduced in two subgroups. The wild type was still higher than badh2.1 and the diversity of
badh2.1 was almost as low as 0 (Fig 4D). Using 205 individual’s sequence, we calculated the
Tajima’s D value in BADHs regions. It is clearly showed that in BADH2 region the Tajima’s D
value (less than -1) was significantly biased from the balance (Fig 4F). These three results
strongly suggested that badh2.1 had been artificially selected during the rice domestication.

On the other hand, we failed to find the large LD block in BADH1 region in both Allele_T
group and Allele_A group (Fig 4A). The nucleotide diversity study showed that the Allele_T

Fig 1. Associations across transcribed regions ofBADH1 and BADH2.

doi:10.1371/journal.pone.0134801.g001
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Fig 2. EHH plot across the BADH1 and BADH2 genomic region. (a) EHH of BADH1 genomic region. Wild type (T) and P11483 (A) did not show large LD
block. (b) EHH of BADH2 genomic region. The fragrant accessions carrying the P23036 (badh2.1 which has 8 bp deletion in exon 7) allele exhibited a large
block of extended LD around the FNP, while wild type allele declined rapidly.

doi:10.1371/journal.pone.0134801.g002

Fig 3. Boxplot of STI (salt tolerance index) for different allele type at P11483 (T/A).

doi:10.1371/journal.pone.0134801.g003
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group had higher diversity than Allele_A in both flanking region and gene region of BADH1
(Fig 4C), but Allele_A group had low diversity level in this region. The Tajima’s D value also
kept a stationary value in the BADH1 gene region (Fig 4E). From these three analyses, we are
failed to get any clear evidence that BADH1 was also selected by human beings, suggesting that
BADH1 is not a domesticated gene in rice.

Discussion

Polymorphism and association study
BADH2 was widely known as the gene associated with fragrance in rice [11]. As the homolo-
gous gene of BADH2, BADH1 is considered to be the candidate gene controlling fragrance or
salt tolerance in rice. Recently, Fitzgerald et al. (2010) suggested that BADH2 is also responsible
for salt stress tolerance. The relationship between these two BADH genes and salt stress toler-
ance or fragrance in rice is unclear. Various studies have reported conflicting results [1,2,5].
These inconsistencies could be attributable to the differences either in rice germplasm materials
or growth stages that they investigated for their studies.

Fig 4. LD block, nucleotide diversity and Tajima’s D in BADHs regions (Green part are the gene regions). (a) LD block of BADH1 at different groups.
(b) LD block of BADH2 at different groups (badh2.1 has 8bp deletion in exon 7). (c) Nucleotide diversity of BADH1 region with 3kb slide window. (d)
Nucleotide diversity of BADH2 region with 3kb slide window. (e) Tajima’s D of BADH1 region with 3kb slide window. (f) Tajima’s D of BADH2 region with 3kb
slide window.

doi:10.1371/journal.pone.0134801.g004
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Here, we used whole genome resequencing data to study BADH1 and BADH2 genes. For
BADH1, we found a total of 10 genetic variants, seven SNPs were in the exon region and two
SNPs and one insertion were in the untranslated region (S1 Table). Among the seven SNPs in
exon region, four of them were novel (S1 Fig). It was observed that four SNPs and three inser-
tions were detected in the UTR of BADH2. Three SNPs, two deletions and one insertion were
located in the exon region of BADH2, extending the number of BADH2 exonic alleles from 15
to 18 (S2 Table and S2 Fig) [8–11,13].

After removing the accessions with missing sequence information, we finally discovered
eight alleles in BADH1, and eleven alleles in BADH2 from the 205 accessions (S3 Table). Eight
alleles in BADH1 generated 7 haplotypes and eleven alleles result in 9 haplotypes in BADH2
region (S3 Table). We performed the GLM based association study for STI using19 alleles. As a
result, we discovered that P11483 (T/A), P13605 (C/A) in translated region and P14811 in the
3’UTR were highly correlated with STI with, P< 10−4 and R2 around 0.12 (Table 1 and Fig 1).
However, similar correlations were not found for BADH2 (Table 1), indicating BADH2may
not be associated with salt tolerance.

Fitzgerald et al. (2008) reported that the expression level of BADH1 in leaf tissue is highly asso-
ciated in response to salt treatment at the seedling stage. In contrast, such relationship between
BADH2 transcript levels and salt treatment has not been found yet. More recently, however, Fitz-
gerald et al. (2010) did show a difference between fragrant (badh2) and non-fragrant (BADH2)
rice for the ability to produce mature seed in the presence of salt. Tang et al. (2014) proved that
BADH1 was associated with rice salt (NaCl) tolerance at seedling stage by using RNAi-directed
knock down of BADH1 [32]. Thus, BADH1 and BADH2 are both suggested to be responsible for
salt stress tolerance in rice, but, possibly, at different growth stages. Since our STI was tested at
germination stage, we extended the conclusion that BADH1 is response for rice salt stress at ger-
mination and seedling stage, while BADH2may be accountable at the reproductive stage.

P23036 (8 bp deletions) and P25390 (C/T) were the main alleles that explained the aroma vari-
ation with 74% and 23% respectively (S4 Table), which are consistent with previous studies in
that the lack of function of BADH2 has a significant effect on rice aroma [8,11]. However, we
found no association between BADH1 and aroma (S4 Table).

Singh et al. (2010) reported that there’s no association between salt tolerance and common
BADH1 but few exceptions. None the less, our results are rather consistent with the result from
Fitzgerald et al. (2008), demonstrating that BADH1 (and not BADH2) contributes to salt stress
tolerance. However, we cannot exclude the possibility that these contradictions may be resulted
from the different conditions undertaken.

Domestication of BADH1 and BADH2
Domestication of crops has historically been critical for human reproduction and development.
The domestication of rice were explained by several models [11]. The recent increase in molec-
ular marker density through next generation sequencing (NGS) technology has facilitated to
build more solid hypotheses on the domestication process of rice [11,33]. Investigating the
domestication history of a specific gene is one way to decipher the history of rice and its impact
on humans [11]. An EHH study of BADH2 led by Kovach et al. (2009) suggested that BADH2
is one of the domesticated genes responsible for rice fragrance. In this study, we attempted to
determine if BADH1 is also a domesticated gene.

The association mapping study identified three alleles (P11483, P13605 and P14811) in BADH1
highly correlated with STI. These three alleles were consistently present together in the rice
genome. We selected P11483 (T/A) as the key allele for an evolution study of BADH1. To vali-
date our method, we tested the domestication signal of BADH2 using the same method (EHH)
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as Kovach et al. (2009). Our EHH test result was similar to the results of Kovach et al. (2009).
The fragrant accessions which carrying 8 bp deletions in exon 7 showed a large LD block
extended around the mutation site, while the wild type alleles relatively reduced rapidly (Fig
2B). To obtain more clear evidence, we further investigated LD block, nucleotide diversity, and
Tajima’s D for the 4-Mb flanking regions of BADHs, which had always been tested for mutual
verification for a domestication process [11,18,19,34]. For BADH2, LD block study showed
that there were a lot of LD blocks in the fragrant rice group (badh2.1) over 7 kb, while fewer
LD blocks were found in wild type group (Fig 4B). The diversity study suggested that all groups
show reduced diversity in BADH2 gene region, but the badh2.1 approaches zero for this region
(Fig 4D). Furthermore, the Tajima’s D test showed a significantly deviated signal in BADH2
region (Fig 4F). All of those results support the conclusions that badh2.1 was domesticated,
which is totally consistent with previous study [11].

Employing the same tests, finding clear domesticated signals for BADH1 was difficult. We
failed in finding LD blocks in BADH1 for the “Allele_A” and “Allele_T” groups (Fig 4A). The
diversity of Allele_A group was consistently low without any violent swings in BADH1 gene
region (Fig 4C). Moreover, Tajima’s D value was not significant for BADH1 (Fig 4E). Lastly,
EHH was significantly diminished in the two BADH1 groups (Fig 2A). Thus, we concluded
that BADH1 had not been domesticated in Asian rice.

Interestingly, Wang et al. (2014) found that the genetic diversity is strongly reduced in the
BADH1 region of O. glaberrima, indicating BADH1 was possibly domesticated in O. glaberrima
[35]. O. glaberrima is widely known to be better at tolerating biotic or abiotic stress than O.
sativa [36]. As a gene associated with abiotic stress tolerance, BADH1 was likely domesticated
in O. glaberrima, which is not the case for O. sativa [36]. Our results supports that the BADH1
is responsible for salt stress in rice germination stage, explaining 12% variation of phenotype
for salt stress in O. sativa (Table 1). However, this effect might not be strong enough to be
selected during the evolution of Asian cultivated rice.
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