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Background: Recent evidence suggests the presence of hippocampal neuroanatomical
abnormalities in subjects of amnestic mild cognitive impairment (aMCI). Our study aimed
to identify the radiomic biomarkers of the hippocampus for building the classification
models in aMCI diagnosis.

Methods: For this target, we recruited 42 subjects with aMCI and 44 normal controls
(NC). The right and left hippocampi were segmented for each subject using an efficient
learning-based method. Then, the radiomic analysis was applied to calculate and select
the radiomic features. Finally, two logistic regression models were built based on the
selected features obtained from the right and left hippocampi.

Results: There were 385 features derived after calculation, and four features remained
after feature selection from each group of data. The area under the receiver operating
characteristic (ROC) curve, specificity, sensitivity, positive predictive value, negative
predictive value, precision, recall, and F-score of the classification evaluation index of
the right hippocampus logistic regression model were 0.76, 0.71, 0.69, 0.69, 0.71, 0.69,
0.69, and 0.69, and those of the left hippocampus model were 0.79, 0.71, 0.54, 0.64,
0.63, 0.64, 0.54, and 0.58, respectively.

Conclusion: Results demonstrate the potential hippocampal radiomic biomarkers
are valid for the aMCI diagnosis. The MRI-based radiomic analysis, with further
improvement and validation, can be used to identify patients with aMCI and guide the
individual treatment.

Keywords: Alzheimer’s disease, amnestic mild cognitive impairment, magnetic resonance imaging, hippocampus,
radiomics, machine learning
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INTRODUCTION

Alzheimer’s disease (AD), the leading cause of senile dementia,
is a degenerative disease of the central nervous system. Amnestic
mild cognitive impairment (aMCI) refers to elderly individuals
who do notmeet the dementia standard but has episodicmemory
loss, which is considered the prodromal stage of AD (Morris
et al., 2001). Recent studies have shown that AD prognoses
are optimized when intervention occurs in the MCI phase, as
opposed to after an AD diagnosis has been made (Jack et al.,
2005; Plant et al., 2010; Prasad et al., 2011). Early and accurate
diagnoses of aMCI are therefore of critical importance to the
treatment of AD.

The hippocampus, an allocortical ridge of gray matter in
the limbic system, plays a key role in cognition, especially
in episodic memory (Spaniol et al., 2009; Lepage et al.,
2015). As a highly central structure, it contains many gray
matter nuclei and major white matter fiber bundles highly
implicated in emotion, motor control, neuroendocrine activity,
and memory. The hippocampus has been shown to be central to
the AD pathological process (Braak and Braak, 1997), which is
characterized by neurofibrillary tangles and amyloid-β plaques
deposition. In parallel, recent studies establish the hippocampus
as an invaluable region of interest (ROI) for diagnosis of AD. For
example, structural brain MRI using voxel-based morphometry
demonstrated hippocampal atrophy in AD and aMCI (Mcdonald
et al., 2009; Fouquet et al., 2012). Some resting-state functional
MRI studies have found abnormal functional connectivity
between the hippocampus and other brain regions and in internal
hippocampus in AD or MCI (Dennis and Thompson, 2014; de
Flores et al., 2017; Sheng et al., 2017). In addition, diffusion tensor
imaging studies indicated mean diffusivity abnormalities in the
hippocampal region of patients with MCI (Fellgiebel et al., 2006;
Mak et al., 2017).

Radiomics, a recently developed diagnosis and auxiliary
detection technique, seeks to characterize pathologies using
automated feature extraction algorithms to convert multi-modal
ROI imaging data into a large number of features. These radiomic
features encapsulate measures of shape, size, density, and texture
of pathological tissues; population-level databases of radiomic
features can be analyzed in order to improve diagnostic accuracy.
As a data-driven general framework, the range of application
of radiomics is broad. In the past, a radiomic analysis has been
primarily applied to tumor diseases including glioma (Li et al.,
2018), lung cancer (Tang et al., 2018), hepatocellular carcinoma
(Cozzi et al., 2017), rectal cancer (Liu et al., 2017), oropharyngeal
head and neck cancer (M. D. Anderson Cancer Center Head
and Neck Quantitative Imaging Working Group, 2018), and
breast cancer (Cameron et al., 2015). Recently, however,
radiomics has also been applied to non-tumor diseases, such
as autism spectrum disorder (Chaddad et al., 2017), attention
deficit hyperactivity disorder (Sun et al., 2017), and xerostomia
(Gabry ś et al., 2018).

Artificial Intelligence Kit (A.K) is a platform geared toward
accurate quantification and artificial intelligence. A.K software is
a commercially available software developed by GE Healthcare,
China. It has been registered and approved. It realizes several

key steps of radiomics (data reading, image segmentation,
feature calculation, feature selection, model building, and report
generation) and has been employed in recent radiomics studies
(Shao et al., 2018; Shu et al., 2019). A series of features are
obtained by automating the analysis of target area heterogeneity
for clinical diagnosis and prediction. In order to improve the
early diagnosis of aMCI, a crucial step in AD intervention,
we utilized A.K software to conduct a radiomic analysis of
the hippocampus owing to its crucial role in AD and its
well-established and unambiguous border.

MATERIALS AND METHODS

Patient Population and Data Acquisition
Initially, 51 right-handed aMCI subjects were recruited from
the Memory Clinic of Zhejiang Provincial People’s Hospital
between September 2016 and March 2018, and 50 right-handed,
volunteer normal control (NC) subjects were recruited from the
health promotion center of the hospital. Informed consent was
obtained from all subjects. The study protocol was approved
by the local ethics committee of Zhejiang Provincial People’s
Hospital (2012KY002). In addition, all methods were performed
in accordance with the Declaration of Helsinki.

Laboratory tests, neuropsychological tests, physical
examinations, and a brain MR scan were performed in
subjects with aMCI. The criteria for identification of
subjects with aMCI were as follows: (1) complaint of
impaired memory; (2) maintaining normal performance; and
(3) mini-mental state examination (MMSE) score >24 and ≤27
(Rivas-Vazquez et al., 2004).

The criteria for qualified NC subjects were as follows: (1) no
neurological deficiencies, such as hearing or visual loss; (2) no
neurological or psychiatric disorders, such as stroke, epilepsy,
or depression; (3) no infarction, hemorrhage, or tumor lesion
on conventional brain MR imaging; and (4) achieved an MMSE
score ≥28.

The exclusion criteria were as follows: (1) stroke; (2) cerebral
trauma; (3) other neurological disorders that cause memory
impairment, such as brain tumor, Parkinson’s disease, and
epilepsy; (4) systemic diseases, such as severe anemia,
hypertension, and diabetes; (5) history of mental illness;
and (6) high signal intensity lesions with a diameter of >5 mm
using T2-FLAIR.

From these recruited subjects, three aMCI patients and one
NC subjects were excluded because of having no MRI data,
and we excluded those who had obvious cerebral diseases
on conventional brain MRI and had head movement or scan
termination under any circumstances during T1-MPRAGE
scans. Finally, 42 aMCI patients and 44 NC subjects were
included, as shown in Figure 1.

All examinations were performed using an MR scanner
(Discovery MR750 3.0T; GE Healthcare, Waukesha, WI, USA).
In order to exclude the relative cerebral diseases according to the
exclusion criteria, conventional brain MRI scans were performed
first, including T1WI, T2WI, and T2-FLAIR. And then, three-
dimensional (3D) T1-weighted magnetization-prepared rapid
gradient echo (3D T1-MPRAGE) images were then collected.
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FIGURE 1 | Flowchart of inclusion/exclusion process for subject recruitment.

The scan parameters of the 3D T1-MPRAGE sequence are as
follows: repetition time (TR) = 6.7 ms, echo time (TE) = 2.9 ms,
inversion time (TI) = 450 ms, flip angle = 12◦, field of view
(FOV) = 256 × 256 mm2, slice thickness/gap = 1/0 mm,
matrix = 256 × 256, and a total of 192 sagittal slices were
collected. All collected data are from only one MR scanner.

The process of a radiomic analysis was divided into five
steps: (1) data loading; (2) segmentation; (3) feature calculation;
(4) feature selection; and (5) machine learning. The radiomic
process is shown in Figure 2.

Segmentation
In this study, we use the structural T1-weighted MR images
of the brain for a radiomic analysis based on A.K. We
applied an efficient learning-based ROI method to segment
the hippocampus (Wu et al., 2018). This method trains
a joint classification and regression model to predict the
location of the hippocampus; then, the prior hippocampal shape
model is gradually deformed onto target image to adapt the
target hippocampus.

Feature Calculation
First, we imported the bulk of original 3D T1-MPRAGE data
of the aMCI subjects and NC subjects into A.K software,
and then we imported the bulk of the segmented left and
right hippocampi. Then, we selected features for computation,

including the histogram, form factor, gray level co-occurrence
matrix (GLCM), Haralick, and gray level run-length matrix
(RLM), in the ‘‘Parameters Choosing’’ window. Then, we chose
options 1, 4, and 7 in the ‘‘Offsets of GLCM and RLM’’
window as the calculation based on the GLCM, and RLM was
related to the offset. The histogram describing the distribution
of image intensity in the hippocampus was analyzed. The form
factor encapsulates the shape of the hippocampus. GLCM was
characterized by statistical voxels of different directions and step
of probability to get a co-occurrence matrix; and then to quantify
the distribution of the co-occurrence matrix, the information
such as the complexity of the lesion, the level of change, the
thickness of texture was described (Dhruv et al., 2019). Haralick
provides texture information of samples of GLCM from four
directions (0◦, 45◦, 90◦, and 135◦) and an offset of 1 to calculate
the sum of the means (Haralick et al., 1973). RLM is computed
by counting the probability of successive occurrences of pixels
with different directions and step length to obtain the matrix
length to describe the complexity, the level of change, and the
texture thickness of the lesion (Galloway, 1975; Chu et al.,
1990). In total, 385 features were extracted for both the NC and
aMCI groups.

Feature Selection
First, we replaced abnormal values that cannot be calculated by
mean. Next, we randomly set the proportion of training data and
testing data to 0.7 and 0.3, respectively. Finally, we eliminated the
unit limits for each column of feature by standardization. After
preprocessing the extracted data, feature selection was done twice
based on the calculated features of the left and right hippocampi.
We performed the feature selection andmodeling on the training
data, and then we validated the model on the training data
and testing data. Feature selection and dimension reduction are
summarized by steps 1–3.

Step 1: we selected ‘‘t-test + rank test’’ as the method
of dimensionality reduction method. The A.K software
implemented the t-test to identify the features that contribute
to the result (P < 0.05). The rank test was then used to select
the features with significant difference from the preprocessed
features of total data (P < 0.05). Then, the remaining features
were integrated.

Step 2: we selected a correlation analysis to further reduce the
dimension. We set the filter threshold to 0.9 and selected the
Spearman rank correlation coefficient. The correlation analysis
was done between any two feature columns. If the correlation
coefficient between them exceeds 0.9, it indicates that the
two features are highly correlated, and then one of them is
randomly removed.

Step 3: finally, we adopted the least absolute shrinkage and
selection operator (LASSO) regressionmodel to identify themost
useful features for the classification. This method added a penalty
term on the objective function in the linear regression, that is,
the L1 norm constraint of regression coefficients was set in a
certain range, making some regression coefficients become zero,
thus achieving the dimension reduction (Gui and Li, 2005). Here,
cross-validation was used to obtain the best hyperparameters.
We chose the λ, which meets the minimum criteria according to
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FIGURE 2 | Flowchart of the radiomic process.

10-fold cross-validation in the LASSO regression model. For the
right hippocampus, the best λ value we chose was 1.0, whereas
for the left, the best λ value was 0.6.

Machine Learning
We shuffled the data and divided them into 0.7/0.3 train test. This
procedure was repeated 10 times for the performance evaluation.
We used machine learning method to build classification
models for aMCI diagnosis. Specifically, we selected the logistic
regression model and built two classification models on the basis
of the selected features of the right and left hippocampi. This has
set the result of linear function to an independent variable, which
would be input into the sigmoid function. The classification
for the probability P of the output was then determined by
using a simple threshold of 0.5. The left and right hippocampus
features and models were selected and built separately using A.K
software. And the statistical methods used were the same. After
first randomly setting the proportion of training data and testing
data to 0.7 and 0.3 in preprocessing step, we then used the testing
data to validate the trained logistic regression models.

RESULTS
Comparison of Demographic and
Neuropsychological Performance
The comparison of demographic variables between the aMCI
patients and NC subjects showed no significant differences,
which is performed by SPSS (version 22.0). Two-sample t-tests
were used to assess group differences in age, education,
and MMSE score between aMCI patients and NC subjects,

whereas the chi-square test was used to assess group differences
in gender. Neuropsychological performance was significantly
different between these two groups (Table 1).

Feature Selection Results
A total of 385 features were extracted from the bilateral
hippocampus. For right and left hippocampi, the remaining
features following ‘‘t-test + rank test’’ were 104 and 35,
respectively. After a correlation analysis, the remaining features
were 56 and 22, respectively (see correlation analysis graph in
Figure 3). Finally, the LASSO regression model yielded selection
of four and four features for the right and left hippocampi,
respectively (Table 2, Figures 4, 5).

Machine Learning Results
The right hippocampus and left hippocampus logistic regression
models were performed to build classifiers that discriminate
aMCI subjects from NC subjects using the four selected features
for each hemisphere. For the right hippocampus model, the
corresponding values of the area under the receiver operating
characteristic (ROC) curve (AUC), specificity, sensitivity,
precision, recall, and F-score were 0.76, 0.71, 0.69, 0.69, 0.69,
and 0.69, respectively (Figures 6, 7). As the AUC of testing set
is slightly lower than that of training set, overfitting exists in
the model. And for the left hippocampus model, these predictive
values were 0.79, 0.71, 0.54, 0.64, 0.54, and 0.58, respectively
(Figures 8, 9). The close correspondence between the AUCs of
the training set and the testing set indicates good fitting degree of
the model.
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TABLE 1 | Demographics performances of the aMCI and normal controls.

aMCI group NC group Statistic p-value

Sample size 42 44 NA NA
Age (years, mean ± SD) 64.17 ± 10.57 65.43 ± 9.70 −0.58 0.56
Gender (male:female) 18:24 20:24 0.06∗ 0.81∗

Education (years, mean ± SD) 7.74 ± 2.84 7.09 ± 3.38 0.96 0.34
MMSE 25.88 ± 0.92 29.14 ± 0.77 −17.92 0

Note. Unless otherwise indicated, statistics were calculated with t-tests. SD, standard deviation; MMSE, mini-mental state examination; aMCI, amnestic mild cognitive impairment;
NC, normal controls. ∗x2 test was used.

FIGURE 3 | Correlation analysis graph of the right hippocampus (A) and left hippocampus (B).

TABLE 2 | The remaining features after three steps of feature selection.

Remained features The right hippocampus The left hippocampus

Form factor “Maximum 3D Diameter” “Maximum 3D Diameter”
“Surface Volume Ratio”

Histogram “uniformity” “uniformity”
RLM “Long Run Emphasis_All Direction_offset7_SD” “Low Gray Level Run Emphasis_All Direction_offset7_SD”
GLCM “Inverse Difference Moment_All Direction_offset1_SD”

DISCUSSION

With the goal of developing and improving early diagnosis of
aMCI, closely related radiomic features of the hippocampus were
identified and used to construct a logistic regression radiomic
model of aMCI pathology. The two ROC curves indicate that the
radiomic models had demonstrated moderate diagnostic value.

Feature selection is of critical importance to a radiomic
analysis and thus represents an active area of development in the
field. Typically, feature selection is achieved through statistical
method, principal component analysis (PCA), and sequential
forward selection. We use three statistical methods (t-test + rank
test, correlation analysis, and LASSO regression model) in the
study, all of which have been successfully employed in previous
radiomic studies (de Oliveira et al., 2011; Moradi et al., 2015).

Classification and prediction are the ultimate goal of
radiomics; a growing body of work demonstrates the efficacy
of a radiomic analysis of non-tumor diseases in patient-disease

prediction. Further, a texture analysis study found the texture
differences in the corpus callosum and thalamus in patients with
AD and aMCI (de Oliveira et al., 2011). Another texture analysis
considered 3D texture as a possible diagnostic biomarker of AD
(Zhang et al., 2012). In parallel, several studies have integrated
machine learningmethods into a radiomic analysis of AD: Zhang
et al. (2012) believed that a 3D texture analysis could distinguish
AD patients from the NC group, and the classification accuracy
was between 64.3% and 96.4%. Beheshti et al. (2017) achieved
MCI/NC classification accuracy of 70.38% using a support-
vector machine (SVM) model, and Luk et al. (2018) predicted
MCI conversion with 76.2% accuracy using a logistic regression
model. The present work reinforces and expands upon these
results, with our logistic models achieving AUC of 0.76 and
0.79 in distinguishing MCI from NC. Our work is potentially
useful for clinical medicine because of its complete automation.
In addition, we can obtain more information about the changes
in microstructure after a radiomic analysis in aMCI patients.
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FIGURE 4 | The coefficients-lambda graph (A) and the error-lambda graph (B) of the right hippocampus. We chose the λ corresponding to the lowest error rate.

FIGURE 5 | The coefficients-lambda graph (A) and the error-lambda graph (B) of the left hippocampus. We chose the λ corresponding to the lowest error rate.

FIGURE 6 | The ROC curve of training data (A) and the ROC curve of testing data (B) of the right hippocampus. ROC, receiver operating characteristic.
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FIGURE 7 | The radiomics score based on testing data of the right hippocampus. Red represents the normal group, and blue represents the patient group. The red
area below the horizontal line and the blue area above the horizontal line represent the right prediction. On the contrary, the red area above the horizontal line and the
blue area below the horizontal line represent the false prediction.

FIGURE 8 | The ROC curve of training data (A) and the ROC curve of testing data (B) of the left hippocampus. ROC, receiver operating characteristic.

There were four radiomics features selected in both the right
and left hippocampi. The four major categories of features
selected in this study respectively reflect the differences between
aMCI group and NC group in hippocampal size and shape, gray
value distribution, texture features, and spatial heterogeneity.
The ratio of maximum 3D diameter and surface volume, the
form factor parameters, was obtained, which described the 3D
size and shape of the target regions; the larger the value of these
two features, the larger the size of the hippocampus. Uniformity
is one of the histogram parameters that are concerned with the
properties of individual pixels and describes the distribution of
voxel intensities within the image; this value is larger when the
image is more complex. Inverse difference moment is one of the

GLCM parameters. It describes the difference of lesion site, but
the smaller the difference, the greater the value. Low gray level
run emphasis and long run emphasis are considered as RLM
parameters. They reflect the measurement of the nonuniformity
of length and grayscale. The larger the value of low gray level
run emphasis, the darker the lesion (i.e., the smaller the image
gray value). And the larger the value of long-run emphasis, the
smoother the image.

A recent comprehensive quantitative proteomic study on
human hippocampus found that there were 372 proteins altering
during the various stages of AD (Hondius et al., 2016).
A structuralMRI study indicated that the texture of hippocampus
might serve as a neuroimaging biomarker for detecting early
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FIGURE 9 | The radiomics score based on testing data of the left hippocampus. Red represents the normal group, and blue represents the patient group. The red
area below the horizontal line and the blue area above the horizontal line represent the right prediction. On the contrary, the red area above the horizontal line and the
blue area below the horizontal line represent the false prediction.

cognitive impairment (Sørensen et al., 2015). Some MRI studies
demonstrated that the altered functional connectivity and the
altered volume differences exist between the right and left
hippocampi ofMCI andAD (Peter et al., 2017; Sheng et al., 2017).
Some studies reveal that the left hippocampus has greater atrophy
than the right one in AD patients (Li et al., 2016). Furthermore, a
study indicated that the left hippocampus atrophy had a stronger
influence than the right in the prediction of aMCI (Zhang et al.,
2011). In light of these results, we hypothesized that there might
be some relationship between the altered protein expression and
the radiomic features of the hippocampus in patients with aMCI,
and thus, we built two independent hippocampus models for
aMCI diagnosis.

There were several limitations to our study. First, although
there was no statistically significant difference between groups
in the age and sex ratio analysis, these two factors were not
fully matched and may have slightly influenced the results.
A complete 1:1 match in an age and sex ratio analysis may
improve classification accuracy. Second, the diagnostic value of
the radiomic model was not extremely high. Third, the sample
size was limited, which could have influenced the performance of
the radiomic models. Large-scale multicenter datasets are likely
to improve the results of future radiomic studies.

The use of multi-modal imaging techniques, such as
functional MRI and diffusion tensor MRI, improvements in
genomics, and development of new models on the basis of both
radiomic and clinical information such as MMSE and Montreal
Cognitive Assessment (MoCA) scales also represent promising
avenues for future research. A research breakthrough in the
direction of imaging genomics is also needed.

CONCLUSION

Our aMCI classification method based on hippocampal radiomic
features represents an important and timely complement to
MRI-based biomarkers of aMCI and AD. By benefit of its full

automation, the method is particularly advantageous for clinical
application. The MRI-based radiomic analysis, with further
improvement and validation, can be used to identify patients
with aMCI and guide the individual treatment.
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