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Abstract

While many methods exist for integrating multi-omics data or defining gene sets, there is no

one single tool that defines gene sets based on merging of multiple omics data sets. We

present shinyGISPA, an open-source application with a user-friendly web-based interface

to define genes according to their similarity in several molecular changes that are driving a

disease phenotype. This tool was developed to help facilitate the usability of a previously

published method, Gene Integrated Set Profile Analysis (GISPA), among researchers with

limited computer-programming skills. The GISPA method allows the identification of multiple

gene sets that may play a role in the characterization, clinical application, or functional rele-

vance of a disease phenotype. The tool provides an automated workflow that is highly scal-

able and adaptable to applications that go beyond genomic data merging analysis. It is

available at http://shinygispa.winship.emory.edu/shinyGISPA/.

Introduction

Identification of driver genes in a sample phenotype remains quintessential in cancer geno-

mics research for which expression data has been typically analyzed to identify genes with sig-

nificant differences between groups of similar phenotypes. The increasing availability of

molecular data has shifted the focus away from examining changes in a single data type (e.g.,

expression) to examining changes using a combination of multiple data types (e.g., expression,

methylation, copy number, and variant allele frequencies). The examination of multiple

molecular changes has been referred to more generally as genomic data integration for which

two approaches, data merging and results merging have been proposed [1]. A result merging

approach is the simpler of the two and hence, the more popular. With this approach, genes are

defined as statistically significant within each data type and then combined among data types

by their intersection. The result is a list of genes that are commonly identified as significantly

different among phenotypes resulting from several independent analyses of each data type and

therefore thought to collectively explain substantial phenotypic changes. This approach suffers

from the major limitation that, as the number of data types increases, the intersection becomes

smaller and smaller and, hence, it is not scalable. Additionally, the merging of resulting gene
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sets by assessing each gene list from independently analyzed data types is not practical. Alter-

natively, a data merging approach combines the several different data types, and analysis is

performed on the combined data set. Many data integration approaches [2], which are outside

the scope of this paper, are limited in both the number and type of data permitted and are

therefore not scalable, while others impose functional relationships among data types and are

therefore not generalizable. We developed a data merging method [3] for genomic data inte-

gration, Gene Integrated Set Profile Analysis (GISPA) that is both scalable and generalizable.

The usefulness of such a method is likely to go undetected in the absence of an available inter-

active computational tool. Here, we introduce a web-tool for our GISPA method to increase

its usability and accessibility to a wider audience. The shinyGISPA tool is based on our GISPA

method and is designed to characterize the molecular tumor profile of a single sample relative

to other, comparison samples based on changes (increasing/decreasing) among several diverse,

genome-wide data types. The tool has the following features: 1) it defines a set of genes by

comparing them to all other genes in the user-input data set; 2) it is able to characterize a single

sample’s molecular changes; and 3) it compares molecular changes among more than two

phenotypic groups based on as few as a single sample per group. Most generally, the tool

enables a user to perform genomic data integration by merging any number of molecular data

types in any combination through a user-defined molecular profile that indicates direction

(increased/decreased) of change within each data type. For example, a user may specify a pro-

file of decreased gene expression with increased methylation and decreased copy change or

increased gene expression with increased variant allele frequency and thus use a different

number of data types in different combinations. The output is a list of gene sets that are ranked

according to their level of support for a user-defined molecular profile that is a characteristic

of a phenotype.

Methods and implementation

The shinyGISPA is an interactive web-based application, implemented using the Shiny R pack-

age [4]. The tool is hosted on a CentOS server running the Shiny Server program designed to

host R Shiny applications. The source code is written in the R programming language (https://

www.r-project.org/) and is freely available to download from GitHub (https://github.com/

BhaktiDwivedi/shinyGISPA) and Bioconductor (http://bioconductor.org/packages/GISPA/).

The main R packages used for data analysis and graphics were changepoint v2.2.2 [5] and HH

v3.1–34 [6]. Fig 1 demonstrates the user-interface of shinyGISPA tool.

The shinyGISPA user-interface is comprised of two sections: the input and resultpanels as

shown in Fig 1. The input table panel consists of seven input fields that a user can modify: (1)

Select the analysis type. User selects a one-, two-, or three-feature analysis with the “Analysis

Type” option. Here, feature is defined as a specific data type (e.g., expression, methylation,

somatic mutation, and copy number variation). An example of one-feature analysis is iden-

tifying gene sets with expression changes, a two-feature analysis is based on a combination of

any two data types, e.g., identifying gene sets that exhibit gene expression and copy change

changes, while a three-feature analysis is based on a combination of any three data types, e.g.,

identifying gene sets that exhibit expression, copy number, and methylation changes. (2)

Upload the input data: Select the file to be uploaded for each data type selected in (1) with

choose file option under “File Input”. An example data set can also be uploaded to run the

method. The input data can be genome-wide or a subset of data based on prior knowledge

derived from one of biological processes, pathways, biomarkers discovery, or prior genomic

analysis. The input data set must be a tab-delimited file format, where each row represents a

gene (or a user-defined id) and each column a sample. As an analysis tool, the input data
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should be pre-processed and normalized within samples. When running shinyGISPA on mul-

tiple data types (two-feature or three-feature analysis), the first column of each input data set

must correspond to a variable that is common to all input data sets. For instance, the input

data sets should have common gene names, type, or IDs in the first column as these are used to

merge the data tables into a single data set for analysis. The number of rows representing gene

names, probes, variants, or any other id may or may not be the same. The tool requires a mini-

mum of at least 10 genes and three samples to run. No duplicated rows or columns are allowed

or else the analysis will be stopped. Rows with zero variance across all samples are excluded

from the analysis. (3) Select the gene set profile. Select the “Gene Set Profile” button to define

the desired direction of change in the gene set separately for each data type. Here, a user can

Fig 1. A screenshot of the shinyGISPA web user-interface for a two-feature analysis.

https://doi.org/10.1371/journal.pone.0192563.g001
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select either “up” or “down” profile to define genes with increased or decreased changes in

each data type. (4) Specify the data type. This option allows the users to label each uploaded

data type, for instance, whether the data represents array-based expression, RNA-Seq expres-

sion, somatic mutation, copy number change, or methylation. (5) Define samples. User defines

sample classes (or groups) in the uploaded data set by specifying the sample columns corre-

sponding to the ‘Reference’ (sample of interest to characterize gene set profile on) and remain-

ing two samples with which to compare the reference sample against. (6) Select the change
point input. User may select the default settings or modify the change point detection method

[5] parameters to find the optimal break points based on the profile statistic [3]. The type of

changes in the data set may be based on using “mean”, “variance”, or “both” with user-speci-

fied method (“AMOC”, “BinSeg”, “PELT”, or “SeqNeigh”). (7) Display. Users can visualize the

gene sets by change points with the “up to” button. At the bottom of the page, there is a “Save”

button to download the “Results Table” as a table in CSV file format. The PDF plots of the

results shown can be copied and saved on a local machine.

The results are output in four separate tabs. (1) Input Data. Summarizes the user input data

in terms of the input number of genes (or rows), number of samples (or columns), user-

defined reference sample, and a box plot of the data distribution and table view of the input

data set. The user can set the color palette of choice with the “Sample Colors” side panel on the

right to represent the three sample groups. (2) Results Table. Outputs the table of gene sets

sorted by their profile statistic scores, which are then grouped according to identified change

points for the user-selected profile. The profile statistics scores for each gene are computed

using the GISPA method (please see method details in [3]). Figs 2–4 shows the results of a

two-feature analysis run using the provided example data sets to identify genes that show sup-

port for the profile of increased expression and increased variant allele frequencies in the refer-

ence sample. The results table (Fig 2) can be searched, sorted, and filtered by any of the

columns. (3) Diagnostic Plots. shinyGISPA generates, (a) Change point plot, an ordered plot of

smallest (least desirable) to largest (most desirable) transformed profile statistic computed

between features for each gene (circle), with identified breakpoints cutting the data to define

segments or sets of genes that vary in their support for the molecular profile of interest. The

topmost change point ‘1’ serves as the highest point in the plot line, indicated with an orange

line, such that the genes above it show the most support for the profile in characterizing the

reference sample versus the other samples. In general, the higher the change point, the less

support for the profile of interest. (b) Slope plot helps in determining the selection of the num-

ber of change points, and hence the number of gene sets that show support for the user-

defined profile. A slope defined by the ratio of the differences between the reference and each

comparison sample within each data type for each gene is calculated and then averaged among

the genes defined by each change point. The averaged slopes for each change point are plotted

as circles, with the topmost, “best” profile (change point 1) shown in orange. Gene sets that sat-

isfy a profile of increased change (e.g., increase gene expression with increase variant allele

change) will have ‘small’ slope values that are depicted at the lower-left corner. Alternatively,

gene sets that satisfy a profile of decreased change (e.g. decrease gene expression with decrease

variant change) will have ‘large’ slope values that are depicted at the upper-right corner. The

circle that is farther away from the other circles and closer to the respective corners of the plot

indicate gene sets (i.e. change points) that show the topmost support for the profile of interest,

though they vary in their degree of support. In Fig 3, genes selected based on the first change

point only are shown as supporting the profile. (c) Boxplots representing the input data distri-

bution of gene sets for the selected change points (under “Display” input panel) by sample

groups for each data type. These plots allow the user to further assess the support for the profile

based on the selected set of genes. (4) Gene Set Profile. The stacked bar plots in Fig 4 enables
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the users to visualize the breakdown among data types (‘between-feature differences’) that

define a profile within each selected gene and the breakdown among the samples (‘between-

sample differences’) within each data type. The former breakdown may be used to further

identify prominent, driving features for a profile while the latter breakdown provides further

confirmation of why the genes were selected as supporting the user-specified profile. The

“Between Sample Differences” bar plot represents the differences among the samples, i.e., the

percent contribution from each sample to the summed total of all samples by each data type.

In Fig 4, the top most gene FGFR3 is shown with increased expression (60%) in the reference

sample (red-filled bar) compared to sample 1 (blue-filled bar) and sample 2 (green-filled bar),

while FGFR3 variant allele frequency is shown as only present in the reference sample (100%).

The “Between-Feature Differences” plot represents the percent contribution from each feature

(data type) for the profile by gene. Here, in the case of FGFR3, expression is shown as the most

prominent feature, accounting for around 95% of the profile statistics as compared to the

changes in variant that account for 5%. For these plots, the user can adjust the plotting param-

eters including the data type color palettes through the side menu panels.

Fig 2. Results table snapshot of the shinyGISPA user-interface with the computed profile statistic scores using the example data sets.

https://doi.org/10.1371/journal.pone.0192563.g002
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Results

Validation

We have developed an open-access interactive web-based application for the GISPA method

published in Kowalski et al., 2016. The method was validated for the characterization of the

human multiple myeloma (MM) cell lines [3]. In specific, GISPA was able to identify both

known and novel molecular profiles of MM cell lines within the context of a single- and two-

feature analysis (see Table 1).

Applications

Our shinyGISPA tool provides the following flexibility to users in terms of performing an inte-

grated data merging analysis: (1) any sample source, whether cell line or patient, is applicable,

(2) data from different platforms with different scales can be input and combined together, (3)

genome-wide or a selected subset of data can be used as input, (4) as few as a single sample per

phenotypic group is applicable, and (5) one, two, or three-features of data in any combination

can be used to define a molecular profile. Here we demonstrated the utility of shinyGISPA to a

Fig 3. Results diagnostics plots snapshot of the shinyGISPA user-interface using the example data sets.

https://doi.org/10.1371/journal.pone.0192563.g003
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multiple myeloma data set; however, the tool is applicable to diverse cancer types or any other

disease phenotype. One of the practical applications of our shinyGISPA tool is to scale up an

experiment from cell lines to patient data. For example, it is typically the case that a researcher

will first perform sequencing on cell lines to define which molecular changes characterize say

resistant versus sensitive cell lines. For this purpose, there exists several public domain data on

cancer cell lines of many genome-wide data types that a user may obtain to apply shinyGISPA.

Once defined, the molecular alterations could then be examined in greater detail (and depth of

coverage) using more focused NGS technologies, such as targeted sequencing, in tumors from

patients. There are additional shinyGISPA applications such as in resolving subtype differ-

ences (e.g., glioblastoma) from use of different technologies to measure the same quantity. A

premier example of this application is to identify genes with increased expression from one

technology that also show increased expression of genes from another technology. Often times

one struggles with using RNA-seq derived gene expression data for subtype identification an

array-based gene expression derived signature, since the resulting subtypes do not show clear

differentiation among samples as with the array data. In this case, one may use shinyGISPA to

define a set of core genes from the signature set with increased expression in both the RNA-

seq derived and the array-based data, specific to each subtype. In the same manner, our tool

can be creatively used to filter and select gene array probes with consistent expression patterns

to RNA-Seq gene transcripts. Additional, similar applications of shinyGISPA include its use to

assess relationships between tissue-specific protein expression and phosphorylation. This tool

can be extended to identify cell lines that are resistant (or sensitive) to chemotherapeutic drugs

Fig 4. Sections of shinyGISPA showing gene sets profile support by “between sample differences” and “between feature differences” using the example data sets.

https://doi.org/10.1371/journal.pone.0192563.g004
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using IC50 values, as any quantitative measure may be applied other than molecular data. These

are just a few of the several examples that highlight the tool’s capability of addressing a wide

scope of molecular research area and in potentially going beyond a pure molecular analysis.

Limitations

We have a dedicated private server to maintain this web application over the next five years

after which we intend to upgrade considering the usage and incoming traffic. As opposed to

requiring the complicated installations of several R packages and system libraries for the tool

to work, shinyGISPA is a user-friendly web-based application that requires only good internet

connectivity. The speed at which the results and visuals are generated will depend on the inter-

net connection speed. It may take from a few seconds to a few minutes for analysis running in

the background to finish depending on the size of the input data. When dealing with large data

sets, or combining large genome-wide data sets as in two or three-feature analysis, it may take

longer. In that case, the tool will display a progress bar notifying the users once the process is

completed. For instance, with a data set size of 15,000 genes, the tool is able to generate results

in a matter of 5 seconds. With data set size of 450,000 rows, results are generated in 2 minutes

or less. With data sets of gene size 15,000, and probe size 450,000 in a two-feature analysis, it

takes less than a minute to finish. For very large data sets that exceed the maximum upload

size limit (>500MB) of the shiny server or unable to run on the browser, R source code from

GitHub is made available and can be run locally from the command line, though processing

speed is dependent on the local machine. The tool will not work if the input data files are not

in the correct format. The tool will not generate any output if no change points are identified

in the input data. Different output may be generated depending on the type of change and the

version of change point R package used. At present, the maximum number of data types

allowed in any combination is up to three. Among future implementations, shinyGISPA is

scalable to incorporate more than three samples groups or more than three data types.

Discussion

Identification of driver genes in cancer biology is crucial. It is even more important to incorpo-

rate changes from all molecular levels of high-dimensional data to proper understanding of

multiple factors driving the tumor growth. This helps improve efficiency of predicting onco-

genes or tumor suppressor genes associated with pathogenesis compared to genes based on

individual data sets (e.g., gene expression profiles). Moreover, multiple molecular targets are

needed to improve drug efficacy against cancer cells by targeting multiple molecular mecha-

nisms, for instance, DNA methylation, an epigenetic mechanism often modify the function of

the genes by regulating gene expression. Likewise, expression patterns vary with gene muta-

tions and/or copy-number changes that may be linked to the clinical phenotype.

Our shinyGISPA tool provides biologists with easy access for integrating multiple genomic

data types to define genes that support an a priori specified molecular profile characteristic of a

Table 1. GISPA identified known biomarkers of cell lines in MM.

MM Cell Line IgH Tx FGFR3 TP53 CDKN2A CDKN2B KRAS
KMS-11 t(4;14) Y373C; Expressed HD WT WT WT

MM.1S t(14;16) WT WT HD HD G12A

RPMI_8226 t(14;16) WT E285K WT WT G12A

�HD = Homozygous Deletion; WT = Wild type

https://doi.org/10.1371/journal.pone.0192563.t001
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phenotype. Additionally, the tool provides shinyGISPA insights about which data type is infor-

mative in characterizing each gene among a set of genes, thus hinting at specific molecular

mechanisms that may play a more prominent role in the phenotype. For example, an increased

expression of FGFR3 is identified to be associated with a specific FGFR3 Y373C mutation in

KMS-11 (Fig 4). The ‘Between-Sample Differences’ panel in the ‘Gene Set Profile’ shows the

stacked bar plot for each gene in different change points by sample class and data type. This

function will be helpful for biologists to quickly evaluate an intriguing gene based on its simi-

larity between genes profiles, or to validate their lab findings as proof of principle of the tool.

Likewise, the ‘Between-Feature Differences’ panel will aid researchers in determining when

and where each gene is contributing to a biological mechanism (e.g., expression appears as a

prominent driving feature in FGFR3 as compared to the variant allele frequency). The ‘Diag-

nostic Plots’ panel provides visual summary to assess whether the gene set selected in the top-

most change point ‘1’ match the desired gene set profile in the sample class of interest when

compared to the raw input data summary. The tool provides flexibility to users in choosing the

change point cut-off, provided that more than one gene set meets the profile of interest. The

most unique feature of this tool is the ability to specify a molecular change under ‘Gene Set

Profile’ by data type, thereby allowing users to try all possible combinations of interactions

among genes in a single setting.

The shinyGISPA tool is a simple, user-friendly interface that allows researchers to identify

candidate driver genes within the context of similar, a priori specified molecule change that is

characteristics of the disease phenotype of interest. shinyGISPA can combine and compare

multiple levels of genomic to proteomic data, for instance mRNA or miRNA expression from

transcriptome and microarrays, mutations from whole-genome or whole-exome sequencing,

copy-number changes from whole-genome sequencing or SNP arrays, epigenetic changes

from DNA methylation arrays or whole-genome bisulfite sequencing data, and proteomic data

from mass spectrometry to name a few.

Although methods have been developed that associate gene sets with a phenotype of interest

[2], they fail to address some commonly suffered problems. For instance, the most popular

gene set analysis method (e.g., GSEA [7, 8]), is not able to identify distinguished gene sets rela-

tive to all other genes in a genome-wide data set, and is restricted to two sample groups that

require greater than a single sample per group. Additionally, GSEA is restricted to examining

differences between two sample groups with respect to changes in a single, gene expression

data type. Furthermore, in comparison to GISPA, GSEA-derived gene sets are characterized

by the activity levels of curated biological pathways rather than the molecular changes of indi-

vidual genes or set of genes. The shinyGISPA tool is the only currently available interface that

is based on a data merging approach to combine heterogeneous molecular data types with the

goal of defining gene sets that support a specified molecular profile of change using as few as a

single sample relative to other single samples.
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