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ABSTRACT
Despite the heightened awareness of ocean acidification (OA) effects on marine
organisms, few studies empirically juxtapose biological responses to CO2 manip-
ulations across functionally distinct primary producers, particularly benthic algae.
Algal responses to OA may vary because increasing CO2 has the potential to fertilize
photosynthesis but impair biomineralization. Using a series of repeated experiments
on Palmyra Atoll, simulated OA effects were tested across a suite of ecologically
important coral reef algae, including five fleshy and six calcareous species. Growth,
calcification and photophysiology were measured for each species independently
and metrics were combined from each experiment using a meta-analysis to examine
overall trends across functional groups categorized as fleshy, upright calcareous, and
crustose coralline algae (CCA). The magnitude of the effect of OA on algal growth
response varied by species, but the direction was consistent within functional groups.
Exposure to OA conditions generally enhanced growth in fleshy macroalgae, reduced
net calcification in upright calcareous algae, and caused net dissolution in CCA. Ad-
ditionally, three of the five fleshy seaweeds tested became reproductive upon exposure
to OA conditions. There was no consistent effect of OA on algal photophysiology.
Our study provides experimental evidence to support the hypothesis that OA will
reduce the ability of calcareous algae to biomineralize. Further, we show that CO2

enrichment either will stimulate population or somatic growth in some species of
fleshy macroalgae. Thus, our results suggest that projected OA conditions may favor
non-calcifying algae and influence the relative dominance of fleshy macroalgae on
reefs, perpetuating or exacerbating existing shifts in reef community structure.

Subjects Ecology, Marine Biology
Keywords Calcification, Crustose coralline algae, Halimeda, Macroalgae, Ocean acidification,
Photosynthesis, Calcareous algae

INTRODUCTION
Changes in ocean chemistry associated with anthropogenic carbon dioxide (pCO2)

emissions, a process known as ocean acidification (OA) (Kleypas et al., 1999; Orr et al.,

2005), have raised widespread concern for the survival and persistence of marine biota

(Kleypas et al., 1999; Hoegh-Guldberg et al., 2007). Identifying the groups of organisms that

will be susceptible to rapid OA versus those that may be resistant has prompted numerous

studies (Ries, Cohen & McCorkle, 2009; Kroeker et al., 2010; Kroeker et al., 2013). To date,

research has focused on understanding how reductions in the saturation state (Ω) of

calcium carbonate (CaCO3) and seawater pH associated with OA will impact the growth
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and physiology of commercially important calcifying organisms or entire ecosystems, such

as coral reefs, that build carbonate platforms (Kleypas et al., 1999; Andersson & Gledhill,

2013). However, examination of a wider taxonomic representation, including those

that calcify and those that do not, within and across ecosystems is critical to developing

ecological predictions of community-level responses to OA.

The changes in the carbonate system have important implications for marine calcifiers,

namely that OA may inhibit the ability of these species to grow, develop, reproduce and

sustain themselves within a community, although plasticity in organismal responses

indicates that some species may have wider tolerance limits (Doney et al., 2009; Kroeker

et al., 2010; Kroeker et al., 2013; Johnson, Moriarty & Carpenter, 2014). Mounting evidence

from coral reefs suggests that decreasing carbonate saturation (Ω) has negative effects on

calcification (Langdon & Atkinson, 2005; Doney et al., 2009; Andersson & Gledhill, 2013),

reproductive success (Albright, 2011), and competitive strength (Diaz-Pulido et al., 2011) of

scleractinian corals. However, less attention has been given to the response of tropical

marine primary producers to rising oceanic CO2, particularly fleshy and calcareous

benthic macroalgae which are also among the most dominant constituents of the coral

reefs benthos.

The future trajectory of coral reefs may be influenced by concurrent effects of OA on

both fleshy and calcified algae (reviewed in Koch et al., 2013), which serve key functional

roles in reef systems in addition to competing with corals for space and resources. Cal-

careous algae contribute to framework development and some are active reef builders that

account for up to 90% of living benthic cover on reefs (Tribollet & Payri, 2001). Crustose

coralline algae (CCA) serve important ecological functions on reefs by contributing to

primary production and carbonate production (Chisholm, 2003), producing settlement

cues for coral larvae (Harrington et al., 2004; Price, 2010), and maintaining structural

integrity of the framework by acting as reef cement (Camoin & Montaggioni, 1994).

Calcareous green algae, such as Halimeda spp., are a major source of primary production

and CaCO3 (Rees et al., 2007) due to their fast growth and turnover rates (Smith et al.,

2004), and are a preferred food source for many coral reef fishes (Mantyka & Bellwood,

2007; Hamilton et al., 2014). Fleshy macroalgae include a highly diverse group of seaweed

species that act as a source of food for higher trophic levels and directly compete with

corals for space (McCook, Jompa & Diaz-Pulido, 2001) on the reef benthos. Some fleshy

macroalgae produce toxic allelochemicals which can kill corals upon contact (Rasher et

al., 2012) while others may transmit coral disease (Nugues et al., 2004) or affect microbial

assemblages associated with the coral holobiont via release of dissolved organic carbon

(Smith et al., 2006; Haas et al., 2013; Nelson et al., 2013). Furthermore, the relative balance

of calcifiers to fleshy macroalgae is important for reef resilience (Hughes et al., 2010).

Increased cover of fleshy macroalgae, associated with anthropogenic disturbances such

as poor water quality (Fabricius, 2005) and overfishing, is often used as an indicator of

deteriorating reef health (Hughes, 1994). Given the important roles that calcareous and

fleshy algae serve in the structure and function of coral reef ecosystems, it is critical to

identify the potential differential effects of OA on these functionally distinct groups.
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Increased CO2 has the potential to have disparate effects on physiological processes for

calcareous and fleshy algae, namely on photosynthesis and biomineralization. In terrestrial

systems, rising atmospheric CO2 can fertilize primary producers and enhance production

(Ainsworth & Long, 2005), but in marine ecosystems, photosynthesizers have access to

other relatively abundant carbon species, such as bicarbonate (HCO−

3 ), that can be used

for photosynthesis. The potential for CO2 fertilization of marine primary producers is

likely contingent on species–specific mechanisms of carbon acquisition, influenced by

the activity of carbon concentrating mechanisms (CCMs) (Giordano, Beardall & Raven,

2005; Raven et al., 2011; Koch et al., 2013). Laboratory manipulations and field studies

from temperate and Mediterranean ecosystems (Hall-Spencer et al., 2008; Porzio, Buia &

Hall-Spencer, 2011) suggest that OA may enhance carbon fixation (Kroeker et al., 2010;

Cornwall et al., 2012; Kroeker et al., 2013) and photosynthesis in fleshy algae resulting in

increases in algal growth rates (Gao et al., 1991; Kubler, Johnston & Raven, 1999; Cornwall

et al., 2012). However, variations in interspecific responses may depend on the extent to

which a species is presently carbon-limited (Harley et al., 2012; Koch et al., 2013). The

photosynthetic response of seaweeds to OA is poorly understood in part because data on

the presence, absence, or activity level of CCMs is often lacking for many tropical species

(Hurd et al., 2009; Raven et al., 2011). Although much of the literature on OA effects on

marine algae has shown that CO2 enrichment enhances photosynthesis in phytoplankton

and phanerograms (Riebesell et al., 1997; Palacios & Zimmerman, 2007; Gattuso & Hansson,

2011), the photosynthetic response of seaweeds to OA has been highly variable across

experiments (Koch et al., 2013) and sometimes negative for calcified species (Anthony et al.,

2008; Sinutok et al., 2011; Sinutok et al., 2012).

Conversely, OA effects on skeletal production in calcareous algae have been studied

in more detail and changes in carbonate chemistry (i.e., lower pH, lower carbonate

availability, and decreased CaCO3 saturation state) have been shown to inhibit calcification

in many species. The effects of OA on calcification in marine organisms may be influenced

by the ability for a species to control carbonate chemistry at the intracellular or extracel-

lular site of calcification (Ries, Cohen & McCorkle, 2009). A decrease in Ω in the external

environment associated with OA could make biogenic CaCO3 crystal precipitation more

difficult. When Ω decreases below the saturation horizon (<1) CaCO3 dissolution is

thermodynamically favored (Milliman et al., 1999). This saturation horizon is influenced

by temperature, pressure, and mineralogy (Feely et al., 2004; Orr et al., 2005), and net

dissolution and calcification can occur both above and below this threshold, respectively,

depending on the organism and the environment (Milliman et al., 1999). CCA may be

some of the most sensitive calcifiers to OA because they secrete high Mg-calcite, the most

soluble polymorph of CaCO3 (Morse, Andersson & Mackenzie, 2006; Andersson, Mackenzie

& Bates, 2008). Other studies have found that OA decreases CCA calcification (Semesi,

Kangwe & Bjork, 2009; Johnson & Carpenter, 2012; Comeau, Carpenter & Edmunds,

2012; Comeau et al., 2013; Johnson, Moriarty & Carpenter, 2014), structural integrity

(Ragazzola et al., 2012) and increases mortality and that these effects that may be
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exacerbated by warming temperatures (Anthony et al., 2008; Martin & Gattuso, 2009;

Diaz-Pulido et al., 2012; Martin et al., 2013) or increased solar UV radiation (Gao & Zheng,

2010). The articulated calcareous green algae Halimeda spp. have been shown to be both

sensitive (Sinutok et al., 2011; Sinutok et al., 2012) and insensitive to OA (Comeau et al.,

2013), where the direction and magnitude of the response of Halimeda to OA varies among

species (Ries, Cohen & McCorkle, 2009; Price et al., 2011; Comeau et al., 2013). Negative

effects of OA on calcification of CCA and Halimeda spp. may have serious implications

for carbonate production and framework stability on coral reefs because they are often

common members of ‘intact’ benthic reef communities (Sandin et al., 2008; Williams et al.,

2013).

The primary objective of our study was to determine if there are consistent, differential

responses of fleshy and calcareous tropical marine algae to OA using parallel, replicated

experimental manipulations. On Palmyra Atoll in the northern Line Islands, five

common species of fleshy algae and six species of calcareous algae were exposed to CO2

levels expected by the year 2100 under a business-as-usual carbon emissions scenario

(Meinshausen et al., 2011). In particular, the hypotheses tested were that, even with

variation in species–specific physiological responses, elevated CO2, (1) reduces net

calcification across calcareous algae but, (2) stimulates growth of fleshy algae by enhancing

photosynthesis. This study provides one of the first efforts to quantify OA effects on

multiple species of both calcareous and fleshy algae from a coral reef environment, and

provides insight into the effects of OA on a suite of algae that are important in the structure

and function of coral reefs.

MATERIALS AND METHODS
Study site and species
All experiments were conducted on Palmyra Atoll in the Northern Line Islands, central

Pacific, in the recently established Pacific Remote Island Areas Marine National Monument

(PRIAMNM) protected by the US Fish and Wildlife Refuge. Due to its isolation

(∼1,700 km south-southwest of Hawaii) and lack of permanent human residence,

Palmyra’s coral reefs are considered relatively healthy and are dominated by reef builders

(Sandin et al., 2008; Williams et al., 2013). The remote nature of the field station limits

research excursions to a few weeks at a time. Due to the absence of potentially confounding

local anthropogenic impacts, Palmyra provides a unique setting for global change

experiments.

To explore the effects of OA on different algal functional groups, eleven common species

of algae were used in CO2 enrichment experiments (see Sandin et al., 2008 and Williams

et al., 2013 for relative abundances). Algae were categorized into three functional groups:

fleshy macroalgae (Acanthophora spicifera, Caulerpa serrulata, Dictyota bartayresiana,

Hypnea pannosa, and Avrainvillea amadelpha), upright calcareous algae (Halimeda taeni-

cola, Halimeda opuntia, Galaxaura rugosa, and Dichotomaria marginata), and crustose

coralline algae (CCA: Lithophyllum prototypum, formerly Titanoderma prototypum, and

Lithophyllum sp.) (Fig. 1, Table S1). Specimens were collected via SCUBA at a depth
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Figure 1 Growth response of fleshy and calcareous algae to treatment conditions. The eleven species
of algae exposed to CO2 enrichment experiments on Palmyra Atoll. Algae were separated by functional
group. The species of fleshy macroalgae included: (A) Acanthophora spicifera, (B) Avrainvillea amadelpha,
(C) Caulerpa serrulata, (D) Dictyota bartayresiana, (E) Hypnea pannosa. The upright calcareous algae
included: (F) Dichotomaria marginata, (G) Galaxaura rugosa, (H) Halimeda taenicola, (I) Halimeda
opuntia, and the CCA included: (J) Lithophyllum sp., (K) Lithophyllum prototypum. (L) The mean
(±SE) change in either fleshy or calcareous biomass (highlighted in gray) following exposure to either
present-day ambient air controls (open circles) or predicted OA treatments (closed circles). Fleshy
macroalgae are shown in brown, upright calcareous algae in green, and CCA in red. Species tested in
multiple experiments were pooled across years. * Indicates a significant difference between treatments as
determined by independent t-tests (results reported in Table 2).
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of ∼5 m from the shallow western terrace (5◦53.1696′N, 162◦7.5756′W), excluding

L. prototypum. L. prototypum was collected at a depth of ∼10 m from the southern fore

reef (5◦53.7906′N, 162◦7.6859′W) where the species is abundant. Except for the corallines,

which were collected as free-living rhodoliths, individuals were removed at the holdfast

or from rhizoids in order to minimize stress. Coralline rhodoliths were comprised of

100% live coralline cover, and no bare carbonate was exposed to the potentially corrosive

conditions. Samples were cleaned carefully of epiphytes with a soft-bristled brush and

allowed to acclimate for at least one day in fresh, ambient seawater.

Experimental conditions and seawater chemistry
To explore the effects of OA on growth, calcification and photophysiology of benthic algae,

CO2 enrichment experiments were conducted for ∼2 weeks in July of 2010, and September

of 2009, 2011, and 2012 (see Table S2 for experiments across years). Experimental

aquariums (glass jars) held 700 mL of seawater collected from offshore and an individual

alga (∼2 g live tissue). Seawater was treated continuously with either air or CO2 enriched

gas for several hours prior to experimentation and changed (100%) every 48 h to prevent

nutrient limitation and to maintain treatment conditions (sensu Price et al., 2011).

The effects of projected OA were simulated by micro-bubbling either pre-mixed

air enriched with CO2 to ∼1,000 µatm into treatment aquariums (OA treatment) or

ambient air into control aquariums. Clear polycarbonate lids reduced atmospheric

equilibration, evaporation, and rainwater incursion. Air and CO2 enriched gas were

bubbled continuously into treatment aquariums through wooden air stones that were

placed at the bottom, center of experimental replicates. The continuous bubbling within a

relatively small volume facilitated thorough mixing of the seawater within the jars. It was

not possible to measure water flow within the contained jars however gas was adjusted to

flow into experimental aquariums at a constant rate. Sample sizes varied by experiment

and the availability of samples, but ranged from 4 replicates per treatment/species in 2009

to 10 in 2012 (Table S2). Additionally, aquariums without algae were maintained in all

experiments to determine if algal metabolism affected carbonate chemistry and altered

treatment conditions.

Aquariums were partially submerged in flow-through seawater baths under natural

sunlight with shade cloth screens to simulate in situ temperature and irradiance levels at

5 m depth (Table S2). Temperature and light intensity within aquariums were monitored

every 15 min with data loggers (Onset, HOBO Pendant Temperature Light/Data Logger)

for the duration of the experiments. Light intensity was measured in Lux, and converted

to photosynthetically active radiation (PAR) with the following conversion: 1 µmol quanta

(400–700 nm) m−2 s−1
= 51.2 lux (Valiela, 1984). This conversion was validated by

additional in situ PAR measurements made at the collection site, using an underwater

spherical quantum sensor (LICOR, LI-193). In 2009 and 2010, oxygen (O2, polarographic

electrode, ±0.2 mg L−1), temperature (±0.15 ◦C), salinity (±0.1 psu) and pHSW (±0.2)

were monitored with a handheld meter (YSI Environmental Quatro). In 2011 and 2012,

O2 (±0.01 mg L−1), temperature (±0.3 ◦C), and pHSW (±0.1) were measured with a Hach

Johnson et al. (2014), PeerJ, DOI 10.7717/peerj.411 6/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.411/supp-2
http://dx.doi.org/10.7717/peerj.411/supp-2
http://dx.doi.org/10.7717/peerj.411/supp-2
http://dx.doi.org/10.7717/peerj.411/supp-2
http://dx.doi.org/10.7717/peerj.411/supp-2
http://dx.doi.org/10.7717/peerj.411/supp-2
http://dx.doi.org/10.7717/peerj.411


Lange HQ40 portable multi-parameter meter (IntelliCAL PHC101 Standard Gel Filled

pH Electrode and IntelliCAL LDO101 Standard Luminescent Dissolved Oxygen LDO

Optode). The pH probe was calibrated daily with certified Tris buffer (provided by Andrew

Dickson, SIO). Using certified Tris buffer as a reference improved the accuracy of pH probe

measurements to ±0.001. In each year, measurements were recorded from all aquariums in

the evening (1800–2000) of each day (Table 1).

Discrete water samples for total alkalinity (AT) and total dissolved inorganic carbon

(CT) were collected from empty aquariums (controls) and a subset of experimental aquar-

iums from both treatment levels at multiple time points during all experiments (in 2009

only samples from empty aquariums were collected). Samples were collected by siphoning

treatment water into 500 mL Corning-brand Pyrex sample bottles and fixed with 200 µL

saturated HgCl2, leaving a 1% head space. Water samples were transported to Scripps

Institution of Oceanography (SIO) for standard carbonate chemical analyses, (SOP, sensu

Dickson, Sabine & Christian, 2007) in the lab of Dr. Andrew Dickson. AT was determined

using an open-cell titrator (Metrohm Dosimat Model 665) and Metrohm potentiometric

pH (SOP 3b), and CT was determined with a Single Operator Multi-parameter Metabolic

Analyzer (SOMMA) coulometer (SOP 2) (Dickson, Sabine & Christian, 2007). From the

measurements of AT and CT, the remaining carbonate parameters were calculated using

the computer program CO2SYS (Table S3) (Pierrot, Lewis & Wallace, 2006). The average

difference (±SE) between the mean measured pHSW and the mean pHSW calculated from

measurements of AT and CT was 0.1 (±0.05) (n = 32).

CO2 effects on growth and calcification
Growth of fleshy algae was measured as the change in wet weight over time (to the nearest

0.01 g). Samples were spun in a salad spinner (10 revolutions) and then gently blotted dry

with paper towels immediately prior to obtaining weights. Net growth and calcification

were measured using the change in buoyant weight (Davies, 1989), where all calcareous

species were weighed to the nearest 0.001 g while suspended (from the weigh-below on

a balance) in a basket submerged in ambient seawater; a technique that works well for

upright calcareous algae (Price et al., 2011). Any segments shed during the course of the

experiment were weighed along with the intact thallus. Buoyant weight was converted to

actual weight based on the density of seawater and the density of the respective CaCO3

polymorph. Growth and calcification rates were calculated by the change in weight over

the experiment, with rates normalized to initial thallus weight and number of days in

treatment conditions, expressed as change in weight per day (mg g−1 day−1).

CO2 effects on photophysiology
To assess the effect of CO2 enrichment on algal photophysiology, photosynthetic parame-

ters were measured fluorometrically with a red Pulse Amplitude Modulated Fluorometer

(PAM) (Walz). The fiber optic probe was clipped to the thallus halfway up the branch

on an unepiphytized portion of tissue with the “dark leaf clip”. Rapid light curves (RLCs)

were generated by exposing algal tissue to 8 incremental steps of increasing irradiance

from 0–436 µM photons m−2 s−1 in 2009, 0–533 µM photons m−2 s−1 in 2010, and
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Table 1 Measured pH and dissolved oxygen of OA experiments on Palmyra Atoll. The mean (±SE)
measured pHSW and dissolved oxygen conditions for CO2 enrichment experiments conducted on
Palmyra Atoll from 2009–2012. Measurements were conducted at the same time of day (∼2000) for
the duration of the experiment in empty control (no biological material), ambient air, and high pCO2
treatments. Daily means were calculated within a species (n = 4, 2009; n = 6, 2010; n = 5, 2011; n = 10,
2012), and then averaged across days (14 days, 2009; 9 days, 2010; 17 days, 2011; 15 days, 2012). DO,
dissolved oxygen; pHSW, pH seawater scale.

Treatment Species Temperature (◦C) DO (mg L−1) pHSW

2009 Experiments

Ambient air Control 29.31 ± 0.07 4.95 ± 0.13 8.08 ± 0.02

H. opuntia 29.26 ± 0.08 4.57 ± 0.16 8.03 ± 0.04

H. taenicola 29.29 ± 0.08 4.73 ± 0.12 7.99 ± 0.03

Lithophyllum sp. 29.43 ± 0.03 5.17 ± 0.11 8.05 ± 0.01

L. prototypum 29.38 ± 0.02 5.16 ± 0.16 8.04 ± 0.02

High pCO2 Control 29.33 ± 0.06 4.66 ± 0.26 7.68 ± 0.04

H. opuntia 29.23 ± 0.08 4.16 ± 0.21 7.63 ± 0.02

H. taenicola 29.25 ± 0.07 4.38 ± 0.19 7.62 ± 0.02

Lithophyllum sp. 29.41 ± 0.03 5.47 ± 0.10 7.68 ± 0.03

L. prototypum 29.38 ± 0.02 4.71 ± 0.21 7.65 ± 0.02

2010 Experiments

Ambient air Control 29.25 ± 0.15 4.85 ± 0.05 8.06 ± 0.05

A. spicifera 29.22 ± 0.07 4.86 ± 0.06 8.08 ± 0.04

C. serrulata 28.95 ± 0.04 4.79 ± 0.13 8.09 ± 0.02

G. rugosa 29.25 ± 0.02 4.92 ± 0.06 8.09 ± 0.02

H. taenicola 29.36 ± 0.05 4.78 ± 0.07 7.98 ± 0.04

High pCO2 Control 29.25 ± 0.05 4.70 ± 0.30 7.79 ± 0.13

A. spicifera 29.10 ± 0.05 4.57 ± 0.18 7.88 ± 0.05

C. serrulata 28.91 ± 0.03 4.30 ± 0.17 7.77 ± 0.06

G. rugosa 29.21 ± 0.07 4.50 ± 0.28 7.87 ± 0.06

H. taenicola 29.34 ± 0.06 4.69 ± 0.13 7.77 ± 0.11

2011 Experiments

Ambient air Control 28.46 ± 0.21 7.98 ± 0.08 7.99 ± 0.06

C. serrulata 28.34 ± 0.06 7.93 ± 0.03 8.00 ± 0.02

D. bartayresiana 28.35 ± 0.01 7.97 ± 0.04 8.04 ± 0.02

H. pannosa 28.26 ± 0.18 7.68 ± 0.04 7.98 ± 0.11

D. marginata 28.44 ± 0.10 7.86 ± 0.06 8.05 ± 0.01

H. opuntia 28.87 ± 0.04 8.12 ± 0.04 7.97 ± 0.03

Lithophyllum sp. 28.92 ± 0.14 7.87 ± 0.05 8.03 ± 0.06

High pCO2 Control 28.30 ± 0.16 8.02 ± 0.08 7.76 ± 0.06

C. serrulata 28.86 ± 0.09 7.85 ± 0.02 7.66 ± 0.03

D. bartayresiana 28.39 ± 0.01 7.93 ± 0.03 7.76 ± 0.02

H. pannosa 28.38 ± 0.04 7.68 ± 0.22 7.86 ± 0.04

D. marginata 28.87 ± 0.21 7.87 ± 0.05 7.80 ± 0.03

H. opuntia 28.87 ± 0.09 8.39 ± 0.09 7.69 ± 0.03

Lithophyllum sp. 28.46 ± 0.08 7.82 ± 0.07 7.74 ± 0.06

(continued on next page)
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Table 1 (continued)
Treatment Species Temperature (◦C) DO (mg L−1) pHSW

2012 Experiments

Ambient air Control 28.61 ± 0.10 7.81 ± 0.02 8.11 ± 0.03

A. amadelpha 28.72 ± 0.18 7.84 ± 0.02 8.02 ± 0.01

H. taenicola 28.76 ± 0.08 7.90 ± 0.05 8.01 ± 0.03

High pCO2 Control 28.71 ± 0.07 7.81 ± 0.03 7.85 ± 0.08

A. amadelpha 28.68 ± 0.07 7.87 ± 0.08 7.75 ± 0.05

H. taenicola 28.72 ± 0.18 7.98 ± 0.20 7.73 ± 0.06

0–614 µM photons m−2 s−1 in 2011, with 10 s at each light step (Saroussi & Beer, 2007).

Replicate RLCs were generated in 2009 (3 RLCs per individual) and 2010 (2 RLCs per

individual), and one RLC was generated for samples in 2011. Due to variation in exper-

imental setup and PAR conditions across experiments, RLC intensities were higher than

experimental PAR intensities in 2009 and 2010 and lower than experimental conditions

in 2011 (Table S2). No RLCs were conducted on H. taenicola and A. amadelpha in 2012

because of time constraints. Using this approach of short illumination interval RLCs

(<1 min), we were interested in relative comparisons of photophysiological performance

between treatments (Enriquez & Borowitzka, 2010). Photosynthetic parameters were

calculated from each RLC, and where RLCs were repeated on an individual, parameters

were averaged for each individual before further statistical analyses.

Statistical analyses
To explore the effects of CO2 enrichment on growth and calcification, separate t-tests for

each species compared responses between control and experimental treatments. Certain

species were experimentally manipulated in multiple years; to examine overall effects

on species independent of experimental year, data across years were pooled. Additional

independent t-tests were run in each year for those species, because the experimental setup

and sample size varied slightly from year-to-year. Prior to analysis conducted in statistical

software JMP v.10, data were tested for the assumptions of normality and homogeneity of

variances with the Shapiro–Wilks test and diagnostic q–q plots.

To examine photophysiological response to CO2 enrichment, the electron transport

rates (ETR) from each RLC was plotted against irradiance and fit to a three parameter

model (Frenette et al., 1993) to estimate the initial slope of the curve (α, µM electrons

µM photons−1), the maximum relative electron transport rate (rETRMax, µM electrons

m−2 s−1), and photoinhibition (β, µM electrons µM photons−1) (Platt, Gallegos &

Harrison, 1980). Mean parameter estimates were averaged across samples within a

treatment level for each species. In 2009 and 2010, several RLCs were generated for an

individual alga; parameters were averaged within an individual before treatment effects

were explored. The analyses were conducted using the software GraphPad Prism (v.6)

and in all cases the model fit the data well with R2 >0.90 and p < 0.001. Parameters were

compared for each species between treatments using independent t-tests as described

above.
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Meta-analysis
Meta-analyses were used to combine data across independent experiments and to explore

potential differences in functional group responses to OA. Each species was categorized

as fleshy macroalgae, upright calcareous algae, or CCA. Species that became sexually

reproductive during experiments (A. spicifera, A. amadelpha, C. serrulata 2011) were not

included in the meta-analysis because a large portion of the algal thallus senesced, or for

holocarpic species the entire thallus disintegrated, after gamete/spore release and it was

not possible to differentiate between the effects of reproduction versus OA treatment on

algal biomass. Species tested across multiple years were included as independent data

sets, yielding 3 fleshy macroalgae, 6 upright calcareous algae, and 3 CCA representatives.

A random-effects model of standardized mean differences (Cooper, Hedges & Valentine,

1994) was used to estimate within and across experiments variance components; effect

size was weighted both by sample size and pooled standard deviation. A one-tailed z-test

of significance (against zero) of the mean effect size of CO2 enrichment was used for algal

growth and calcification responses. OA treatments were expected to enhance fleshy algal

growth (H0: mean effect size ≤ 0) and decrease algal calcification (H0: mean effect size

≥ 0). There was no a priori expectation of photosynthetic responses to OA and thus

a two-tailed z-test was used for the meta-analyses of photosynthetic parameters (see

Supplemental Information for details).

RESULTS
Experimental conditions
CO2 enrichment treatments effectively simulated near future seawater carbonate chemistry

and OA as compared to present-day ambient air controls (Table 1). Biological activity

(i.e., photosynthesis and respiration) introduced variability into carbonate chemistry

conditions in both ambient and high pCO2 treatments (Table S3). Diel variability

in carbonate chemistry was not characterized, however, based on previous studies

photosynthesis likely caused higher pH during the day, whereas respiration reduced pH

at night (Ohde & van Woesik, 1999). Discrete water samples and pH probe measurements

were collected at approximately the same time of day (2000) during all experiments.

The average difference (±SE) between the mean measured pHSW and the mean pHSW

calculated from measurements of AT and CT was 0.1 (±0.05) (n = 32). Considering the

robustness of pH probe measurements in comparison to certified Tris buffer (±0.001),

the relatively small difference between measured and calculated pH, and the frequency of

samples for measured pH (n = 9–17) (Table 1) versus calculated pH (n = 2–4) (Table S3),

measured pHSW is the most appropriate parameter to describe differences in carbonate

chemistry among experimental replicates. Most other physical conditions were consistent

across years, but due to changes in experimental facilities, irradiance levels were higher

and more representative of shallow reef environs in 2011 and 2012; oxygen levels were also

higher in those years (Table 1).
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Table 2 Results of pooled growth and photosynthetic parameters in response to treatment condi-
tions. The results of independent t-tests to analyze the effect of CO2 enrichment on response variables
for each species. Responses of species used in multiple experiments (different years) were pooled and
averaged across years by treatment to calculate an overall mean for each species. CO2 treatment was
treated as a fixed, independent factor. Degrees of freedom (df) are the same for all photosynthetic
parameters. Each experimental replicate (n) consisted of one aquarium containing one algal individual.
Statistically significant differences (p < 0.05) are emphasized in bold.

Growth rETRMax α β

Species df t p df t p t p t p

Fleshy macroalgae

A. spicifera 10 1.15 0.275 9 2.55 0.031 0.341 0.741 0.088 0.932

A. amadelpha 18 3.12 0.006

C. serrulata 22 0.066 0.948 19 0.282 0.781 0.350 0.730 0.356 0.726

D. bartayresiana 8 2.13 0.066 8 1.55 0.159 0.274 0.791 1.14 0.292

H. pannosa 5 4.90 0.004 5 0.186 0.556 0.602 0.60 0.624 0.560

Upright calcareous algae

D. marginata 8 3.83 0.005 8 0.440 0.83 0.092 0.929 0.823 0.434

G. rugosa 10 1.63 0.134 10 4.10 0.002 1.71 0.118 0.760 0.465

H. opuntia 16 2.59 0.020 16 0.046 0.964 1.43 0.171 0.223 0.827

H. taenicola 38 0.21 0.832 18 0.193 0.849 2.23 0.039 1.62 0.123

Crustose coralline algae

Lithophyllum sp. 16 5.28 <0.0001 16 0.582 0.569 0.280 0.783 1.0 0.332

L. prototypum 6 2.79 0.032 6 0.357 0.733 0.404 0.700

Species–specific effects of CO2 enrichment on calcification and
growth

High CO2 conditions decreased net calcification rates in 4 of the 6 calcareous species,

and potentially enhanced net growth in 2 of the 5 fleshy species (Fig. 1; Table 2).

CO2 enrichment significantly decreased calcification in the red calcareous macroalga

D. marginata (by 98%), and the two CCA Lithophyllum sp. (by 185%) and T. prototypum

(by 190%) relative to controls (Table 2). The response of the green calcareous algae in the

genus Halimeda was species–specific: the effect of CO2 enrichment on net calcification

rates was negative for H. opuntia (when repeated experiments were pooled) but negligible

for H. taenicola (Table 2). CO2 enrichment significantly increased growth in the fleshy red

macroalga H. pannosa (by 93%) relative to controls (Table 2). The fleshy brown macroalga

D. bartayresiana showed slight but non-significant increases in growth in high CO2 likely

due to small sample size and lack of power (β = 0.46; Table 2).

In addition to across species variability in the growth response, there was intra-specific

variation to CO2 enrichment across different years of experiments (Fig. 2). The trends

and absolute magnitude in growth responses remained the same for 2 of the 4 species

tested over multiple years. Irrespective of year, the calcareous green alga H. opuntia

calcified significantly less (by 14.55 mg g−1 d−1 in 2009 and 12.97 mg g−1 d−1 in

2011) under high CO2 conditions (Table 3), although the relative response varied by

year. H. opuntia calcified 200% less at high CO2 than ambient conditions and even
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Figure 2 Species–specific growth response to treatment conditions. The mean (±SE) change in either
fleshy or calcareous biomass following exposure to either present-day ambient air controls (open circles)
or predicted OA treatments (closed circles) for species tested in multiple experiments. The dashed line is
positioned at zero to indicate relative growth or loss of tissue for (A) Halimeda opuntia, (B) Halimeda
taenicola, (C) Lithophyllum sp., and (D) Caulerpa serrulata. Fleshy macroalgae are shown in brown,
upright calcareous algae in green, and CCA in red. * Indicates a significant difference between treatments
as determined by independent t-tests (results reported in Table 3).

experienced net dissolution in 2009, but only calcified 50% less in 2011 and experienced

net growth, despite the same high CO2 conditions (Table S4). Lithophyllum sp. showed a

consistent response to CO2 treatment in direction and absolute and relative magnitude

across years. Lithophyllum sp. calcified 185% less at high CO2 in both 2009 and 2011

(Table S4). H. taenicola calcified 89% less at high CO2 relative to controls in 2009, but

there was no significant difference in calcification during the 2010 and 2012 experiments

(Table 3). C. serrulata grew significantly more at high CO2 in the 2010 experiment,

however in 2011 C. serrulata grew less in the CO2 enrichment treatment than in ambient

conditions (Table 3).
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Table 3 Results of growth/calcification by species and year. The mean growth and calcification rates
of species tested in multiple experiments were examined using independent t-tests for each species
by year; CO2 treatment was treated as a fixed, independent factor. Each experimental replicate (n)
consisted of one aquarium containing one algal individual. Statistically significant differences (p < 0.05)
are emphasized in bold.

Growth

Species Year df t p

Fleshy macroalgae

C. serrulata 2010 10 4.28 0.002

2011 8 1.75 0.119

Upright calcareous algae

H. opuntia 2009 6 7.32 0.0003

2011 8 3.62 0.007

H. taenicola 2009 6 5.93 0.001

2010 10 0.224 0.827

2012 18 0.612 0.548

Crustose coralline algae

Lithophyllum sp. 2009 6 4.10 0.006

2011 8 3.43 0.009

Several fleshy macroalgal species became reproductive in CO2 treatments over the

course of our study, as evidenced by the presence of fertile tissue which eventually released

gametes or spores leaving behind only a small portion of the vegetative thallus. All samples

of A. spicifera and A. amadelpha released spores or gametes, respectively, upon exposure to

treatment conditions. In 2011, C. serrulata also reproduced, causing tissue loss in both am-

bient and CO2 treatments; 40% of Caulerpa individuals in the ambient treatment repro-

duced, whereas 100% of Caulerpa samples in the CO2 enrichment treatments reproduced.

Species–specific effects of CO2 enrichment on photophysiology
Exposure to CO2 treatments had no detectable effect on relative photophysiology of the 9

species tested, with a few exceptions (Fig. 3). CO2 enrichment significantly increased the

maximum photosynthetic capacity (rETRMax) in the calcareous red alga G. rugosa (Fig. 3A,

Table 2) relative to the control. In the fleshy red alga A. spicifera, rETRMax was significantly

lower following exposure to high CO2, however, these individuals had reproduced during

the experiment and the remaining vegetative tissue following gamete release was not

representative of healthy algal tissue. In the calcareous green alga H. taenicola, the initial

slope of the RLC (α) was significantly depressed after CO2 enrichment (Fig. 3B, Table 2).

There was no evidence of photoinhibition (β) in any of the species tested (Fig. 3C, Table 2).

Meta-analysis of experiments across years
Experimental effects were combined across species to assess the consistency of phys-

iological responses to CO2 enrichment within different algal functional groups using

meta-analyses. The mean effect size for calcification and growth was significantly greater

than zero for fleshy species, but significantly less than zero for both groups (upright and
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Figure 3 Photosynthetic response of fleshy and calcareous algae to treatment conditions. The mean
(±SE) photosynthetic parameters from RLCs following exposure to either present-day ambient air
controls (open circles) or predicted OA treatments (closed circles). Species tested in multiple experiments
were pooled across years. RLCs were measured fluorometrically with a pulse amplitude modulated
fluorometer (PAM), and fit to the model of Platt, Gallegos & Harrison (1980). From the model we derived
(A) maximum photosynthetic performance (rETRMax), (B) photosynthetic efficiency (α), and (C) pho-
toinhibition (β). Parameters from replicate RLCs were averaged for each individual. Fleshy macroalgae
are shown in brown, upright calcareous algae in green, and CCA in red. * Indicates a significant difference
between treatments as determined by independent t-tests (results reported in Table 2).
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Table 4 Meta-analysis results. Heterogeneity (QT) in overall analyses and results from a random
effects model of standardized mean differences for response variables pooled by functional group:
fleshy macroalgae, upright calcareous algae, or crustose coralline algae (CCA). Statistically significant
values (p < 0.05) are emphasized in bold. rETRMax, maximum relative electron transport rate (µM
photon m−2 s−1); α, photosynthetic efficiency or initial slope of the rapid light curve (µM electrons
µM photons−1); β, photoinhibition (µM electrons µM photons−1).

Response df QT p k Mean effect size Z p

Fleshy macroalgae

Growth 19 0.07 >0.05 3 16.1 ± 12.5 2.11 0.017

rETRMax 12 0.18 >0.05 3 0.454 ± 6.19 0.144 0.886

α 12 0.07 >0.05 3 −0.005 ± 0.13 0.073 0.471

β 12 0.16 >0.05 3 −0.0004 ± 0.0009 0.632 0.2248

Upright calcareous algae

Growth 4 2.04 >0.05 7 −10.8 ± 4.7 3.80 0.0001

rETRMax 4 1.62 >0.05 6 0.031 ± 3.56 0.017 0.987

A 4 0.72 >0.05 6 −0.020 ± 0.06 0.722 0.470

B 4 0.60 >0.05 6 0.001 ± 0.01 0.756 0.4333

Crustose coralline algae

Growth 6 0.08 >0.05 3 −0.405 ± 0.35 1.90 0.029

rETRMax 6 0 >0.05 3 0.693 ± 27.4 0.339 0.735

α 6 0.05 >0.05 3 −0.002 ± 0.09 0.053 0.941

β 6 0 >0.05 3 −0.001 ± 0.004 0.169 0.2637

encrusting) of calcareous species (Table 4; Fig. 4A). There was no overall effect of CO2

enrichment on photophysiology (rETRMax, α, β) relative to the control for algal functional

groups (Fig. 4, Table 4). The variation between experiments was never significantly

different from 0 (Q ≤ 2.04, p > 0.05 for each functional group and response variable;

Table 4), indicating that the inconsistencies in PAR did not influence the overall response

of fleshy versus calcareous algae to OA. Due to the significant effect of CO2 enrichment

on growth and calcification rates across experiments, and the lack of significant variation

in the strength of this response, we pooled species across years to show overall trends in

treatment responses (Fig. 1).

DISCUSSION
This series of experimental manipulations indicate that tropical algae respond differently

to CO2 enrichment depending on species and whether or not they are calcified. When

combining data from multiple experiments, calcareous algae experienced a reduction

in biomineralization while fleshy algae became more productive. The magnitude

of algal growth and calcification responses to OA conditions varied by species, and

occasionally, within a species over multiple experiments. In contrast, there was no effect

of CO2 enrichment on algal photophysiology relative to controls as measured by short

illumination RLCs. Furthermore, exposure to OA conditions initiated sexual reproduction

in 3 out of 5 species of fleshy macroalgae tested. These results support the hypothesis

that OA has differential effects on the growth of fleshy macroalgae and the calcification of

calcareous algae.
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Figure 4 Functional group responses to OA. Mean (±95% CI) effect sizes were calculated to explore
the cumulative effects of OA on algae categorized into functional groups (fleshy macroalgae, upright
calcareous algae, and crustose coralline algae (CCA). Species that reproduced during experiments were
not included in this analysis. The dashed line is positioned at zero to indicate a relative increase or decrease
following exposure to OA conditions for (A) change in weight, (B) maximum photosynthetic capacity
(rETRMax), (C) photosynthetic efficiency (α), and (D) photoinhibition (β). Fleshy macroalgae are shown
in brown circles, upright calcareous algae in green, and CCA in red. * Indicates an effect size different than
zero as determined by meta-analysis (results reported in Table 4).
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Table 5 OA effects on tropical benthic macroalgae. A summary of findings to date from experiments exploring OA effects on growth, calcification,
and photosynthesis in tropical benthic macroalgae. Only business-as-usual OA experiments (800–1200 µatm) are included. +, positive effect; −,
negative effect; 0, no effect.

Species Growth/
Calcification

Photosynthesis Reproduction Reference

Fleshy macroalgae

Acanthophora spicifera 0 − + This study

Avrainvillea amadelpha − + This study

Caulerpa serrulata 2010 + 0 This study

Caulerpa serrulata 2011 0 0 + This study

Dictyota bartayresiana + 0 This study

Hypnea pannosa + 0 This study

Lobophora papenfussii − (Diaz-Pulido et al., 2011)

Upright calcareous algae

Galaxaura rugosa 0 + This study

Dichotomaria marginata − 0 This study

Halimeda opuntia − 0 This study

Halimeda taenicola 0 0 This study

Halimeda cylindracea − − (Sinutok et al., 2011; Sinutok et al., 2012)

Halimeda macroloba − − (Sinutok et al., 2011; Sinutok et al., 2012)

Halimeda incrassata + (Ries, Cohen & McCorkle, 2009)

Crustose coralline algae

Lithophyllum prototypum − 0 This study

Lithophyllum sp. − 0 This study

Hydrolithon sp. − + (Semesi, Kangwe & Bjork, 2009)

Porolithon onkodes − − (Anthony et al., 2008; Diaz-Pulido et al., 2012;
Johnson & Carpenter, 2012; Comeau, Carpenter
& Edmunds, 2012; Comeau et al., 2013)

Neogoniolithon sp. + (Ries, Cohen & McCorkle, 2009)

Mixed CCA − (Jokiel et al., 2008; Kuffner et al., 2008)

Biomineralization by seaweeds substantially contributes to carbonate production

on tropical reefs and these results suggest that OA may decrease reef formation

and cementation services provided by these often over-looked ecosystem engi-

neers. In these experiments, OA decreased calcification of calcareous green algae

(H. opuntia and H. taenicola) and caused net dissolution of calcareous red macrophytes

and CCA (D. marginata, G. rugosa, Lithophyllum sp., and L. prototypum). Many other

studies have reported decreased calcification as a consequence of simulated OA for tropical

(Table 5) and temperate calcareous algae even in milder acidification scenarios than used in

our study (see Koch et al., 2013 for review). However, much of the previous work exploring

OA effects on calcareous algae across ecosystems has focused on the crustose coralline algae

(family Corallinaceae) and this study is among the first to expand to different taxonomic

entities such as the lightly calcified red algae D. marginata and G. rugosa (Table 5).
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The results of this study indicate that calcareous algae calcified less after two weeks

of exposure to CO2 enrichment than ambient controls, but the response varied by

functional group. CCA, which deposit the more soluble high Mg-calcite (12–18%

MgCO3; Milliman, Gastner & Muller, 1971), experienced net dissolution in the OA

treatments, where ΩMg-calcite was ≤1 (using the solubility constant estimated by Lueker,

Dickson & Keeling, 2000), despite assuming our samples deposited the conservative lower

range of 8% Mg mole fraction. Intracellular dolomite (CaMg[CO3]2), a stable form of

carbonate, can be the source of Mg in other species of CCA and actually reduces net

thallus dissolution at higher skeletal mole fractions (Nash et al., 2012). The exact mineral

composition of the carbonate in our CCA species is unknown, but was not robust to our

treatment conditions. The calcareous upright algae all deposit aragonite and calcified

less under OA, but only experienced net dissolution in one instance. Differences in the

magnitude of effects between calcareous species may be influenced by species–specific

mechanisms of calcification (Price et al., 2011; Comeau, Carpenter & Edmunds, 2012;

Koch et al., 2013), mineralogy of CaCO3 deposited (Ries, Cohen & McCorkle, 2009), and

potential compensatory or antagonistic effects of high CO2 on photosynthesis (Table 5).

Differences in within-species susceptibility to OA demonstrate the complexity of how

ocean acidification may influence biological and chemical interactions in tropical marine

primary producers. Within-species responses across years of experiments may have

been driven by changes in dissolution versus calcification or by net growth rate, and the

relative contribution of dissolution versus calcification in influencing net effects of OA on

organisms should be a focus in future studies.

Understanding the effects of OA on algal physiology is difficult because photosyn-

thesis and calcification are inextricably coupled. In the process of fixing carbon, algal

photosynthesis alters the intracellular environment in favor of CaCO3 precipitation

(Borowitzka & Larkum, 1976). In the external environment, photosynthesis also has

the potential to alter carbonate chemistry and to create conditions more favorable for

calcification (Gattuso, Pichon & Frankignoulle, 1995; Anthony, Kleypas & Gattuso, 2011;

Smith et al., 2013). Fleshy macroalgae that are currently carbon limited are hypothesized

to be affected positively by increasing CO2 concentrations (Gao et al., 1991), which is

demonstrated here, but these effects are species and condition specific. Previous studies

have documented both positive and negative effects of CO2 enrichment on growth in

fleshy macroalgae (Table 5). Enhanced algal growth also has been documented in situ

in ecosystems near underwater volcanic vents where conditions of low pH and high

CO2 facilitate communities dominated by fleshy organisms (Hall-Spencer et al., 2008;

Fabricius et al., 2011). It has been hypothesized that higher concentrations of dissolved

CO2 would enhance fleshy macroalgal growth by stimulating photosynthesis. However,

despite the fact that fleshy algae grew more with high CO2 there was not a concurrent

response in photosynthetic parameters measured from chlorophyll fluorescence. While

the fluorescence technique is used widely to monitor algal photophysiology, it can be

highly variable (Edwards & Kim, 2010) and provides only an instantaneous snapshot

of photophysiological function. Short illumination RLCs (<1 min) are not comparable
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to estimates obtained using oxygen evolution from photosynthesis-irradiance curves

because there is not sufficient time with RLCs for organisms to reach steady-state flow

of electrons (Enriquez & Borowitzka, 2010). Thus, it may not be the most suitable technique

to assess the cumulative effects of CO2 enrichment on algal photophysiology and more

direct measures of photosynthesis are preferred.

Predicting the response of primary producers to high CO2 is complex and may depend

on resource acquisition strategies that are species–specific and potentially plastic over

time. The primary substrate for the photosynthetic enzyme Rubisco in all marine algae is

dissolved CO2. Seaweeds must compensate for the slow rates of CO2 diffusion through

seawater, as opposed to air, as well as the higher concentration of HCO−

3 compared

to CO2. Some primary producers have developed carbon concentrating mechanisms

(CCM) that increase the concentration of CO2 in the proximity of Rubisco (Raven, 1970).

Thus, the presence or absence of CCMs may influence species–specific responses to CO2

enrichment (Hurd et al., 2009; Koch et al., 2013), and changes to CCM activity levels may

explain the mixed responses of photosynthesis in the literature, as well as the growth

results documented here. One possible mechanism that may have facilitated increased

algal productivity under high CO2 in the present study, without concurrent increases in

rETRMax or α, may have been an increase in algal energy reserves through down regulation

of energetically costly CCMs, noted in another tropical green macroalga (Liu, Xu & Gao,

2012) and phytoplankton (Eberlein, Van de Waal & Rost, in press). An additional alternative

hypothesis is that nitrate reductase activity, an enzyme that reduces nitrate to nitrite, can

be stimulated by CO2 (Hofmann, Straub & Bischof, 2013), potentially releasing seaweed

from nitrogen resource limitation in oligotrophic coral reef ecosystems. Furthermore,

photophysiology should be assessed using more direct techniques in addition to RLCs such

as measuring oxygen evolution rates, in order to accurately quantify photosynthetic rates.

Predicting changes in enzymatic activity is critical to understanding mechanisms behind

species–specific responses to OA, yet basic physiological descriptions are lacking for the

majority of tropical algae, including the species used in the present study.

This and other studies have documented high variability among species in response

to OA. However, there also was within species variability across years, suggesting that

species–specific responses to OA may be context dependent. For example, due to logistical

constraints experiments conducted in 2009 and 2010 had substantially lower daily mean

irradiances than in 2011 and 2012 (ESM Table 2). Although mixing rates were consistent

from year to year, flow rates in experimental aquariums were relatively low. Thus, care

should be taken when extrapolating these biological responses to OA under higher

water flow regimes. Few studies have experimentally tested the effects of both water

flow and OA on coral reef algae, although flow rate has been shown to be an important

factor influencing pH gradients within the diffusive boundary layer (DBL) (Hurd et

al., 2011) and the response of some reef calcifiers to high CO2 (Anthony et al., 2013).

Increasing DBL thickness, with decreasing water flow, may buffer organisms against

changes in the carbonate chemistry of bulk seawater by providing a metabolically mediated

microenvironment of higher pH within the DBL. Furthermore, the biological variability in
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carbonate conditions introduced by algal photosynthesis and respiration in the contained,

aerated volume of water likely created a diel cycle in pH that may have approximated

carbonate chemistry variability on a shallow reef flat (Hofmann et al., 2011). Variability

in pH conditions has been shown to influence growth rates of coralline algae (Johnson,

Moriarty & Carpenter, 2014), therefore care should be taken when extrapolating the results

from the present study to other systems. Diel cycles in carbonate chemistry were not

characterized in this experiment, and have been infrequently included in descriptions of

experimental conditions in many OA studies. However, the variability in all experimental

conditions across this suite of experiments is far less than that of experiments combined in

several recent meta-analyses (Hendriks, Duarte & Alvarez, 2010; Kroeker et al., 2010; Kroeker

et al., 2013)). With the meta-analysis approach used here to explore effects of OA across

experiments, we accounted for the variability within and across experiments and found

that OA treatment was a significant driver of enhanced growth in fleshy macroalgae, and

loss of calcified biomass in upright calcareous algae and CCA.

Some within-species variability in response to OA treatment was due to the induction

of sexual reproduction following exposure to treatment conditions. Higher irradiance

levels can modulate the negative effects of high CO2 on algal responses to OA (Sarker et al.,

2013; Yildiz et al., 2013), including potentially triggering reproduction and may explain the

inconsistent results from year to year, specifically for C. serrulata. In 2011 the decrease

in C. serrulata growth likely was a result of the loss of algal tissue in individuals that

became sexually reproductive upon exposure to high CO2 and relatively higher irradiance.

Similar reproductive responses to treatment conditions were also noted for related

A. amadelpha and for a red macroalga, suggesting that there may be an interactive effect

between irradiance levels and CO2 concentrations. Sexual reproduction in these taxa has

been observed in Hawaii and the Caribbean during the spring (Clifton & Clifton, 1999;

Smith, Hunter & Smith, 2002). In all of these species, a large portion of the algal thallus

senesced after sexual reproduction, and for the green algae the reproduction was clearly

visible due to the loss of pigmentation following release of heavily pigmented gametes

or spores (Clifton & Clifton, 1999). The typical progression of sexual reproduction in

Bryopsidales ranges from 1–2 days (Clifton & Clifton, 1999), and the specimens did not

show signs of reproduction prior to the experiment. Furthermore, gametogenesis in

C. serrulata has been shown to be induced either as a coping mechanism (Williamson,

2010) or to maximize favorable conditions (Brawley & Johnson, 1992). Experiments were

conducted outside the potential seasonal reproductive cycle of tropical algae, and there

was no evidence of sexual reproduction before experiments, thus it is likely that sexual

reproduction was induced by experimental conditions. An alternative explanation is that

the reproductive response may have been an artifact of experimental manipulation and

stress associated with rapid exposure to high pCO2. The rate of exposure to high pCO2

has been shown to be an important determinant in the response of coralline algae to CO2

enrichment (Kamenos et al., 2013). Future work should explore the effects of both rate and

magnitude of CO2 enrichment on reproduction in fleshy macroalgae.
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OA poses an ever-increasing global threat (Kleypas et al., 1999; Hoegh-Guldberg et al.,

2007) to the ecological balance and stability of tropical reef systems via disparate effects on

calcareous versus fleshy taxa (Hall-Spencer et al., 2008; Fabricius et al., 2011; Porzio, Buia

& Hall-Spencer, 2011). It is difficult to predict the specific responses of macroalgal taxa to

CO2 enrichment; however, the patterns of response presented here suggest that growth of

fleshy macroalgae on coral reefs may be stimulated by OA, while calcareous species may be

depressed. Given that numerous other human impacts (overfishing, pollution, warming)

negatively affect corals and other calcifying reef builders while enhancing the abundance of

fleshy algae, our results suggest that OA may potentially exacerbate community shifts to-

wards fleshy macroalgal dominated states. However, little is known about how reef species

or communities will respond to the interactive effects of multiple stressors including OA.

Given the importance of coral reefs for supporting biodiversity (Knowlton, 2001), as well as

human populations and economies of coastal nations (Moberg & Folke, 1999), it is impera-

tive that we understand the scope of species responses to impending rapid climate change.
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