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Estimating mean circulatory filling 
pressure in clinical practice: a systematic 
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Abstract 

The bedside hemodynamic assessment of the critically ill remains challenging since blood volume, arterial–venous 
interaction and compliance are not measured directly. Mean circulatory filling pressure (Pmcf) is the blood pressure 
throughout the vascular system at zero flow. Animal studies have shown Pmcf provides information on vascular com-
pliance, volume responsiveness and enables the calculation of stressed volume. It is now possible to measure Pmcf 
at the bedside. We performed a systematic review of the current Pmcf measurement techniques and compared their 
clinical applicability, precision, accuracy and limitations. A comprehensive search strategy was performed in PubMed, 
Embase and the Cochrane databases. Studies measuring Pmcf in heart-beating patients at the bedside were included. 
Data were extracted from the articles into predefined forms. Quality assessment was based on the Newcastle–Ottawa 
Scale for cohort studies. A total of 17 prospective cohort studies were included. Three techniques were described: Pmcf 
hold, based on inspiratory hold-derived venous return curves, Pmcf arm, based on arterial and venous pressure equili-
bration in the arm as a model for the entire circulation, and Pmcf analogue, based on a Guytonian mathematical model 
of the circulation. The included studies show Pmcf to accurately follow intravascular fluid administration and vascular 
compliance following drug-induced hemodynamic changes. Bedside Pmcf measures allow for more direct assessment 
of circulating blood volume, venous return and compliance. However, studies are needed to determine normative 
Pmcf values and their expected changes to therapies if they are to be used to guide clinical practice.
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Background
It is difficult to determine the cause for hemodynamic 
instability in patients and to predict the best treatments. 
Currently, cardiovascular resuscitation options are trig-
gered by arterial pressure and cardiac output (CO) 
measures, focusing on the oxygen delivery side of the 
circulation. However, the primary determinants of CO 
reside on the venous side. Veins are 30–50 times more 

compliant than arteries and contain approximately 75% 
of the total blood volume [1–5]. Mean circulatory filling 
pressure (Pmcf) provides vital information on this “forgot-
ten venous side of the circulation” [6].

In 1894, Pmcf was defined as the equilibrium pressure 
throughout the circulation during circulatory arrest [7]. 
In the 1950s, Guyton and colleagues described a linear 
relationship between venous return (VR) and right atrial 
pressure (Pra), described as: VR = (Pmcf − Pra)/(RVR) [8, 
9]. RVR is resistance to VR and defines the slope of the 
VR curve. This linearity has been confirmed in intact 
circulations in animal studies and is not affected by 
hypo- or hypervolemia [10–15]. VR curves enable to 
determine the equilibrium point of the circulation, which 
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is the intersection between the CO and VR curve. Central 
venous pressure (CVP) is a surrogate of Pra used in clini-
cal practice. CVP at zero flow equals Pmcf (Fig. 1).

Vascular volume requires a minimal volume before 
its distending pressure becomes positive. The amount 
of blood not causing pressure on the vessels is called 
unstressed volume (Vu) and reflects intravascular vol-
ume present with Pmcf of zero. Stressed volume (Vs) is 
the additional blood causing a distending pressure on 
the vascular walls and reflects the effective circulating 
volume. Vu and Vs together define the total blood vol-
ume. Vs is approximately 25% of the total blood volume 
[3–5]. Vs and vascular compliance (Csys) define Pmcf 
[16]. An increase in Vs increases Pmcf, and an increase in 
Csys decreases Pmcf. Fluid loading should increase Pmcf, 
but VR only increases if the pressure gradient for VR (i.e., 
Pmcf CVP) increases, RVR decreases, or both. Since in the 
steady state VR = CO, knowing the determinants of VR is 
relevant to understanding cardiovascular state.

Recently, methods have emerged to enable clinicians 
to estimate Pmcf at the bedside. Our objectives for this 
review were to describe the techniques and to highlight 
their clinical applicability, precision, accuracy and limita-
tions in critically ill patients.

Materials and methods
Publication selection
This review was performed according to PRISMA guide-
lines [17] (Additional file 1) and methodology outlined in 

the Cochrane Handbook for systematic reviews [18]. No 
study protocol was published. A PubMed, Embase and 
Cochrane Library database search was performed with 
help of a clinical librarian with no restriction on publi-
cation date. The search was performed up to May 18, 
2017. The search strategy combined the following con-
cepts: (1) “mean systemic filling pressure” or “mean cir-
culatory filling pressure” or “static filling pressure” and 
(2) “intensive care” or “critical care” or “perioperative” or 
“intraoperative” (Additional file  1). Titles, abstracts and 
full-texts were independently screened by two review-
ers for relevance (MW and DPS), and discrepancies were 
resolved by a third reviewer (BFG). The references of the 
selected articles were examined for additional eligible 
articles. Studies were included when available in Eng-
lish and full-text, described prospective studies in which 
Pmcf estimation methods were examined in heart-beating 
ICU patients and contained a description of their clinical 
applicability, precision and accuracy or limitations.

Data extraction and analysis
Data were extracted into predefined forms. No additional 
analyses were performed. Critical appraisal was based 
on the Newcastle–Ottawa Scale for cohort studies [19] 
to assess the quality of non-randomized studies at study 
level. A modified version of the scale was used since only 
five out of nine questions were applicable, resulting in a 
possible highest score of five stars (Additional file 1).

Results
Study selection and characteristics
The initial search identified 369 articles, of which 300 
were excluded after screening title and abstract. A total 
of 53 articles were excluded based on full-text. Two rel-
evant articles were found by citation tracking. Conse-
quently, 17 prospective cohort studies estimating Pmcf 
in heart-beating ICU patients were included (Additional 
file  1). Three different bedside measurement techniques 
were found. Eight studies estimated Pmcf applying inspir-
atory hold maneuvers (Pmcf hold), three studies during a 
circulatory stop-flow in the arm (Pmcf arm) and four stud-
ies using a mathematical algorithm (Pmcf analogue). Two 
studies compared multiple techniques.

Eleven studies were performed in postoperative car-
diac surgery patients (Table 1). All patients were hemo-
dynamically stable without alteration in vasopressor use 
or fluid therapy during the study protocol. All patients 
were sedated and mechanically ventilated. In one study, 
spontaneous breathing efforts were observed [20]. The 
number of included patients ranged from nine to 80. In 
all studies, CVP was measured via a catheter in the right 
internal jugular vein. CO measurement techniques dif-
fered between studies (Additional file 1).

Fig. 1 The venous return curve (a) combined with the cardiac output 
curve (b). The intersection of these two curves (c) is the working point 
of the circulation. The central venous pressure when venous return 
equals zero is the Pmcf (d). The slope of the VR is determined by the 
resistance to venous return
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Table 1 Baseline characteristics for included studies

References Method N Patient population (all adult ICU 
patients)

Age Male Timeframe Pmcf measurement

Maas et al. [21] Pmcf hold 12 Postoperative cardiac surgery 64 (10) 10 (83%) Not described

10 CABG

2 AVR

Keller et al. [23] Pmcf hold 9 Postoperative cardiac surgery Median 61 4 (44%) Not described

3 CABG IQR 55–75

6 AVR

Maas et al. [22] Pmcf hold 10 Postoperative cardiac surgery 64 (11) 9 (90%) Within 1 h after ICU admission

2 AVR

1 MVP + TVP

7 CABG

Persichini et al. [27] Pmcf hold 16 Septic shock 67 (16) 8 (50%) Not described

Maas et al. [25] Pmcf hold 16 Postoperative cardiac surgery 64 (11) Not described Within 1 h after ICU admission

1 MVP

15 CABG

Guerin et al. [28] Pmcf hold 30 Shock 65 (12) 21 (70%) Not described

De Wit et al. [24] Pmcf hold 17 Postsurgical gastrointestinal 62 (9) 14 (82%) Not mentioned

16 esophageal resection

1 pancreaticoduodenectomy

Helmerhorst et al. [26] Pmcf hold 22 Postoperative cardiac surgery 63 (59–66) 17 (85%) 1 h after ICU admission

22 CABG

Geerts et al. [43] Pmcf arm 24 Postoperative cardiac surgery 64 (10) 19 (79%) Within 2 h after ICU admission

17 CABG

7 CABG plus valve repair

Aya et al. [41] Pmcf arm 20 Postoperative cardiac surgery 63 (11) 17 (85%) Initial period at ICU (not further 
defined)

13 CABG

4 AVR

4 MVR

Aya et al. [42] Pmcf arm 80 Postoperative cardiac surgery 70 62 (78%) Initial period at ICU (not further 
defined)

36 CABG Range 52–80

27 AVR + CABG

12 MVR + CABG

5 Other

Parkin et al. [49] Pmcf analogue 10 Multi-organ failing patients receiv-
ing CVVH for acute renal failure

65 7 (70%) Not described

Range 24–77

Cecconi et al. [48] Pmcf analogue 39 22 Cardiac surgery 68 (12) 26 (67%) Not described

8 Shock

6 Non-cardiac surgery

3 Other

Gupta et al. [20] Pmcf analogue 61 Postoperative cardiac surgery 63 (11) 46 (75%) Within 6 h after ICU admission

40 CABG

8 CABG + valve replacement

8 Valve replacement

5 Bentall’s procedure

7 DDD pacing

Aya et al. [51] Pmcf analogue 26 Postoperative fluid challenge 68 16 (62%) Initial period at ICU (not further 
defined)

7 Cardiac surgery Range 53–80
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Pmcf hold
Technique description
Pmcf hold is based on the linear relation between CVP and 
VR (Pmcf = (VR − CVP)/RVR). CVP is raised by perform-
ing a series of end-inspiratory hold maneuvers. In 2009, 
the method was first studied in humans [21]. Inspiratory 
hold maneuvers at 5, 15, 25 and 35 cmH2O incremental 
ventilatory plateau pressures (Pvent) were performed, and 
CO was measured in the last 3  s of the 12 s inspiratory 
hold. They validated that after 7–10 s a steady state con-
sists when VR = CO. By plotting the CVP and CO values, 
a VR curve is constructed and the zero-flow pressure 
(Pmcf) extrapolated. Seven studies [16, 21–26] estimated 
Pmcf hold using these four plateau pressures. Two studies 
[27, 28] used two points (Pvent 5 and 30 cmH2O) at 15-s 
inspiratory and expiratory hold plateau phase. Between 
the Pmcf hold measurements, either 1-min pauses were 
used to re-establish the initial hemodynamic steady state 
[16, 21, 22, 24, 28], or the consecutive inspiratory hold 
was performed when CO had returned to baseline [23, 
26, 27].

Clinical applicability
The average baseline Pmcf hold values found in the eight 
included studies range from 19 to 33  mmHg with a 
wide standard deviation (Tables 2, 3). Five studies [21–
23, 26, 28] demonstrated fluid administration caused 
an increase in Pmcf hold, confirming that in humans, 
as in animals before [14, 15], Pmcf hold follows hemo-
dynamic changes (Table 2). One of these studies found 
passive leg raising (PLR) to significantly increase Pmcf 
hold values [28]. RVR was not significantly affected by 
different volumetric conditions nor by PLR. Vs was cal-
culated from Pmcf as a measure for effective circulating 
volume [22]. In one study, Pmcf was used to assess the 

hemodynamic effects of arterial hyperoxia  (FiO2 = 90% 
for 15 min) in ICU patients [26]. During this hyperoxia, 
left ventricular afterload increased and contractility 
remained similar; however, CO did not decrease. Both 
Pmcf and RVR increased significantly (Table 3), explain-
ing why VR (thus CO) remained unaltered.  

Studies have used Pmcf hold to describe hemodynamic 
changes caused by propofol [24] and norepinephrine 
[25, 27] (Table  3). In septic shock patients, decreas-
ing the dose of norepinephrine decreased both Pmcf 
and RVR [27]. Further, after increasing norepinephrine 
CO decreased in ten patients and CO increased in six 
patients [25]. In all patients, Pmcf and RVR increased, 
though the “balance” between the two values determined 
whether CO increased. One study showed an increase in 
propofol caused a decrease in Vs without a change in CO 
[24]. These studies show Pmcf behaves within the frame-
work of hemodynamic reasoning and lends itself to being 
used as a less invasive method to assess drug-induced 
physiology. Since Pmcf exists at the intersection of arterial 
and venous flow, it enables to calculate the true arterial 
and venous resistance by calculating the critical closing 
pressure (Pcc). Pcc is the mean arterial pressure (MAP) 
to zero CO-intercept. Arterial resistance is calculated as 
(MAP − Pcc)/CO [22].

Precision and accuracy
The technique precision has not yet been assessed in 
humans. However, in an animal study the averaged 
coefficient of variation for repeated measurements of 
Pmcf hold was 6% [29]. Comparing the techniques’ accu-
racy, no significant differences between Pmcf hold and 
Pmcf arm existed, whereas Pmcf analogue values were 
significantly lower [16, 30].

Age is presented as mean with standard deviation (SD) or median with range or interquartile range (IQR). Number of males per study is presented as counts with 
percentage

CABG coronary artery bypass, MVR mitral valve replacement, MPV mitral valve prolapse, AVR aortic valve replacement, TVP tricuspid valve prolapse, CVVH continuous 
veno-venous hemodiafiltration

Table 1 (continued)

References Method N Patient population (all adult ICU 
patients)

Age Male Timeframe Pmcf measurement

19 Non-cardiac surgery

Maas et al. [16] Pmcf hold 11 Postoperative cardiac surgery 64 9 (82%) Within 2 h after ICU admission

Pmcf arm 11 9 CABG Range 50–80

Pmcf analogue 11 2 AVR

Maas et al. [30] Pmcf arm 15 Postoperative cardiac surgery 64 (11) Not described Within 1 h after ICU admission

Pmcf hold 12 9 CABG

5 Valve

1 CABG + valve
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Limitations
The use of Pmcf hold is restricted to mechanically ven-
tilated and sedated patients with a central venous cath-
eter. The procedure of the inspiratory hold maneuvers 
is not yet automated and requires a direct link between 
monitor and ventilator, or advanced monitor analytics to 
detect the inspiratory holds and to perform the instan-
taneous CO calculations. Furthermore, it is not suitable 
during cardiac arrhythmia. This method is not suitable 
to measure rapid changes in hemodynamic status since it 
takes a couple of minutes to perform the multiple end-
inspiratory (and end-expiratory) holds. Potentially, this 
technique is operator-dependent because a proper inspir-
atory plateau pressure is needed. CVP can be altered due 
to incorrect catheter placement. An absolute CO value is 
not necessary for Pmcf hold as the technique extrapolates 
to zero CO. If the trend measurements are accurate, the 
RVR slope might change, but the intersection Pmcf point 
remains constant. The latter holds only true for the Pmcf 
itself, the RVR is dependent of the slope of the curve. In 
clinical practice, a physician would use Pmcf together with 
RVR; therefore, for clinical use of the Pmcf an accurate CO 
value is needed.

Potentially, the inspiratory hold maneuver overesti-
mates Pmcf by the blood translocation from the pulmo-
nary into the systemic circulation [31–33]. However, 
the potential volume shifts relative to Csys suggest that 
this effect is minimal [10, 34]. During inspiratory hold 
maneuvers, arterial pressure decreases. If sustained, 
baroreflex-induced increased sympathetic tone may 
cause Pmcf to increase [35, 36]. Indeed one study per-
formed in pigs found the Pmcf hold overestimating com-
pared to a method using right atrial balloon occlusion 

in euvolemic conditions, in bleeding and hypervolemia; 
however, the values found between the two methods were 
similar [34]. Two clinical studies [16, 30] have shown Pmcf 
hold and Pmcf arm values not being significantly different, 
debating the former result found in pigs. Future studies 
in humans are needed. Moreover, all patients undergo-
ing inspiratory holds are on neuro-humoral suppressive 
agents, probably dampening the baroreflex and other 
autonomic influences [37–39].

Pmcf arm
Technique description
As Pmcf is defined as the steady-state blood pressure 
during no-flow conditions, instantaneously Pmcf should 
mainly be similar for different vascular compartments 
even though each compartment may have different Vu 
and Vs [2, 40]. Four studies [16, 41–43] used the arm 
to estimate Pmcf. For arm occlusion, a rapid cuff infla-
tor (inflates in 0.3 s) [16, 43] or a pneumatic tourniquet 
(inflates in 1.4 s) [41, 42] was inflated around the upper 
arm to 50 mmHg above systolic blood pressure. Arterial 
and venous pressures were measured via a radial artery 
catheter and a peripheral venous cannula in the forearm. 
When these two pressures equalize, Pmcf arm values are 
achieved. An initial study determined that a 25–30 s stop-
flow time was adequate to achieve this equilibration [16]. 
Following this, in two studies Pmcf arm was measured as 
the average radial arterial pressure at 30 s after stop-flow 
[16, 43]. One study found the smallest difference between 
venous and arterial pressure after 60 s of stop-flow [41]. 
This discrepancy could be explained by different inflation 
time, i.e., induction of stop-flow.

Table 3 Pmcf and pharmacodynamics

NE norepinephrine dose in μg/kg/min presented as mean with range or mean with standard deviation. Pmcf values are presented as mean with standard deviation. Cb 
target blood concentration of propofol in μg/mL. Pmcf hold values presented in mmHg. FiO2 fractional oxygen concentration

* p value, p value for situation A compared to B
# p value, p value for situation A compared to C

References Method n Situation A Situation B p value* Situation C p  value#

Persichini et al. [27] 16 NE 0.30 NE 0.19

Range 0.10–1.40 Range 0.08–1.15

Pmcf hold (in mmHg) 33 (12) 26 (10) 0.003

Maas et al. [25] 16 Baseline 1 NE increase of 0.04 (0.02) Baseline 2

NE 0.04 (0.03) NE 0.04 (0.03)

Pmcf hold (in mmHg) 21.4 (6.1) 27.6 (7.4) < 0.001 22.0 (5.3)

de Wit et al. [24] 17 Propofol low Propofol medium Propofol high

Cb 3.0 (0.90) μg/mL Cb 4.5 (1.0) μg/mL Cb 6.5 (1.2) μg/mL

Pmcf hold (in mmHg) 27.9 (5.4) 24.6 (4.9) 0.01 21.4 (4.2) < 0.001

Helmerhorst et al. [26] 22 FiO2 21–30% FiO2 90%

Pmcf hold (in mmHg) 20.8 (3.5) 23.1 (4.0) < 0.001
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Clinical applicability
The average baseline Pmcf arm values found in the 
included studies range from 16 to 24  mmHg (Table  2). 
Pmcf arm can be performed in spontaneously breathing 
subjects and requires only one measure. In two stud-
ies, Pmcf arm was assessed as a predictor of fluid loading 
responsiveness (FLR) [16, 43]. One study showed that a 
low Pmcf arm (< 22 mmHg) predicts FLR with 71% sensi-
tivity and 88% specificity, where responders were defined 
when CO increased > 10% after 500 mL colloid adminis-
tration [43]. Another study showed changes in circulating 
volume (500 mL colloid) are tracked well by changes in 
Pmcf arm [16]. Finally, one study indicated a minimum of 
4 mL/kg fluid challenge was needed to define FLR [42].

Precision and accuracy
Repeated measurements of Pmcf arm showed no signifi-
cant differences [41]. The coefficient of variation for a sin-
gle measurement was 5%, which reduced to 3% after four 
measurements. Bland–Altman analysis showed a bias of 
− 0.1 ± 1.68 mmHg for the first two measurements. The 
least significant change [44] for a single measurement 
was 14% (i.e., ± 3  mmHg for a Pmcf arm of 22  mmHg). 
One study observed a negligible bias of two Pmcf arm 
determinations at baseline position and after fluid expan-
sion [16]. Two studies [16, 30] found no significant differ-
ences in Pmcf arm to Pmcf hold measures.

Limitations
Theoretically, a limitation of the technique is the influ-
ence of an auto regulatory hypoxia-induced response 
causing arterial vasodilation. The time of measuring 
Pmcf after arm occlusion should be enough for arterial 
and venous pressures to equilibrate, but before hypoxia-
induced vasodilation causes an underestimation of Pmcf 
[45]. One study observed plateau pressures after 20–30 s 
and saw a further decrement after 35–40  s which indi-
cates hypoxia-induced vasodilation [16]. Potentially, arm 
occlusion causes a small accumulation of blood volume 
because the venous outflow stops before the arterial 
inflow stops [16]. Though, this potential overestimation is 
negligible since the inflow is small compared to the total 
distal arm volume as long as cuff inflation is rapid. To 
note, Pmcf arm is only reliable when a stable plateau pres-
sure is achieved [2].

In contrast to Pmcf hold, Pmcf arm measures can be 
made in non-sedated patients with cardiac arrhythmias. 
However, the possible influence of the rapid cuff infla-
tor on reflex mechanisms needs to be studied. In septic 
patients, central and peripheral vasomotor tone might 
be altered differently [46]. Shortly after cardiac surgery 

differences between aortic and radial pressure can occur 
[47], still, the original validation studies were on postop-
erative cardiac surgery patients.

Pmcf analogue
Technique description
Based on a Guytonian model of the systemic circula-
tion (CO = VR = (Pmcf − CVP)/RVR), an analogue of Pmcf 
can be derived using a mathematical model: Pmcf ana-
logue = axCVP + bxMAP + cxCO [5, 20, 48, 49]. In this 
formula, a and b are dimensionless constants (a + b = 1). 
Assuming a veno-arterial compliance ratio of 24:1, 
a = 0.96 and b = 0.04; c resembles arteriovenous resist-
ance and is based on a formula including age, height and 
weight [5, 48–50].

Clinical applicability
The average baseline Pmcf analogue values found in the 
included studies range from 14 to 18  mmHg (Table  2). 
One study compared fluid replacement based on target 
Pmcf analogue compared to conventional treatment in 
continuous veno-venous hemodiafiltration [49]. Fluid 
replacement based on target Pmcf analogue led to signifi-
cantly less fluid administration with stable cardiovascular 
variables (CVP, MAP, CO) and no complications. So, Pmcf 
analogue measurement adequately follows intravascular 
volume status in patients. Pmcf analogue measurements 
are automatic making it an attractive alternative to Pmcf 
hold and Pmcf arm.

More recently, the Pmcf analogue dynamics, measured 
with the Navigator™ device (Applied Physiology, Pty 
Ltd, Australia), were observed [20, 48, 51]. Patients were 
defined as responders with an increase in stroke volume 
or CO > 10% after 250 mL fluid administration. Pmcf ana-
logue increased after fluid administration; however, base-
line Pmcf analogue did not differ between responders and 
non-responders [20, 45, 48] (Table 2). This is contrary to 
results of another study [43] using Pmcf arm, possibly due 
to different fluid volume (250 vs. 500 mL) [42]. Although 
the driving pressure for VR (Pmcf CVP) was different 
between responders and non-responders, it showed low 
sensitivity (79%) and specificity (56%) to predict FLR [20, 
48].

Precision and accuracy
Precision has not been assessed for Pmcf analogue 
(Table 4). Comparing measurement techniques revealed 
a lower Pmcf analogue value compared to Pmcf hold [16]. 
However, a significant regression of Pmcf analogue and 
Pmcf hold was observed enabling to adjust the Pmcf ana-
logue value using calibration factor [5].
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Limitations
The mathematical model is based on CVP, MAP and 
CO measurements. As CVP values vary during venti-
lation, usually end-expiratory CVP-recordings can be 
used. Furthermore, CVP values depend on the position 
of the transducer. Accurate CO values are needed for 
this method. The limitation of Pmcf analogue is that the 
algorithm is based on a mathematical model with math-
ematical coupling between CO and Pmcf and fixed Csys 
and resistance parameters [5], therefore presumably not 
applicable for all patient populations or clinical condi-
tions. We are unable to assess the availability of the Navi-
gator™ for routine care.

Discussion
We found three bedside techniques to measure Pmcf: Pmcf 
hold, Pmcf arm and Pmcf analogue. They were used to fol-
low volumetric state and to study drug-induced hemody-
namic changes in patients.

The interpretation of VR curves and Pmcf in clinical 
practice is subject to debate [52–59]. The values found 
in heart-beating ICU patients are higher (14–33 mmHg) 
than in deceased ICU patients (12.8  ±  5.6  mmHg, 
mean ± sd), probably because of alteration of vasomotor 
tone after dying [53]. Furthermore, ICU patients often 
receive vasopressors which increase Pmcf and the study 
populations differed making it not one-to-one compara-
ble. It is also speculated that the pressure described by 
Guyton is not measurable in heart-beating patients and 
the extrapolated pressure of the curve represents a differ-
ent physiological parameter. Nevertheless, in two stud-
ies Pmcf arm was interchangeable with Pmcf hold [16–30]. 
Furthermore, although Pmcf values may differ, the CVP 
values do as well, which may account for a similar driv-
ing pressure for VR. The reviewed studies illustrate the 
possible clinical benefits of using the bedside derived Pmcf 
values.

This review is limited since we were unable to pool the 
data because of the variety in used conditions and inter-
ventions. The 16 included studies were performed by only 
a few research groups with a limited amount of included 
patients. In most of the studies, each patient served as 
their own control since it is not clear what would be an 
appropriate outside control group.

Still, all studies testing the accuracy of Pmcf to follow 
intravascular changes and pharmacodynamics found sig-
nificant results. Therefore, it is unlikely that a larger num-
ber of patients will show different outcomes. It is possible 
only positive studies were published, indicating publi-
cation bias. Pmcf values differ between the studies and 
have a wide range within studies (Table 2). Normal val-
ues for different patient populations need to be defined 
before Pmcf can be implemented into standard (ICU) 

care. The increase in Pmcf values after fluid administration 
depends on vascular redistribution, vasomotor tone and 
fluid loss into the interstitial space. Studies focusing on 
clinical decision-making based on Pmcf, driving pressure 
for VR, Vs or Csys have not yet been performed. Study 
designs need to be created to see if using these measures 
improves outcomes. Also, no precision studies examining 
Pmcf hold or Pmcf analogue exist yet.

Conclusions
Presently, three bedside Pmcf measurement techniques 
are available. All require invasive hemodynamic monitor-
ing. Though Pmcf measures allow for more direct assess-
ment of circulating blood volume, VR and Csys, studies 
are needed to determine cutoff values to allow Pmcf to 
trigger therapeutic interventions and to determine its 
value in clinical practice.
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