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0e bat algorithm (BA) is a heuristic algorithm that globally optimizes by simulating the bat echolocation behavior. In order to
improve the search performance and further improve the convergence speed and optimization precision of the bat algorithm, an
improved algorithm based on chaotic map is introduced, and the improved bat algorithm of Levy flight search strategy and
contraction factor is proposed. 0e optimal chaotic map operator is selected based on the simulation experiments results. 0en, a
multipopulation parallel bat algorithm based on the island model is proposed. Finally, the typical test functions are used to carry
out the simulation experiments. 0e simulation results show that the proposed improved algorithm can effectively improve the
convergence speed and optimization accuracy.

1. Introduction

Optimization is the selection of the best elements for a
particular set of criteria from a range of effective choices,
which shows many different advantages and disadvantages in
terms of computational efficiency and global optimization
probability, but has a wide range of applications in industry
and scientific research [1]. Function optimization proposes a
formal framework formodeling and solving a series of specific
problems, giving an “objective” function that takes a pa-
rameter as input, and the goal is to find the value of the
combined parameter to return the “best” value. 0is
framework is abstract enough that various problems can be
interpreted as “function optimization” problems [2]. How-
ever, traditional function optimization is only used to solve
some small-scale problems, which are often not applicable in
practice. 0erefore, people put their eyes on nature, which
provides rich models to solve these problems (such as fireflies,
bats, and ants). By simulating the natural biological systems,
many swarm intelligent optimization algorithms are pro-
posed to solve the application problems with nontraditional
methods [3].Many swarm intelligent optimization algorithms
have been proposed, such as particle swarm optimization

(PSO) algorithm [4], ant colony optimization (ACO) algo-
rithm [5], bat algorithm (BA) [6], social learning optimization
(SLO) algorithm [7], chicken swarm optimization (CSO)
algorithm [8], firefly algorithm (FA) [9], and so on.

0e bat algorithm (BA) is a heuristic search algorithm
proposed by Professor Yang in 2010 based on swarm in-
telligence [10].0e BA algorithm has many advantages, such
as simplicity, fewer parameters, robustness, ease of imple-
mentation, and so on. 0erefore, due to its obvious supe-
riority, BA has been applied in various application fields,
such as the optimal independent micro-smart grid, multi-
objective function optimization based on artificial neural
network model, economic scheduling problem, economic
load scheduling for wind power generation system, fault
diagnosis on low-speed rolling bearing, and the optimization
of echo state network [11–15]. However, some research
reports show that with the increase of problem dimensions,
its performance may decline and its exploration capacity
may become poor, so it is almost impossible to converge to
the global optimal solution. In order to overcome this
shortcoming, many scholars have studied and applied this
algorithm and proposed corresponding improvement
strategies.
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An elite crossover binary bat algorithm proposed in
[16], the algorithm using the cross mechanism in the elite
strategy and genetic algorithm, according to the certain
proportion selection in the bat group of elite individuals to
crossover, will be a child of the merit of bats group and the
parent group of mixed, guarantee the diversity of bats and
good sex, and improve the global search ability. Zhou et al.
[17] applied the cloud model to bat algorithm. Starting
from the living and predation characteristics of bats, the
echolocation model is reconstructed, and the trans-
formation theory of cloud model is used to describe the
qualitative concept: bats are close to prey. Fister et al. [18]
developed the hybrid self-adaptive bat algorithm (HSABA)
on the basis of self-adaptive bat algorithm (SABA). 0e
HSABA was combined with the local search heuristic al-
gorithm.0e hybrid algorithm was crossbred with different
DE strategies and used as the local search heuristic algo-
rithm to improve the current optimal solution, and the
solution group was pointed to a better area in the search
space. Qu et al. [19] integrated the weed growth, re-
production, spatial diffusion, and competition mechanism
of the invasive weed algorithm into the bat algorithm and
dynamically adjusts the standard deviation of the weed
spatial diffusion operator so that the algorithm not only
increases the global search ability but also improves the
local search ability. Wu et al. [20] proposed an elite
crossover binary bat algorithm. Based on the crossover
mechanism of elite strategy and genetic algorithm, this
algorithm selects elite individuals in the bat group to cross
over according to a certain proportion and then makes a
mixed selection between the daughter bat group and parent
bat group so as to ensure the diversity and excellence of the
bat group and improve the global search ability.

In this paper, a multipopulation parallel bat algorithm
based on island model is proposed and applied to three
strategies including chaos [21], Levy flight search [22], and
contraction factor. Simulation results show that the pro-
posed algorithm is more effective than single chaos, Levy
flight search, and contraction factor in terms of convergence
speed and accuracy.

2. Bat Algorithm

2.1.BasicPrinciple ofBatAlgorithm. 0e bat algorithm (BA)
is a new swarm intelligence optimization algorithm,
which simulates the foraging behavior of bats. Its prin-
ciple is to use the bat’s advanced echolocation capability
[10]. Echolocation is a kind of sonar: the bat (the main
small bat) emits a loud and short pulse sound. When the
sound hits an object, the echo will return to their ears in a
short period of time; bats receive and detect the position
of the prey in this way. In order to simulate the foraging
process of bats, the biological mechanism of the bat al-
gorithm is described as follows. All bats adopt echolo-
cation to detect distances, and the method used to identify
obstacles and prey is difficult to understand. Based on the
variable length waves λ, loudness A0, and fixed frequency
fmin, the bat searches for the prey with the velocity Vi at
the position Xi. 0e bat adjusts the pulse wavelength

according to the distance between itself and the prey. On
the other hand, when it is close to the prey, the frequency
of the transmission r ∈ (0, 1) will also be adjusted. 0e
loudness changes from the maximum value A0 to the
minimum value Amin in the searching process.

BA’s development takes advantage of existing algo-
rithms and other interesting features, inspired by the
wonderful behavior of miniature bat echolocation. Based
on these assumptions, this algorithm generates a set of
solutions in a random manner and then uses the loop
search to find the optimal solution. During this period, the
local search is adopted. 0at is to say that around the
optimal solution, the local solution is generated by random
flight and produces a global optimal solution. For bats, if
their foraging space belongs to the d-dimension at the t − 1
moment, the position of the bat i is Xt− 1

i , the flight velocity
is Vt− 1

i , and the current global optimal position is X∗. So,
the position and flight velocity of bat i at time t can be
updated by

fi � fmin + fmax − fmin( 􏼁β, (1)

V
t
i � V

t− 1
i + X

t− 1
i − X

∗
􏼐 􏼑fi, (2)

X
t
i � X

t− 1
i + V

t
i , (3)

where theminimum frequency of the sound waves generated
by the bat is fmin and the maximum frequency is fmax. β is a
uniformly distributed random number located in the scope
[0, 1].

In the initial setting process, the frequency of the bat’s
emitted sound waves is uniformly distributed in [fmin, fmax].
0e corresponding frequency is obtained according to
equation (1), and then the local search is carried out according
to equations (2) and (3).0e bat randomly walks according to
the optimal solution, and the new solution is generated by the
following equation:

Xnew � Xold + εA(t), (4)

where ε is a random number located in [− 1, 1], Xold
represents the solution selected from the current optimal
solutions in a random manner, and A(t) refers to the
average loudness that the bat produces when the number of
iterations is t.

By analyzing the loudness Ai and rate ri of the bat pulse
emission, it is found that the update rule can be described
as follows. If the bat is aware of the presence of the prey, it
will reduce the response of its pulsed emission and in-
crease its pulse emission rate. 0e loudness Ai and rate ri

of the bat launch pulse are updated by the following
equations:

r
At+1

i �αAt
i

i , (5)

r
t+1
i � r

t
i[1 + expyt], (6)

where r0i is the initial rate and A0
i is the initial loudness,

which are all randomly chosen. α and y are constants
(0< α< 1, y> 0).
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2.2. Pseudocode of the Bat Algorithm. 0e pseudocode of the
bat algorithm is described as follows [18]:

Input: Bat population xi � (xi1, . . . , xi D)T for
i � 1, . . . ,Np,MAX FE.
Output:0e best population xbest and its corresponding
value fmin � min(f(x)).

init_bat ();
eval� evaluate the new population;
fmin � find_best_solution (xbest); {initialization}
while termination_condition_not_meet do
for i � 1 to Np do

y � generate_new_solution (xi);
if rand (0, 1)> r then

y � improve_the_best_solution (xi);
end if {local search}
if fnew � evaluate_new_solution (y);
eval� eval + 1;
if fnew ≤fi and N (0, 1)<A then

xi � y; fi � fnew

end if {simulated annealing}
fmin � find the best solution (xbest);
end for

end while

3. Improved Bat Algorithm

3.1. Bat Algorithm Based on Chaotic Mapping. 0e chaotic
motion is a highly unstable motion in a deterministic system
that is limited to a finite phase space. Chaos is a form of
aperiodic motion, which is unique and extensive in non-
linear systems [23]. Chaotic systems are very common in
natural systems and social systems, which has a complex,
random, and accurate characteristic [24]. By analyzing the

logistic equation, it is known as the most typical of chaotic
systems:

Sk+1 � μSk 1 − Sk( 􏼁, (7)

where μ is a constant and S ∈ (0, 1). So, the determined
sequence S0, S1, . . . , can be obtained, and the system is a
chaotic system.

0ere are 10 typical kinds of chaotic mapping [25]. An
optimal chaotic mapping method is selected by carrying out
the simulation experiments on the test functions. In order to
verify the performance of various improved algorithms, a
total of seven functions were selected for simulation ex-
periments.0e name, expression, and domain range of these
functions are shown in Table 1.

In this section, the first six functions are adopted to carry
out the simulation experiments. 0e simulation results of BA
based on the different chaotic mappings is shown in Figure 1,
and the performance comparison results are listed in Table 2.
By considering the fluctuating feature of the chaotic mapping
and the influence of the initial value, the initial point in all
chaotic mappings is set as 0.7.

It can be seen from the simulation results on six function
optimization problems that the convergence speed and op-
timization ability of the piecewise chaotic mapping are the
best, the optimal value can be found, and the fluctuation is
relatively small. Although the optimal value is not obtained in
function F6, the overall trend deviation is not large. So, a
chaotic bat algorithm (CBA) is proposed based on the
piecewise chaotic mapping shown in Table 3.

It can be seen from the simulation results on six function
optimization problems that the convergence speed and
optimization ability of the piecewise chaotic mapping are the
best, the optimal value can be found, and the fluctuation is
relatively small. Although the optimal value is not obtained
in functions F1 and F6, the overall trend deviation is not
large. So, a chaotic bat algorithm (CBA) is proposed based
on the piecewise chaotic mapping shown in Table 3.

Table 1: Simulation test functions.

Function Expression Range Minimum value
F1 f1(x) � 􏽐

d
i�1x

2
i [− 100, 100] 0

F2 f2(x) � 􏽐
n
i�1(x2

i /4000) − 􏽑
n
i�1cos(xi/

�
i

√
) + 1 [− 600, 600] 0

F3 f3(x) � 20 + e − 20e(− 0.2
��
1/n

√
􏽐

n

i�1x2
i
) − e((1/n)􏽐

n

i�1cos(cxi)) [− 32, 32] 0
F4 f4(x) � − 􏽐

d
i�1sin(xi)[sin(ix2

i /π)]2m, m � 10 [0, π] 0
F5 f5(x) � 􏽐

n
i�1[x2

i − 10 cos(2πxi) + 10] [− 5.12, 5.12]
F6 f6(x) � 􏽐

d
i�1􏽐

i
j�1x

2
j [− 65.536, 65.536] 0

F7 f7(x) � (x1 − 1)2 + 􏽐
d
i�2i(2x2

i − xi− 1)
2 [− 5 10] 0

F8

f8(x) � 0.1 sin2(3πx1) + 􏽐
n
i�1(xi − 1)2[1+􏽮

sin2(3πxi + 1)] + (xn − 1)2[1 + sin2(2πxn)]}+

􏽐
n
i�1u(xi, 5, 100, 4)u(xi, a, k, m) �

k(xi − a)m xi > a

0 − a<xi < a

k(− xi − a)m xi < − a

⎧⎪⎨

⎪⎩

[− 50, 50] 0

F9 f9(x) � 􏽐
11
i�1[ai −

x1(b2i + bix2)

b2i + bix3 + x4
]2 [− 5, 5] 0.00030

F10 f10(x) � − 􏽐
4
i�1ci exp(− 􏽐

6
j�1aij(xj − pij)

2) [0, 1] − 3.32
F11 f11(x) � − 􏽐

10
i�1[(X − ai)(X − ai)

T + ci]
− 1 [0, 10] − 10.536
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Figure 1: Convergence curves under ten chaotic mappings. (a) F1. (b) F2. (c) F3. (d) F4. (e) F5. (f ) F6.
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3.2. Bat Algorithm Based on Levy Flight Search Strategy.
0e study found that Levy’s flight behavior in nature is based
on the ideal way for food seekers to find food in an un-
focused and unpredictable environment, which includes
short-range exploratory bounce and occasional long walks.
Viswanathan et al. [26] studied the foraging behavior of the
albatross and found the same flight path as the Levy flight.
Reynolds et al. [27, 28] observed the foraging trajectory of
bees and fruit flies and found that the flight trajectory also
shows the characteristics of Levy’s flight, and even human
behavior is similar to the existence of Levy’s flight behavior.
A series of studies have confirmed that Levy’s flight behavior
is the best searching strategy for N independent explorers
when the target position is in a random state and the dis-
tribution is relatively loose. A Levy flight-based bat algo-
rithm (LBA) is proposed in this paper.

From a mathematical point of view, Levy flight behavior
reflects a class of non-Gaussian stochastic processes, whose
steady increments obey the stable distribution of Levy and
whose flight path simulation is shown in Figure 2. It can be
seen from Figure 2 that it can jump a lot in Levy’s searching
process and change direction many times, so it can make an
individual bat effectively avoid being bound by local at-
tractions and expand the searching space.

Combined with the bat’s echolocation feature, it helps to
significantly and effectively improve the performance of the
bat algorithm. 0erefore, the improved algorithm replaces
equation (3) with the following equation:

X
t
i � X

t− 1
i + l_evyX X

t− 1
i − X

∗
􏼐 􏼑 + V

t
i . (8)

0e Levy flight is used to replace the local searching for
the optimal position of an individual bat, which generates a
larger matching and optimization iterations in the global
search process so as to make the situation of falling into local
optimum improve and also make the convergence accuracy
of the algorithm improve.

3.3. Bat Algorithm Based on Shrink Factor. For the bat al-
gorithm, since the individual is flying toward the optimal
solution during optimization, there is usually a problem of
early convergence of the bats, so it is difficult to obtain better
optimization results. In order to avoid the premature
convergence problem of bat algorithm and make the indi-
vidual converge to the global optimal solution quickly, a
contraction factor is proposed to realize the shrink factor bat
algorithm (SBA), which not only maintains the diversity of
the population but also improves the convergence efficiency.

Table 2: Simulation results on function optimization problems
under different chaotic mappings.

Function Chaotic mapping Avg. Best Std.

F1

Chebyshev map 2.46E − 03 6.07E − 07 7.37E − 03
Circle map 4.08E − 03 9.77E − 07 1.12E − 02

Gauss/mouse map 1.77E − 04 6.33E − 07 5.25E − 04
Iterative map 1.92E − 02 1.22E − 06 5.76E − 02
Logistic map 1.74E − 06 1.10E − 06 5.28E − 07
Piecewise map 1.91E − 06 5.70E − 07 7.10E − 07

Sine map 1.60E − 02 9.53E − 07 4.76E − 02
Singer map 3.38E − 02 1.14E − 06 1.01E − 01

Sinusoidal map 8.43E − 03 1.07E − 06 2.53E − 02
Tent map 2.25E− 06 1.21E − 06 7.34E − 07

F2

Chebyshev map 1.22E − 03 1.67E − 07 3.01E − 03
Circle map 2.06E − 03 1.27E − 07 5.76E − 03

Gauss/mouse map 6.44E − 03 1.28E − 07 1.47E − 02
Iterative map 3.04E − 03 1.28E − 07 6.60E − 03
Logistic map 7.70E − 05 8.32E − 08 1.66E − 04
Piecewise map 2.28E− 06 1.33E − 07 6.04E − 06

Sine map 3.75E − 03 4.52E − 08 1.12E − 02
Singer map 8.91E − 03 1.16E − 07 1.33E − 02

Sinusoidal map 4.62E − 03 2.06E − 07 9.24E − 03
Tent map 9.79E − 04 8.08E − 08 2.58E − 03

F3

Chebyshev map 2.11E+ 00 1.16E+ 00 5.77E − 01
Circle map 2.13E+ 00 1.16E+ 00 9.04E − 01

Gauss/mouse map 2.01E+ 00 1.42E − 03 7.21E − 01
Iterative map 2.24E+ 00 1.16E+ 00 7.99E − 01
Logistic map 2.23E+ 00 1.91E − 03 9.84E − 01
Piecewise map 1.89E+ 00 1.59E − 03 6.80E − 01

Sine map 2.41E+ 00 1.16E+ 00 6.13E − 01
Singer map 1.95E+ 00 1.64E − 03 7.85E − 01

Sinusoidal map 2.22E+ 00 1.76E − 03 9.29E − 01
Tent map 1.90E+ 00 1.31E − 03 7.28E − 01

F4

Chebyshev map − 4.3381 − 3.4831 0.4727
Circle map − 4.2815 − 2.8800 0.9298

Gauss/mouse map − 4.4270 − 3.3986 0.7517
Iterative map − 4.3976 − 3.2347 0.7557
Logistic map − 4.6527 − 3.5362 0.9810
Piecewise map −3.6912 − 3.3934 0.1789

Sine map − 4.1871 − 3.3551 0.5061
Singer map − 3.9540 − 3.2770 0.5729

Sinusoidal map − 4.1621 − 2.6385 0.7561
Tent map − 4.0751 − 2.6231 0.9906

F5

Chebyshev map 12.3377 6.9650 4.9388
Circle map 14.6261 6.9650 5.0547

Gauss/mouse map 13.4322 5.9700 5.1170
Iterative map 11.6412 4.9750 4.6038
Logistic map 12.0392 3.9801 4.3472
Piecewise map 9.6514 6.9649 1.6074

Sine map 13.1337 4.9750 5.5895
Singer map 14.0292 7.9600 3.9410

Sinusoidal map 13.0342 6.9649 6.4242
Tent map 13.5317 6.9650 5.2686

F6

Chebyshev map 2.64E − 01 3.69E − 06 2.98E − 01
Circle map 5.17E − 01 1.08E − 05 8.15E − 01

Gauss/mouse map 1.84E − 01 4.49E − 05 1.45E − 01
Iterative map 1.92E − 01 1.64E − 05 1.69E − 01
Logistic map 3.22E − 01 2.76E − 03 3.84E − 01
Piecewise map 1.49E − 01 6.80E − 06 1.90E − 01

Sine map 1.75E − 01 2.25E − 06 2.58E − 01
Singer map 2.17E − 01 2.46E − 06 2.55E − 01

Sinusoidal map 1.19E− 01 2.12E − 06 1.72E − 01
Tent map 2.02E − 01 7.22E − 06 2.21E − 01

Table 3: Expression of piecewise map.

Chaotic
mapping Expression Range

Piecewise map xi+1 �

xi/P [0, P)

xi − P/0.5 − P [P, 0.5)

1 − P − xi/0.5 − P [0.5, 1 − P)

1 − xi/P [1 − P, 1)

P � 0.4

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(0, 1)
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0e proposed SBA can be realized by the following
equations:

k �
2

2 − d −
������
d2 − 4d

√􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
, (9)

V
t
i � V

t− 1
i + X

t− 1
i − X∗􏼐 􏼑fi ·

∗
k, (10)

where d is a constant, and the value of the d in this ex-
periment is 10.

3.4. Multipopulation Parallel Bat Algorithm Based on Island
Model. 0e algorithm based on the parallel model has the
following two characteristics. 0e first is to break down a
group into multiple groups by realizing a divide-and-con-
quer approach. 0e second is to control and manage the
information exchange among the subgroups. From the
perspective of parallel algorithms, this structural difference
produces three parallel population models: master-slave
parallel model, island model, and adjacency model [29]. 0e
adjacency model and the island model belong to the de-
composition parallel scheme, which divides the entire group
into several subgroups. Each subgroup is distributed on its
own processor for subgroup evolution, and each processor
exchanges information at the appropriate time. 0e adja-
cency model is also known as a fine-grained model, with
only one individual in each subgroup.0e island model, also
known as the coarse-grained model, has multiple subgroups
on each processor. 0e coarse-grained models are easy to
implement and can be simulated on networks or stand-alone
systems without parallel computers, so coarse-grained
models are the most commonly used in parallel algorithms
[30].

In this paper, an island multipopulation parallel bat
algorithm (IBA) is proposed by adopting the parallel opti-
mization scheme and introducing a centralized information

migration strategy. 0e entire population is divided into
many subgroups. Each subgroup performs a global search
only on the island, and the suitability of each individual in
the island is calculated and evaluated to produce the best
individual in the island. 0e entire evolution of the island is
realized by using a separate subprocess to reduce the degree
of coupling. Each subprocess uses a centralized migration
strategy to periodically send the best individual in the island
to the main process to form the main process, and the main
process selects the global best individual to from the entire
population so as to broadcast to the subprocess, which will
force the subpopulation to perform the global most excellent
evolution. 0e flow chart of the algorithm is shown in
Figure 3.

4. Simulation Experiment and Result Analysis

0e multipopulation idea based on the island model is in-
tegrated into the other three improved bat algorithms (SBA,
LBA, and CBA) to form the island multipopulation chaotic
bat algorithm (CBAS), the islandmultipopulation Levy flight
bat algorithm (LBAS), and the islandmultipopulation shrink
factor bat algorithm (SBAS). 0e seven algorithms (IBA,
SBA, LBA, CBA, CBAS, LBAS, and SBAS) were adopted to
carry out the simulation experiments on twelve typical test
functions (F1, F2, F3, F5, F6, F7, F8, F9, F10, and F11) shown
in Table 1. 0e performance of the algorithms was evaluated
by counting the optimal value, the average values, and the
convergence curves of the corresponding functions in 10
runs. 0e parameter settings of the algorithm are shown in
Table 4.

0e performance comparison results are listed in Table 5,
and the function convergence curves are shown in Figure 4.

It can be seen from the simulation results that the overall
searching ability of IBA, SBAS, LBAS, and CBAS is better than
that of the original algorithms (BA, SBA, LBA, and CBA),
which have less volatility and relatively stable performance.

–80 –60 –40 –20 0 20 40 60
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Figure 2: Levy flight tracks.
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From the perspective of a single function, most algorithms
corresponding to each function are different, which proves
that the seven different algorithms have different optimization
capabilities for the same problem. SBAS obtains the optimal
value for test functions F1, F6, and F7. IBA obtains the
optimal value for test function F3. LBA obtains the optimal
value for functions F5 and F2. All seven optimization algo-
rithms get the global optimal value for test function F3. It can
be seen from the comparison of the convergence curves of the
six test functions that overall, the convergence speed of the

multipopulation algorithms (IBA, SBAS, and LBAS) is faster
than that of the original algorithms. However, the multi-
population algorithm CBAS is slower than the original al-
gorithms. For the test functions F1 and F2, SBAS converges
faster. For test functions F6 and F7, LBAS converges faster.
For function F3, CBAS converges faster. For function F5, IBA
algorithm converges faster. 0e convergence rate of the
function is relatively larger at an early stage, and there is a
delay phenomenon in the later stage although the speed is
slowed down.

It can be seen from the simulation results that the overall
searching ability of IBA, SBAS, LBAS, and CBAS is better
than that of the original algorithms (BA, SBA, LBA, and
CBA), which have less volatility and relatively stable per-
formance. From the perspective of a single function, most
algorithms corresponding to each function are different,
which proves that the seven different algorithms have dif-
ferent optimization capabilities for the same problem. SBAS
obtains the optimal value for test functions F2, F5, F9, F12,
and F13. SBA obtains the optimal value for test functions F3

Start

Initialize the frequency and position of the entire
population

Divide the population into K subpopulations

Calculate the fitness function value of each
subpopulation

Update global optimal value

Is it better
than the
historical
optimum?

N

N

Y

Y

N
Is it better
than the

global optimal
value?

Is the termination
condition met?

Output result

Update historical optimum

Figure 3: Bat algorithm flow chart based on island model.

Table 4: Parameter settings of the algorithm.

Name of parameter Parameter values
Population size n � 30
Maximum number of iterations MaxT � 500
Loudness A � 0.5
Rate r � 0.5
Maximum frequency fmax � 2
Minimum frequency fmin � 0

Computational Intelligence and Neuroscience 7



Table 5: Performance comparison results under seven algorithms.

Function Optimization method Optimal solution Average Standard deviation

F1

IBA 3.4364E − 08 3.3842E − 01 6.7955E − 01
SBA 3.0580E − 09 3.0762E − 08 3.0405E − 08
LBA 4.4310E − 08 1.0789E − 07 5.6368E − 08
CBA 2.9439E − 20 1.3670E − 15 3.1453E − 15
SBAS 4.2826E − 09 9.0180E − 03 2.7054E − 02
LBAS 9.1300E − 09 4.8765E − 08 2.9546E − 08
CBAS 3.3146E − 09 2.0426E − 08 1.4284E − 08

F2

IBA 6.6230E − 08 5.9714E − 02 1.7914E − 01
SBA 7.3645E − 08 8.5002E − 03 1.2582E − 02
LBA 2.1114E − 07 9.9413E − 03 2.4116E − 02
CBA 2.2553E − 08 1.9696E − 08 1.3041E − 08
SBAS 3.3806E − 08 6.1948E − 08 1.8490E − 08
LBAS 6.3657E − 08 1.0919E − 07 2.4972E − 08
CBAS 1.8559E − 08 6.6582E − 02 1.9975E − 01

F3

IBA 2.3169 2.9481 0.4250
SBA 0.0009 1.9313 0.8860
LBA 1.1552 2.1514 0.6486
CBA 1.1551 2.3774 0.5599
SBAS 2.0133 2.3912 0.3715
LBAS 2.3169 2.8544 0.4626
CBAS 1.6462 2.7592 0.7613

F5

IBA 5.9699 15.5719 13.7849
SBA 3.9899 9.9497 5.6459
LBA 7.9598 13.4321 3.3074
CBA 3.9798 12.8350 6.8421
SBAS 3.9800 7.2633 2.3566
LBAS 5.9699 8.5568 1.7909
CBAS 4.9748 19.5561 16.6536

F6

IBA 3.8782E − 08 4.4456E − 01 9.5610E − 01
SBA 5.8307E − 09 1.1123E − 04 2.9158E − 04
LBA 8.6362E − 08 1.1877E − 02 2.3393E − 02
CBA 1.0664E − 19 3.4219E − 17 6.0237E − 17
SBAS 1.3461E − 08 5.0505E − 08 2.2872E − 08
LBAS 2.8347E − 08 1.7624E − 01 5.2873E − 01
CBAS 3.2492E − 09 2.5676E − 08 1.5720E − 08

F7

IBA − 0.0916 − 0.8837 0.3961
SBA − 1.0833 − 1.0833 0.0000
LBA − 1.0833 − 1.0833 0.0000
CBA − 1.0833 − 1.0833 0.0000
SBAS − 0.6009 − 1.0315 0.2153
LBAS 1.0416 −0.7575 0.8996
CBAS 0.2604 − 0.8475 0.5539

F8

IBA 3.8153E − 09 1.3534E − 01 1.2480E − 01
SBA 1.8240E − 10 2.9037E − 02 5.6482E − 02
LBA 1.3140E − 08 2.0437E − 02 2.1852E − 02
CBA 2.1564E − 31 1.9632E − 02 2.5663E − 02
SBAS 1.2837E − 10 2.4524E − 02 2.0517E − 02
LBAS 1.4992E − 09 1.3792E − 01 1.4911E − 01
CBAS 1.3498E − 32 1.3242E − 01 1.9408E − 01

F9

IBA 0.0003 0.0090 0.0159
SBA 0.0003 0.0016 0.0026
LBA 0.0003 0.0033 0.0073
CBA 0.0003 0.0006 0.0003
SBAS 0.0003 0.0003 5.6425E − 05
LBAS 0.0005 0.0028 0.0029
CBAS 0.0003 0.0007 0.0005
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Figure 4: Continued.

Table 5: Continued.

Function Optimization method Optimal solution Average Standard deviation

F10

IBA − 3.3220 − 3.0019 0.9602
SBA − 3.3220 − 2.8942 0.6939
LBA − 3.3220 − 3.0492 0.7143
CBA − 3.2031 − 3.2507 0.0582
SBAS − 3.2031 −3.2863 0.0545
LBAS − 3.2031 −3.2863 0.0545
CBAS − 3.2031 − 3.2982 0.0476

F11

IBA − 5.1285 − 4.2011 1.8551
SBA − 5.1285 −5.1285 3.6134E − 07
LBA − 5.1285 − 4.8311 0.8920
CBA − 5.1285 − 5.1285 4.5201E − 15
SBAS − 5.1285 −5.1285 1.5732E − 07
LBAS − 5.1285 − 2.8510 1.9806
CBAS − 5.1285 −5.1285 5.7559E − 08
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Figure 4: Convergence curves for typical function optimization problems under seven algorithms. (a) F1. (b) F2. (c) F3. (d) F5. (e) F6. (f ) F7.
(g) F8. (h) F9. (i) F10. (j) F11.
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and F8. LBAS obtains the optimal value for test functions F1,
F7, and F12. It can be seen from the comparison of the
convergence curves of the ten test functions that overall, the
convergence speed of the multi-population algorithms (IBA,
SBAS, and CBAS) is faster than that of the original algo-
rithms. For the test functions F5 and F10, SBAS converges
faster. For the test functions F8 , LBAS converges faster. For
the test functions F1, F2, F3, F6, F9, and F11, CBAS converges
faster. 0e convergence rate of the function is relatively
larger at an early stage, and there is a delay phenomenon in
the later stage although the speed is slowed down.

5. Conclusions

Based on the concept of chaotic mapping, the optimal chaotic
mapping is selected to produce the chaotic bat algorithm. 0e
LBA algorithm is proposed by adopting the Levy flight
searching strategy.0e shrink factor is proposed to realize SBA
algorithm, and the multipopulation parallel bat algorithm
(IBA) based on island is proposed. 0e performance is
compared by using seven test functions under seven opti-
mization algorithms (IBA, SBA, LBA, CBA, SBAS, LBAS, and
CBAS).0e comparison results show that the multipopulation
algorithms (IBA, SBAS, LBAS, and CBAS) are better than the
original algorithms and have relatively stable performance in
both the optimization ability and the convergence speed. 0e
experiment proves that the improved algorithm has better
optimization precision and convergence speed, which can
make up for the deficiency of the original algorithm.
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