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In amyotrophic lateral sclerosis (ALS), early diagnosis is
essential for both current and potential treatments. To
find a supportive approach for the diagnosis, we con-
structed an artificial intelligence-based prediction model
of ALS using induced pluripotent stem cells (iPSCs).
Images of spinal motor neurons derived from healthy
control subject and ALS patient iPSCs were analyzed by
a convolutional neural network, and the algorithm
achieved an area under the curve of 0.97 for classifying
healthy control and ALS. This prediction model by deep
learning algorithm with iPSC technology could support
the diagnosis and may provide proactive treatment of
ALS through future prospective research.
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Amyotrophic lateral sclerosis (ALS) is an intractable
motor neuron disease with a survival period of 3 to

5 years after onset if a mechanical ventilator is not
adopted.1 The clinical diagnosis of ALS is based on neuro-
logical findings including muscle weakness and increased
tendon reflexes, and these do not manifest themselves
until the disease has progressed.2 In ALS, early diagnosis is
necessary even for the few approved therapies to treat
symptoms3 and for further effective disease-modifying
therapies to protect motor neurons that are expected to be
discovered in the future. We hereby propose a prediction
model of ALS using deep learning with images of motor
neurons derived from patient induced pluripotent stem
cells (iPSCs) to support ALS diagnosis.

Deep learning algorithms have recently been shown
to perform well in classification in certain fields such as
skin cancer diagnosis by pictures of skin legions,4 lung
cancer diagnosis by computed tomographic
(CT) imaging,5 pathological diagnosis of cancers for pre-
diction of therapeutic efficacy,6 and biological science.7

Here, we classified images of motor neurons derived from
iPSCs of healthy control subjects and ALS patients using
deep learning algorithms. This study investigated the con-
cept of predicting ALS by a combination of deep learning
algorithms and iPSC technology.

Subjects and Methods
Ethics
The generation and use of human iPSCs was approved by the
ethics committees at Kyoto University. All methods were per-
formed in accordance with approved guidelines. Formal
informed consent was obtained from all subjects.

Generation of iPSCs
iPSCs were generated from fibroblasts or peripheral blood mono-
nuclear cells (PBMCs) of healthy control subjects and ALS
patients using episomal vectors for OCT3/4, Sox2, Klf4, L-Myc,
Lin28, and dominant-negative p53 or OCT3/4, Sox2, Klf4, L-
Myc, Lin28, and shRNA for p53, respectively, as previously
reported.8 They were cultured by feeder-free and xeno-free cul-
ture systems with StemFit (Ajinomoto, Tokyo, Japan) with peni-
cillin/streptomycin.
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Analysis for ALS-Related Genes
Genomic DNA was isolated from fibroblasts or PBMCs from
healthy controls or ALS patients using PureLink Genomic DNA
Mini Kit (Thermo Fisher Scientific, Waltham, MA).

To investigate the presence of mutations in ALS-related
genes, including SOD1, TARDBP, FUS, OPTN, VCP, SQSTM1,
SIGMAR1, UBQLN2, and TBK1, target sequencing was performed
using the Ion Proton System (Life Technologies, Carlsbad, CA)
according to the protocol for the Ion AmpliSeq Library Kit 2.0
(Life Technologies) and Ion PI Hi-Q Chef Kit (Life Technologies)
in the same manner as already reported.9 Amplicon coverage was
investigated after Ion Proton sequencing. Variants were identified
using Torrent Suite software 5.10 and verified by standard polymer-
ase chain reaction–based amplification followed by Sanger sequenc-
ing using an Applied Biosystems 3130 DNA sequencer (Life
Technologies). Variants were evaluated by predictive algorithms
(Sorting Intolerant from Tolerant [http://sift.jcvi.org/], PolyPhen-2
[http://genetics.bwh.harvard.edu/pph2/], MutationTaster [http://
www.mutationtaster.org/], and Combined Annotation Dependent
Depletion [CADD; https://cadd.gs.washington.edu/]) that predicted
whether amino acid substitutions would affect protein function.
Furthermore, dbSNP137 (http://www.ncbi.nlm.nih.gov/SNP/),
ToMMo (https://jmorp.megabank.tohoku.ac.jp/), 1000 Genomes
(http://www.1000genomes.org/), and ExAC (https://gnomad.
broadinstitute.org/) were also used. Variants were evaluated for the
pathogenicity under the following conditions: that 2 or more pre-
diction algorithms were positive (CADD score threshold was set as
>20) and that the frequency of the variant was ≤0.005, and that
the registration information in ClinVar (https://www.ncbi.nlm.nih.
gov/clinvar/) was also used. C9ORF72 repeat expansion was evalu-
ated according to the previously established protocol.10

Motor Neuron Differentiation from iPSCs
Motor neurons were differentiated from iPSCs as previously
described. Briefly, iPSCs were dissociated to single cells and
quickly reaggregated in low cell adhesion U-shaped 96-well
plates (Lipidule-Coated Plate A-U96; NOF Corporation, Tokyo,
Japan). Aggregations were cultured in EB medium containing
Dulbecco modified Eagle medium/Ham’s F12 (Thermo Fisher
Scientific), 5% KSR (Invitrogen, Waltham, MA), minimum
essential medium–nonessential amino acids (Invitrogen),
L-glutamine (Sigma-Aldrich, St Louis, MO), 2-mercaptoethanol
(Wako, Osaka, Japan), 2μM dorsomorphin (Sigma-Aldrich),
10μM SB431542 (Cayman, Ann Arbor, MI), 3μM CHIR99021
(Cayman), and 12.5ng/ml fibroblast growth factor (Wako) in a
neural inductive stage for 11 days. One hundred nanomolars ret-
inoic acid (Sigma-Aldrich) and 500nM smoothened ligand (Enzo
Life Sciences, Farmingdale, NY) were added on day 4. After pat-
terning with neurobasal medium (Thermo Fisher Scientific) sup-
plemented with B27 Supplement (Thermo Fisher Scientific),
100nM retinoic acid, 500nM smoothened ligand, and 10μM
DAPT (Selleck, Houston, TX), the aggregates were separated by
Accumax (Innovative Cell Technologies, San Diego, CA), disso-
ciated into single cells, and adhered to Matrigel (BD Biosciences,
Franklin Lakes, NJ)-coated dishes on day 16. Adhesive cells were
cultured in neurobasal medium with 10ng/ml brain-derived

neurotrophic factor (R&D Systems, Minneapolis, MN),
10ng/ml glial cell line-derived neurotrophic factor (R&D Sys-
tems), and 10ng/ml neurotrophin-3 (R&D Systems). On day
21, cells were dissociated to single cells using Accumax and
seeded to iMatrix-coated 24-well plates (Corning, Corning, NY)
at 2 × 105 cells/well. On day 23, cells were fixed with 4% para-
formaldehyde followed by immunostaining and imaging.

Immunostaining and Image Acquisition
Cells were fixed in 4% paraformaldehyde for 30 minutes at room
temperature, washed twice with phosphate-buffered saline (PBS),
and permeabilized in PBS containing 0.1% Triton X-100 for
10 minutes at room temperature, followed by blocking for
30 minutes with Block Ace (Yukijirushi, Tokyo, Japan). After
incubation with primary antibody, anti–neurofilament H anti-
body (1:1,000, AB1989; Millipore, Billerica, MA), overnight at
4�C, cells were washed 3 times with PBS and then incubated
with secondary antibody with Alexa 488 for 1 hour at room tem-
perature. Cell images were acquired with IN Cell Analyzer 6000
(GE Healthcare, Chicago, IL). The number of cells, neurite
length, and soma size were quantified with IN Cell Developer
toolbox software v1.9 (GE Healthcare).

For the analysis of cleaved caspase-3, cells were stained with
anti–cleaved caspase-3 antibody (1:500; Cell Signaling Technol-
ogy, Danvers, MA) and anti–βIII tubulin antibody (1:1,000, Mil-
lipore), and the number of cleaved caspase-3-positive cells and βIII
tubulin-positive cells were quantified using IN Cell Developer
toolbox software v1.9 (GE Healthcare) following image acquisition
by IN Cell Analyzer 6000 (GE Healthcare).

Data Preparation and Training of Convolutional
Neural Networks
Control and ALS motor neurons were assigned an encoded
anonymous number for the samples with sample names encoded,
and randomly cultured in the same 24-well plates, considering
that potential confounders such as plate location varied suffi-
ciently between control and disease clones. Immunohistochemi-
cal staining was conducted in a blinded manner so that the clone
name was not recognizable. After image acquisition, the sample
names were matched to use them for deep learning. The motor
neuron images stored as 16-bit grayscale in tiff format were
converted to 8-bit RGB images. To correct low-biased intensity
distribution of the original images and reduce the variance of the
intensity distribution range between samples, we normalized and
rescaled the intensity so that the median value of each image
aligned to 63. If the intensity exceeded 255, the values were
clipped. We recruited a VGG-16 network pretrained by the
ImageNet dataset and substituted fully connected layers with
new layers with regularization effect (Supplementary Table S1).
The input images were rescaled to 256 × 256, and a mean of
ImageNet images was subtracted. The images in training
datasets were randomly rotated, shifted, zoomed, and flipped
when input into the network. In the training, only weights of
the substituted fully connected layers were updated. The
weights were optimized by momentum stochastic gradient
descent algorithm. Learning rate (10−4 ≤ learning rate ≤ 10−2)
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and momentum (0.7 ≤ momentum ≤ 1.0) were tuned by
Hyperas (v0.4) module according to the accuracy for validation
data. The cost function of the network was computed as the
cross-entropy errors between the distribution of the predicted
class and that of the actual class. The size of the training batch
was 32. Then, a network was trained for 64 epochs with tuned
hyper parameters, and prediction performance was tested with
test data. Accuracy and area under the curve (AUC) of receiver
operating characteristic (ROC) curve were evaluated. To interpret
where the convolutional neural network (CNN) focused so as to
process an image, gradient-weighted class activation mapping
(Grad-CAM) and guided Grad-CAM algorithm were used.11 All of
the above processes were implemented in the Keras/TensorFlow
framework (v1.13.1)12 on GTX1080Ti by using CUDA 10.0.

Classification with Random Forest Classifiers
The total neurite length, number of cells, and average size of
neuronal soma were obtained with IN Cell Analyzer 6000. Using
the 3 features, random forest classifiers were trained to estimate
whether the cell images were derived from healthy control sub-
jects or ALS patients. AUCs of ROC curves were evaluated to
compare the performance with CNNs. Grouping for training
datasets and test datasets was exactly the same as that used in the
classification by CNNs. The random forest classifiers were
implemented with scikit-learn (v0.23.2).

Results
A strategy for predicting ALS was constructed by deep
CNNs using images of iPSC-derived motor neurons
(Fig 1). iPSCs from 15 healthy control subjects and 15
sporadic ALS patients without mutations in ALS-related
genes (Table, Supplementary Table S2) were differentiated
to spinal motor neurons as previously described.13,14 The
samples on day 23 were immunostained with a neuronal
marker, neurofilament H, followed by acquisition of
images using confocal microscopy in a blinded manner.
Representative motor neuron figures from healthy control
subjects and ALS patients are presented in Figure 1D.
Tensorflow/Keras12 was used to construct a VGG-16 net-
work15 pretrained with ImageNet16 dataset and to con-
duct transfer learning for classifying the images of healthy
control motor neurons and of ALS motor neurons. The
fully connected layers of the network were substituted
with new layers, but only with those that were trained by
the cell images. A series of 225 images was collected by
each clone, and a total of 4,500 images from 10 clones
from healthy control subjects and 10 clones from ALS
patients were used as a training dataset. A total of 1,350
images from 3 independent healthy control clones and
3 ALS clones were used as a validation dataset, and
900 images from 2 independent healthy control clones
and 2 ALS clones were used as a test dataset. The clones
used for training, validation, and test, respectively, did not

overlap. For unbiased evaluation, we constructed a mini-
mal set of analyses to ensure that all clones were included
in both validation and test at least once. The data splits
were chosen in an unbiased manner, beyond making sure
that all different clones were used in different groups. We
independently formed 55 sets composed of training/vali-
dation/test datasets and ran evaluation (Fig 2, Supplemen-
tary Table S3). The CNNs learned training datasets
without obvious increase in validation loss during training,
which suggests that the prediction models were trained
without clear overfitting.17 The average accuracy of the clas-
sification was 0.90 ± 0.10 (mean ± standard deviation
[SD]), and the AUC of the ROC curve for classification of
healthy control motor neurons and ALS motor neurons
was 0.97 ± 0.04 (mean ± SD). To visualize and understand
how the images were processed in the pretrained CNN,
Grad-CAM was applied. It presented the detection of neu-
rites in the output from block 2 and soma in that from
block 3, indicating that CNN captured the alteration of the
morphology of motor neurons, especially neurites and
soma, although the findings could reflect the differences in
intensity or pattern that would not necessarily be indicative
of a morphological change. It is also important to note the
experimental batch effect.18 We evaluated the images
obtained from 3 independent differentiation experiments as
test data, using the training and validation sets already
obtained, and found a high degree of accuracy in these
batches (Supplementary Table S4). Furthermore, there was
no apparent association of classification accuracy with the
number of iPSC passages (n = 30 included 15 control and
15 ALS iPSCs, Spearman coefficient r = 0.33, p = 0.231).

Next, we examined the relevance between clinical
information and accuracy of the classification. There was a
correlation between the duration of illness, that is, the
duration from the onset of the disease to the sampling for
iPSC generation, and accuracy, although the analysis was
based on a limited number of samples (see Fig 2E). The
correlation between clinical types of ALS and accuracy
was not determined due to the small sample size.

We evaluated the performance when the same task
was achieved by 10 well-trained cell biologists, and found
that the correct answer rate was 0.54 ± 0.08 (mean ± SD),
showing that CNN presented a higher performance of
classification than humans could achieve. The ratio of cell
death detected by cleaved caspase-3 was not different
between control and ALS (control, n = 15; ALS, n = 15;
mean ± SD, not significant by Student’s t-test). We also
evaluated the original images used in deep learning by a
conventional analytic method using high content analysis.
ALS motor neurons showed a tendency to have smaller
values for cell number, soma size, and neurite length com-
pared to controls, but we could not find any significant
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FIGURE 1: Amyotrophic lateral sclerosis (ALS) prediction model using induced pluripotent stem cell (iPSC)-derived motor
neurons. (A) Schematic illustration of the prediction model for ALS using iPSC-derived motor neurons and convolutional neural
network (CNN). (B) Schema of CNN. VGG-16 network pretrained by ImageNet dataset and substitute fully connected layers
were recruited. (C) Differentiation schedule of motor neurons from iPSCs for imaging. (D) Representative images of motor
neurons derived from iPSCs of healthy control (CTL) subjects and sporadic ALS (SALS) patients. Scale bars = 100μm. BDNF =
brain-derived neurotrophic factor; bFGF = basic fibroblast growth factor; GDNF = glial cell line-derived neurotrophic factor; NT-
3 = neurotrophin-3; SAG = smoothened agonist.
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differences in these cellular features between control motor
neurons and ALS motor neurons (control, n = 15; ALS,
n = 15; not significant by Student’s t-test). Furthermore,
the random forest classifier, a conventional machine learn-
ing model, resulted in low classification accuracy using
these features (see Fig 2F).

Discussion
We demonstrated a prediction model of ALS using deep
learning algorithms and images of iPSC-derived motor
neurons. Research using iPSCs presents advantages such
as utilizing cells with the same genetic background as the
donor for various disease models and drug screenings.19

The diagnosis of ALS depends on clinical observation
and electrophysiological analysis, and reducing the diagnostic
delay is crucial for the avoidance of treatment delay as well as
for patient well-being.20 The disease staging is important,
because ALS is a continuously evolving process and treat-
ments might need to be administered at precise time points
of the disease course to be beneficial.21 Progression of the
disease in patients is considered to be one of the causes of
clinical trial failure, because motor neurons start to disappear,
and the urgency for diagnosis is increasingly emphasized.
Attempts to create new diagnostic criteria22 and the develop-
ment of biomarkers23,24 are promising, but they have as yet
not predicted ALS diagnosis.25 Thus, by combining our
model, which is expected to be a supportive tool for ALS
diagnosis, and clinical biomarkers including blood/spinal
fluid neurofilament levels, it may be possible to classify ALS
with even greater accuracy. Furthermore, for ALS patients
with progressed stage, there may be a possibility of applying
this model to prognosis prediction and the stratification of
patients for treatment selection in the future.

A previous report regarding the etiology of twins
with ALS indicated that ALS has high heritability.26 The

genome-wide association analysis identified risk single
nucleotide polymorphisms in sporadic ALS,24 and the
shared polygenic risk and causal association in sporadic
ALS has been reported.27 Thus, ALS is closely related to
the genetic background even in sporadic cases. iPSCs
retain genetic information of the donor, although some
epigenetic information is lost in the reprogramming proce-
dure.28 Several cellular phenotypes of motor neurons
derived from sporadic ALS iPSCs have been reported
previously.29–31 The detection of motor neuron pheno-
types may depend on the culture period and the differenti-
ation protocol, and our relatively short culture period did
not allow us to detect a significant cellular phenotype with
high content analysis. Although each genetic alteration
may present subtle cellular phenotypes by human eyes,
deep learning algorithms succeeded in predicting the dis-
ease using imaging data.

Deep learning algorithms present high performance
in the classification of images for classification in multiple
medical situations, including skin cancer diagnosis by pic-
tures of skin legions,4 lung cancer diagnosis by CT
imaging,5 and pathological diagnosis for cancers.6 They
are expected to be applicable to medical examinations
using materials from patients. On the other hand, our sys-
tem, which is applied prior to the clinical stage, has
2 advantages: (1) the utility of motor neuron data not
available from patients clinically and (2) the potential of
predictive diagnosis of ALS. This shows advantages of the
combination of deep learning algorithms and iPSC
technology.

On the other hand, although we tried to address
this, there are general issues regarding deep learning, for
example, “black boxes” of the resulting network.32 This
study is based on a laboratory resource experiment, and
we have not yet fully determined whether deep learning is
looking at the actual features of the disease. Furthermore,

TABLE. Clinical Information for Subjects Included in Deep Learning

Healthy Controls, n = 15 ALS, n = 15

Gender, n (%)

F 8 (53.3%) 9 (60.0%)

M 7 (47.7%) 6 (40.0%)

Age at iPSC establishment, yr 64.3 � 13.5 56.8 � 9.7

Duration of illness, yr NA 3.9 � 4.2

Bulbar type, n (%) NA 2 (13.3%)

Duration of illness refers to the period from the onset of the disease to the collection of somatic cells for iPSC generation.
ALS = amyotrophic lateral sclerosis; F = female; iPSC = induced pluripotent stem cell; M = male; NA, not applicable.
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FIGURE 2: Classification performance in amyotrophic lateral sclerosis (ALS) motor neurons. (A) Strategy of model construction of
learning, validation, and test. (B) Loss function of learning. There was no increase in loss even in the late stage of learning.
(C) Receiver operating characteristic (ROC) curve of classification for healthy controls and ALS subjects from 55 test datasets. The
average curve is shown by the thick blue line. (D) Saliency maps for ALS motor neurons by gradient-weighted class activation
mapping (Grad-CAM) in upper row and guided Grad-CAM in lower row. The saliency map was centered around neurites in block
2 and soma of motor neurons in block 3. (E) Correlation of the duration of illness and accuracy of the classification. The accuracy of
each ALS sample averaged in each set is shown. The positive correlation between the duration of illness and accuracy is presented;
n = 15, Spearman coefficient r = 0.61, p = 0.018. Duration of illness refers to the period from the onset of the disease to the
collection of somatic cells for iPSC generation. Correlation of accuracy was not seen between the bulbar type and spinal type of ALS.
(F) The random forest classifier resulted in low classification accuracy using these features. Using the same sample set as deep
learning experiments, area under the curve (AUC) for ALS diagnosis by the random forest was approximately 0.60. CTL = control.
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the experimental batch effects related to the technical mat-
ter need to be considered carefully,18 and our experiments
showed high accuracy in different batches. However, the
generalizability of an individual model to a large number
of clones from multiple patients has not been demon-
strated. Nonetheless, careful evaluation of the generaliza-
tion ability of the prediction models is still needed to
exclude the possibility of overfitting to laboratory-specific
technical artifacts. Furthermore, consideration of the alter-
ation of epigenetic memory by passage of iPSCs is also
needed. Although this study did not find any difference in
accuracy because of differences in the number of passages
of iPSCs, it has been reported that the epigenome is
altered by the passage of iPSCs,33 and this is an issue
requiring further study.

We have demonstrated a prediction model of ALS
by combining deep learning algorithms and iPSC technol-
ogy as a proof-of-concept study. Further study with
expanded information from increased datasets will be
needed in the future.
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