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The present study evaluated outcomes and prognostic factors in adult patients with acute myeloid leukemia (AML) after syngeneic
hematopoietic stem cell transplantation (HSCT). Among patients in first complete remission (CR1), outcomes of syngeneic HSCT
(Syn) were compared with those of autologous HSCT (Auto), allogeneic HSCT from human leukocyte antigen (HLA)-matched sibling
donor (MSD), or allogeneic HSCT from HLA-matched unrelated donor (MUD). Among 11,866 patients receiving first HSCT, 26 in the
Syn group were analyzed. The 5-year overall survival (OS) rate, the cumulative incidence of relapse, and the cumulative incidence of
non-relapse mortality (NRM) were 47.8%, 59.6%, and 4.6%, respectively. The OS was significantly better in patients in CR1 (n= 13)
than in patients in non-CR1 (P= 0.012). Furthermore, 39 patients in CR1 each were assigned to the Auto, MSD, and MUD groups
using propensity score matching. The 5-year OS in the Syn (68.4%) was not significantly different from those in the Auto (55.9%,
P= 0.265), MSD (62.4%, P= 0.419), or MUD (63.7%, P= 0.409) groups. A higher relapse in the Syn than in the MSD and MUD groups
was offset by lower NRM. In summary, syngeneic HSCT might be an alternative option for AML patients in CR1.
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INTRODUCTION
Allogeneic hematopoietic stem cell transplantation (HSCT) is a
potentially curative therapeutic option for acute myeloid
leukemia (AML) [1–7]. Although a human leukocyte antigen
(HLA)-matched sibling donor (MSD) remains the best option,
research to determine the next-best alternative is ongoing
worldwide owing to the increasing number of available
unrelated donors, cord blood units, and recent widespread
use of haploidentical donors [1–4]. However, in the absence of
an MSD, there is an increased risk of non-relapse morbidity and
mortality owing to graft-versus-host disease (GVHD), severe
infections, and regimen-related toxicities, which are the major
obstacles to allogeneic HSCT. Autologous HSCT is an alternative
post-remission treatment, which has been shown to reduce the
risk of transplant-related morbidity and mortality [8–13].
However, a relatively high risk of relapse is a major problem
owing to the lack of a graft-versus-leukemia effect by allogeneic

cells and the potential contamination of the graft with leukemic
cells.
Syngeneic HSCT is rarely performed in patients who have an

identical twin [14–16]. Its effectiveness has not been fully
understood in patients with AML. Previous studies to date have
analyzed the outcomes of syngeneic HSCT for AML together with
those for other hematological malignancies and non-
hematological diseases, although they have different clinical
characteristics [17–20]. In addition, limited data are available
comparing the outcomes of syngeneic HSCT with those of
autologous or allogeneic HSCT [17].
To clarify these issues, in the present study, we aimed to

evaluate outcomes and prognostic factors in patients with AML
after syngeneic HSCT and to compare these outcomes with those
of autologous or allogeneic HSCT for patients in first complete
remission (CR1) using the national registry data of the Transplant
Registry Unified Management Program (TRUMP) in Japan.
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MATERIALS AND METHODS
Data collection and study population
Clinical data were provided by the second-generation TRUMP of the
Japanese Data Center for Hematopoietic Cell Transplantation [21, 22].
The TRUMP currently covers nearly all of the >300 transplantation
centers nationwide in Japan, with a registration rate of >99%. Each
participating institution is required to consecutively register anonymous
information on all patients undergoing HSCT at their institution and to
report follow-up information annually. The second-generation TRUMP,
which was released in 2015, is a web-based HSCT registry database and
can also be used offline for transplant centers not capable of reporting
online. The study protocol complied with the principles of the
Declaration of Helsinki. Approval for this retrospective study was
obtained from the ethics committee of the University of Tokyo.
Informed consent was obtained from each patient.
A flowchart of patient selection is shown in Fig. 1. Patients eligible for

enrollment met the following criteria: (1) age ≥16 years; (2) diagnosis of
AML (except for acute promyelocytic leukemia); and (3) receiving their
first bone marrow transplantation (BMT) or peripheral stem cell blood
transplantation (PBSCT) between 1992 and 2017. Among them, the

following four groups were selected: a “Syn” group included those who
underwent syngeneic BMT or PBSCT; “Auto” group, autologous PBSCT;
“MSD” group, allogeneic BMT or PBSCT from an MSD; and “MUD” group,
allogeneic BMT from an HLA-matched unrelated donor (MUD).
Syngeneic HSCT was defined as a HSCT from a syngeneic identical
twin [17–20]. We confirmed donor monozygosity based on the gender
match, HLA, and ABO blood types registered in our database. HLA
disparity was defined as a mismatch of at least one serologic level in
related HSCT or allele level in unrelated HSCT detected between the
recipient and donor. Patients receiving either allogeneic PBSCT from an
unrelated donor (n= 159) or autologous BMT (n= 24) were not
included because these procedures were rarely performed in Japan
during the study period [6, 13]. Patients receiving either allogeneic BMT
or PBSCT from an HLA-mismatched donor (n= 3723) or with incomplete
HLA data (n= 984) were excluded from the present study.

Study endpoints and definitions
The primary endpoint was the 5-year overall survival (OS) rate after HSCT. The
secondary endpoints were the 5-year leukemia-free survival (LFS), 5-year

Fig. 1 Patient selection flowchart and study design. AML acute myeloid leukemia, APL acute promyelocytic leukemia, Auto autologous, BMT
bone marrow transplantation, CR1 first complete remission, HLA human leukocyte antigen, MMD mismatched donor, MSD matched sibling
donor, MUD matched unrelated donor, PBSCT peripheral blood stem cell transplantation, Syn syngeneic, TRUMP Transplant Registry Unified
Management Program.

S. Kurosawa et al.

2

Blood Cancer Journal          (2021) 11:159 

1
2
3
4
5
6
7
8
9
0
()
;,:



cumulative incidence of relapse, 5-year cumulative incidence of non-relapse
mortality (NRM), days from HSCT to neutrophil and platelet engraftment, 100-
day cumulative incidence of acute GVHD, and 1-year cumulative incidence of
chronic GVHD after HSCT.
OS was defined as the time from transplantation to death from any cause

or last visit. LFS was defined as the time from transplantation to death,
relapse, or last visit. Relapse was defined as the loss of CR in patients who at
one time had achieved CR; meanwhile, patients who had never achieved CR
after transplantation were categorized as relapse cases at time zero. CR was
defined as the presence of <5% of blasts in the bone marrow (BM), absence of
leukemic blasts in the peripheral blood or extramedullary sites, and recovery
of blood counts. NRM was defined as death without relapse. Engraftment
after HSCT was evaluated according to a conventional definition, as previously
reported [23]. Acute and chronic GVHD were diagnosed and graded
according to previously established criteria [24, 25]. The hematopoietic cell
transplantation-specific comorbidity index was calculated, as described
previously [26]. The cytogenetic risk was classified based on the published
criteria [27].

Statistical analysis
OS and LFS rates were estimated using the Kaplan–Meier method, and the
log-rank test was used to assess significant differences. Cumulative
incidence rates of relapse, NRM, acute GVHD, and chronic GVHD were
evaluated using Gray’s method, considering NRM as a competing risk
factor for relapse, relapse as a competing risk factor for NRM, and death or
relapse as a competing risk factor for acute and chronic GVHD.
To evaluate factors influencing transplant outcomes in the Syn group,

the following variables were evaluated in univariate analyses: age at HSCT
(<40 years vs. ≥40 years), sex (female vs. male), cytogenetic risk (favorable
vs. intermediate vs. poor vs. unevaluable), disease status at HSCT (CR1 vs.
non-CR1), graft source (BM vs. peripheral blood stem cell [PBSC]), GVHD
prophylaxis (administration of cyclosporin, tacrolimus, or methotrexate vs.
no prophylaxis), and the year of HSCT (1992–2003 vs. 2004–2017).
To minimize selection bias and confounding factors, we performed

propensity score (PS) matching analysis [28]. Among patients in CR1, PSs
between the Syn and Auto, Syn and MSD, and Syn and MUD groups were
calculated using logistic regression with the following factors: age at HSCT
(<40 years vs. ≥40 years), sex (female vs. male), cytogenetic risk (favorable
vs. intermediate vs. poor vs. unevaluable), and the year of HSCT
(1992–2003 vs. 2004–2017). Graft source (BM vs. PBSC) was also used to
calculate the PS between the Syn and MSD groups. Matching was
performed using the nearest-neighbor matching method, with the caliper
width fixed at 0.2. The ratio of the Syn group to the Auto, MSD, and MUD
group was 1:3. The C-statistic was calculated to evaluate the discrimination
of the PS. To compare baseline characteristics between the Syn and Auto,
MSD, and MUD groups, categorical variables were compared using Fisher’s
exact test. The balance of covariates after PS matching was assessed using
P values and standardized mean differences.
All tests were two-sided, and P values <0.05 were considered statistically

significant. A standardized mean difference <0.10 was considered to
indicate a negligible difference between the PS-matched groups [29]. All
statistical analyses were performed using EZR, a graphical user interface for
R software (The R Foundation for Statistical Computing, version 4.0.2,
Vienna, Austria) [30].

RESULTS
Patient characteristics and transplant outcomes in the Syn
group
Patient characteristics of the Syn group are summarized in Table 1.
Overall, 26 patients were included in the Syn group. Among them,
13 (50.0%) patients were in CR1. Graft source was BM for 11
(42.3%) patients and PBSC for 15 (57.7%). Eight (30.8%) patients
received GVHD prophylaxis, whereas 17 (65.4%) did not receive
any GVHD prophylaxis with available data (n= 25 of 26, 96.2%).
The median follow-up period for survivors was 3644 days (range,
315–9335 days).
The 5-year OS and LFS rates and cumulative incidence rates of

relapse and NRM were 47.8% (95% confidence interval [CI],
27.5–65.7%; Fig. 2a), 35.9% (95% CI, 17.6–54.6%; Fig. 2b), 59.6%
(95% CI, 36.7–76.5%; Fig. 2c), and 4.6% (95% CI, 0.3–19.9%; Fig. 2c),
respectively. The 5-year OS rate was significantly higher in patients

in CR1 (68.4%; 95% CI, 35.9–86.8%) than that in patients in non-
CR1 (26.0%; 95% CI, 6.3–51.7%; P= 0.012; Fig. 2d). No significant
differences in OS rates were observed after stratifying patients
according to age (P= 0.404), sex (P= 0.250), cytogenetic risk (P=
0.175), graft source (P= 0.489), or the year of HSCT (P= 0.404).
The median number of days from HSCT to neutrophil

engraftment was 13.5 (95% CI, 9–20). There was no significant
difference after stratifying by graft source (BM, 17.5 days [95% CI,
10–20 days] vs. PBSC, 11.0 days [95% CI, 9–14 days]; P= 0.062).
The median number of days from HSCT to platelet engraftment
was 26.0 days (95% CI, 9–284 days). There was no significant
difference after stratifying by graft source (BM, 26.0 days [95% CI,
16–37 days] vs. PBSC, 17.0 days [95% CI, 9–284 days]; P= 0.055).
The 100-day cumulative incidence rate of grade II acute GVHD

was 11.5% (95% CI, 2.8–27.1%). No patient developed grade III–IV
acute GVHD. There was no significant difference after stratifying
by graft source (BM, 9.1% [95% CI, 0.4–34.7%] vs. PBSC, 13.3%
[95% CI, 2.0–35.5%]; P= 0.779; Fig. 2e) or GVHD prophylaxis (with
prophylaxis, 25.0% [95% CI, 3.0–57.9%] vs. without prophylaxis,
5.9% [95% CI, 0.3–24.3%]; P= 0.162; Fig. 2f). Acute GVHD occurred
in 1 of 11 (9.1%) patients receiving syngeneic PBSCT without
GVHD prophylaxis.
The 1-year cumulative incidence rate of chronic GVHD was 4.3%

(95% CI, 0.3–19.0%). There was no significant difference after
stratifying by graft source (BM, 0.0% [95% CI, 0.0–0.0%] vs. PBSC,
7.7% [95% CI, 0.3–31.7%]; P= 0.921) or GVHD prophylaxis (with
prophylaxis, 14.3% [95% CI, 0.3–51.3%] vs. without prophylaxis,
0.0% [95% CI, 0.0–0.0%]; P= 0.137). Chronic GVHD was not
observed in patients receiving syngeneic PBSCT without GVHD
prophylaxis.
In the Syn group, 14 (53.8%) patients died. Non-relapse death

occurred in only one (3.8%) patient. This patient died from an
infection. Among 13 (50.0%) patients after relapse, the causes of
death were disease progression (n= 6, 23.1%), infection (n= 3,
11.5%), organ failure (n= 3, 11.5%), and interstitial pneumonia
(n= 1, 3.8%). No patient for whom the data were available (n= 24,
92.3%) developed secondary cancer.

Comparison of outcomes among the Syn, Auto, MSD, and
MUD groups
Regarding comparison cohorts, 476, 1755, and 1222 patients in
CR1 met the inclusion criteria in the Auto, MSD, and MUD groups,
respectively. Of these, 39 patients per group and 13 patients in the
Syn group were selected after PS matching. The C-statistic of the
PS model was 0.713 (95% CI, 0.587–0.846), 0.775 (95% CI,
0.668–0.882), and 0.798 (95% CI, 0.697–0.899) between the Syn
and Auto, MSD, MUD groups, respectively. These values indicated
acceptable discrimination. PS matching created comparable
cohorts balanced in terms of age at HSCT, sex, cytogenetic risk,
and the year of HSCT (Table 2).
Transplant outcomes per donor group are shown in Fig. 3. The

5-year OS rates after HSCT were 68.4% (95% CI, 35.9–86.8%;
reference) in the Syn group, 55.9% (95% CI, 37.2–71.0%; P= 0.265)
in the Auto group, 62.4% (95% CI, 44.8–75.8%; P= 0.419) in the
MSD group, and 63.7% (95% CI, 46.5–76.7%; P= 0.409) in the MUD
group (Fig. 3a). The 5-year LFS rates after HSCT were 53.8% (95%
CI, 24.8–76.0%; reference) in the Syn group, 38.6% (95% CI,
22.6–54.5%; P= 0.427) in the Auto group, 56.6% (95%
CI, 39.0–70.9%; P= 0.881) in the MSD group, and 57.1% (95% CI,
39.4–71.5%; P= 0.996) in the MUD group (Fig. 3b).
The 5-year cumulative incidence rate of relapse in the Syn

group (46.2%; 95% CI, 17.8–70.7%; reference) was significantly
higher than that in the MSD group (16.7%; 95% CI, 6.6–30.9%; P=
0.020), was higher than that in the MUD group (22.2%; 95% CI,
10.0–37.5%; P= 0.063) groups but not statistically significant, and
was comparable to that in the Auto (46.9%; 95% CI, 29.5–62.5%;
P= 0.922) group (Fig. 3c). The 5-year cumulative incidence rate of
NRM in the Syn group (0.0%; 95% CI, 0.0–0.0%; reference) was
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significantly lower than those in the MSD (26.7%; 95% CI,
13.7–41.6%; P= 0.025) and MUD (20.6%; 95% CI, 9.5–34.6%; P=
0.034) groups but not significantly different from that in the Auto
group (14.4%; 95% CI, 5.0–28.6%; P= 0.129) (Fig. 3d).
The 100-day cumulative incidence rates of grade II–IV acute

GVHD were 15.4% (95% CI, 2.2–39.8%; reference) in the Syn group,
20.6% (95% CI, 9.5–34.6%; P= 0.734) in the MSD group, and 36.8%
(95% CI, 21.7–52.0%; P= 0.171) in the MUD group (Fig. 3e). The
1-year cumulative incidence rate of chronic GVHD in the Syn
group (8.3%; 95% CI, 0.4–32.8%; reference) was significantly lower
than that in the MSD group (47.2%; 95% CI, 30.1–62.6%; P= 0.043)
but not significantly different from that in the MUD group (39.5%;
95% CI, 23.9–54.7%; P= 0.113) (Fig. 3f).

DISCUSSION
The present study examined factors affecting outcomes after
syngeneic HSCT for patients with AML. Although previous studies
on syngeneic HSCT mainly included patients receiving syngeneic
BMT [17–20], more than half of patients received syngeneic PBSCT
in the present study. Our results of survival, acute and chronic
GVHD, and engraftment rates were not significantly different
between syngeneic BMT and PBSCT. In allogeneic HSCT, PBSCT is
associated with rapid hematopoietic recovery, but controversies
remain regarding survival, relapse, NRM, and GVHD risks [31–35]. A
nationwide study on patients with AML after allogeneic HSCT by
Yanada et al. [35] showed that related PBSCT was associated with
the risks of grade III–IV acute GVHD, chronic GVHD, and NRM higher
than those associated with BMT. Both RFS and OS rates were
poorer for related PBSCT than for related BMT. In the present study,
the number of cases was too small to draw a conclusion regarding
syngeneic HSCT. The choice of graft source should be determined
carefully, considering both recipient- and donor-related factors.
Fouillard et al. [20] reported that the diagnosis of acute GVHD

was made for 8 of 22 (36.4%) patients with GVHD prophylaxis and
11 of 140 (7.9%) patients without GVHD prophylaxis, although
statistical significance was not assessed. In the present study, the
rates of acute and chronic GVHD were not significantly different
between patients with and without GVHD prophylaxis. Although
the previous report mainly included patients receiving BMT [20], in
the present study, more than half of patients received syngeneic
PBSCT. Only one (9.1%) and no patient receiving PBSCT without
GVHD prophylaxis developed grade II acute GVHD and chronic
GVHD, respectively. Our findings raise the question of whether
GVHD prophylaxis is necessary for syngeneic HSCT even if PBSC is
used as a stem cell source.
Although Gale et al. [17] compared the outcomes of syngeneic

BMT with those of allogeneic BMT from MSD in patients with AML,
acute lymphoblastic leukemia (ALL), and chronic myeloid leuke-
mia, the present study focused exclusively on patients with AML in
CR1 to compare the outcomes of syngeneic HSCT with those of

Table 1. Characteristics of patients in the syngenic group.

All patients Patients in CR1

Total number 26 13

Age at HSCT

Median 40 (18–55) 40 (18–55)

<40 years 11 (42.3%) 6 (46.2%)

≥40 years 15 (57.7%) 7 (53.8%)

Sex

Female 8 (30.8%) 4 (30.8%)

Male 18 (69.2%) 9 (69.2%)

Performance status

0–1 17 (65.4%) 11 (84.6%)

≥2 2 (7.7%) 0 (0.0%)

NA 7 (26.9%) 2 (15.4%)

HCT-CI

0–1 11 (42.3%) 9 (69.2%)

≥2 1 (3.8%) 0 (0.0%)

NA 14 (56.0%) 4 (30.8%)

FAB subtypes

M1 3 (11.5%) 2 (15.4%)

M2 14 (53.8%) 5 (38.5%)

M4 4 (15.4%) 3 (23.1%)

M5 2 (7.7%) 2 (15.4%)

M6 2 (7.7%) 1 (7.7%)

Others 1 (3.8%) 0 (0.0%)

Cytogenetic risk at diagnosis

Favorable 5 (19.2%) 2 (15.4%)

Intermediate 15 (57.7%) 10 (76.9%)

Poor 3 (11.5%) 0 (0.0%)

Unevaluable 3 (11.5%) 1 (7.7%)

Disease status at HSCT

CR1 13 (50.0%) 13 (100.0%)

CR2 4 (15.4%)

CR3 or later 1 (3.8%)

Non-CR 8 (30.8%)

Time from diagnosis to HSCT

Median 218 (27–2,885) 203 (128–429)

<240 days 14 (53.8%) 9 (69.2%)

≥240 days 11 (42.3%) 4 (30.8%)

NA 1 (3.8%) 0 (0.0%)

Graft source

BM 11 (42.3%) 5 (38.5%)

PBSC 15 (57.7%) 8 (61.5%)

Conditioning

BuCy 8 (30.8%) 5 (38.5%)

CyTBI 7 (26.9%) 4 (30.8%)

Other MAC 3 (11.5%) 0 (0.0%)

RIC 2 (7.7%) 1 (7.7%)

Others 6 (23.1%) 3 (23.1%)

GVHD prophylaxis

Cyclosporine-based 6 (23.1%) 3 (23.1%)

Tacrolimus based 1 (3.8%) 0 (0.0%)

Others 1 (3.8%) 1 (7.7%)

Table 1 continued

All patients Patients in CR1

No prophylaxis 17 (65.4%) 9 (69.2%)

NA 1 (3.8%) 0 (0.0%)

Year of HSCT

1992–2003 13 (50.0%) 6 (46.2%)

2004–2017 13 (50.0%) 7 (53.8%)

BM bone marrow, BuCy busulfan and cyclophosphamide, CR complete
remission, CyTBI cyclophosphamide and total body irradiation, FAB French
American British, GVHD graft-versus-host disease, HCT-CI hematopoietic cell
transplantation-specific comorbidity index, HSCT hematopoietic stem cell
transplantation, MAC myeloablative conditioning, NA not available, PBSC
peripheral stem cell blood, RIC reduced-intensity conditioning.
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Table 2. Patient characteristics after propensity score matching.

Syn Auto MSD MUD Syn vs. Auto Syn vs. MSD Syn vs. MUD

Total number 13 39 39 39 P SMD P SMD P SMD

Age at HSCT 1.000 <0.01 1.000 <0.01 1.000 <0.01

≥40 years 7 (53.8%) 21 (53.8%) 21 (53.8%) 21 (53.8%)

Sex 1.000 <0.01 1.000 <0.01 1.000 <0.01

Male 9 (69.2%) 27 (69.2%) 27 (69.2%) 27 (69.2%)

Cytogenetic risk 1.000 <0.01 1.000 <0.01 1.000 <0.01

Favorable 2 (15.4%) 6 (15.4%) 6 (15.4%) 6 (15.4%)

Intermediate 10 (76.9%) 30 (76.9%) 30 (76.9%) 30 (76.9%)

Poor 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Unevaluable 1 (7.7%) 3 (7.7%) 3 (7.7%) 3 (7.7%)

Disease status 1.000 <0.01 1.000 <0.01 1.000 <0.01

CR1 13 (100.0%) 39 (100.0%) 39 (100.0%) 39 (100.0%)

Graft source <0.01 1.118 1.000 <0.01 <0.01 1.789

BM 5 (38.5%) 0 (0.0%) 15 (38.5%) 39 (100.0%)

PBSC 8 (61.5%) 39 (100.0%) 24 (61.5%) 0 (0.0%)

Year of HSCT 1.000 <0.01 1.000 <0.01 1.000 <0.01

2004–2017 7 (53.8%) 21 (53.8%) 21 (53.8%) 21 (53.8%)

Auto autologous, BM bone marrow, CR1 first complete remission, HSCT hematopoietic stem cell transplantation, MSD matched sibling donor, MUD matched
unrelated donor, PBSC peripheral blood stem cell, SMD standardized mean difference, Syn syngeneic.

Fig. 2 Transplant outcomes in the syngeneic group. a Overall survival (OS) rate, b leukemia-free survival (LFS) rate, and c cumulative
incidence of relapse and non-relapse mortality (NRM) in the syngeneic (Syn) group. d OS stratified by disease status at hematopoietic stem cell
transplantation. e Cumulative incidence of grade II–IV acute graft-versus-host disease (GVHD), stratified by graft source. f Cumulative
incidence of grade II–IV acute GVHD, stratified by GVHD prophylaxis status. BM bone marrow, CR1 first complete remission, PBSC peripheral
blood stem cell.
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allogeneic HSCT from MSD or MUD. The OS and LFS rates in the
Syn group were similar to those in the MSD and MUD groups. The
relapse rate in the Syn group was higher than that in the MSD and
MUD groups and was offset by a lower NRM. Given the present
findings, syngeneic HSCT might be feasible as an alternative post-
remission treatment for patients with AML in CR1.
According to the recent survey of the European Society of Blood

and Marrow Transplantation, the use of autologous HSCT for AML
has decreased over several years [36]. On the other hand,
nationwide studies on patients with AML in CR1 by Mizutani
et al. [11, 12] reported autologous PBSCT remains a viable
alternative as post-remission therapy in patients with AML in CR1.
They showed that autologous PBSCT was associated with lower
NRM and higher relapse rates than those associated with
allogeneic PBSCT or BMT from MSD and allogeneic BMT from
MUD, resulting in comparable OS and LFS rates. The present study
is the first to compare the outcomes of syngeneic HSCT with those
of autologous PBSCT. The OS, LFS, relapse, and NRM rates in the
Syn group were not significantly different from those in the Auto
group. The priority of the procedures remains unclear from our
study. The advantage of syngeneic over autologous HSCT is that
the infused hematopoietic stem cells are free from damage from
cytotoxic chemotherapy and the risk of leukemic contamination
[18]. Nevertheless, clinicians must carefully consider donor-
associated risk, unlike in autologous HSCT [37–39]. Further studies
are needed to distinguish the roles of syngeneic and autologous
HSCT procedures in patients with AML.

There are several limitations to the present study owing to its
registry-based retrospective nature. First, the sample size was
small because of the rarity of syngeneic HSCT. We were unable to
identify significant differences in the outcomes of syngeneic HSCT
based on factors other than disease status owing to the small
sample size. Second, little information was available on the
number of chemotherapy cycles and the dose of nucleated cells
infused. Barrett et al. [18] reported that the dose of nucleated cells
infused affected survival in patients with AML, ALL, and chronic
myeloid leukemia after syngeneic BMT. Fouillard et al. [20]
reported that the number of induction courses to reach CR1
affected outcomes after syngeneic BMT or PBSCT for patients with
AML and ALL. Third, we could not obtain data on minimal residual
disease (MRD) or mutational profiles. Previous studies demon-
strated that MRD at the time of HSCT predicted relapse and
survival in patients with acute leukemia [40–43]. The presence of
high-risk molecular markers, such as FLT3-ITD or TP53 mutations,
has been associated with poor prognosis in allogeneic HSCT
[44, 45]. These factors may have differed among our cohorts,
potentially affecting outcomes. Fourth, no data on zygosity
diagnosis could be obtained using DNA analyses [46]. It is possible
that some patients who received HSCT from a dizygotic twin were
included in the Syn group, although we confirmed monozygosity
based on the compatibility of sex, HLA, and ABO blood type. Fifth,
we could not get the information on other candidate donors of
each patient owing to a lack of data. We do not know whether
there were patients who had identical twins but chose other

Fig. 3 Transplant outcomes according to the donor group. a Overall survival (OS) rate. b Leukemia-free survival (LFS) rate. c Cumulative
incidence of relapse, d non-relapse mortality (NRM), e grade II–IV acute graft-versus-host disease (GVHD), and f chronic GVHD. Auto
autologous, MSD matched sibling donor, MUD matched unrelated donor, Syn syngeneic.
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donors. Sixth, we could not add the conditioning regimen to the
PS factors because the present study had a small number of
patients in the Syn group. In addition, in six (23.1%) patients of the
Syn group, we could not get the information on the dose of the
conditioning drugs owing to old data. There is a possibility that
the conditioning regimen might influence our results. Therefore,
the present findings should be interpreted with caution. Never-
theless, the present study is worth reporting because of the rarity
of patients with AML undergoing syngeneic HSCT.
In conclusion, this is the first study to assess prognostic factors

in patients with AML after syngeneic HSCT and compare the
outcomes of syngeneic HSCT with those of autologous or
allogeneic HSCT for patients in CR1. Our findings suggest that
syngeneic HSCT might offer an alternative curative option for
AML. Data from a larger number of patients and prospective
studies are needed to clarify the role of syngeneic HSCT in the
treatment of AML.
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