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Quantum key distribution with 
prepare-and-measure Bell test
Yong-gang Tan

The prepare-and-measure quantum key distribution (QKD) has the merits of fast speed, high key 
generation rate, and easy implementation. However, the detector side channel attacks greatly 
undermine the security of the key bits. The eavesdropper, Eve, exploits the flaws of the detectors to 
obtain illegal information without violating quantum principles. It means that she can intervene in the 
communication without being detected. A prepare-and-measure Bell test protocol will be proposed. 
By randomly carrying out Bell test at the side of the information receiver, Bob, Eve’s illegal information 
gain within the detector side channel attack can be well bounded. This protocol does not require any 
improvement on the detectors used in available prepare-and-measure QKD. Though we only illustrate 
its application in the BB84 protocol, it is applicable for any prepare-and-measure QKD.

QKD is a real-time art of generating secure key bit string between remote partners1–3. Its security is not based 
on the computational complexity, but on the correctness of physical principles4–7. In practical conditions where 
imperfectly experimental devices are used, it is proven that secure key bit string can still be generated when the 
tagged key bits are well restricted8. For example, phase-randomized weaken coherent sources are used in practi-
cal QKD. There are multi-photon pulses emitted from the source. Eve can launch the photon-number-splitting 
(PNS) to tag the multi-photon events9,10. If the amount of the tagged event can be well bounded, with decoy state 
technology for example, secure key bits can be generated between remote partners11–14.

Recently, the detector side channel attacks have attracted great attention. Eve exploits the drawbacks of 
the detectors to control the detections. Moreover, the photons registered by the detectors may be not the ones 
expected by Bob, but well devised by Eve to obtained illegal information. In the fake state attack, Eve intercepts 
the photons from Alice and reads out the bit values on them. According to her measurement outcomes, she 
exploits the detection efficiency mismatches and prepares a fake state to be detected by Bob15. The time-shift 
attack uses the detection efficiency mismatches to eavesdrop on the communication without intercepting on 
Alice’s photons16,17. Furthermore, the problem of information leaking from the detector side channels also exists 
in the blinding attack18–20 and the phase re-mapping attack21,22.

The detector side channel attacks do great harm to the security of QKD because Eve’s illegal information gain 
obtained in the attacks cannot be well bounded8. Great improvement must be made on the detectors to avoid the 
detector side channel attacks19,23–25. It has been shown that alternative ways of measurements can be used to beat 
these attacks26–32. In this case, the security of the measurement outcomes relies on the monogamy of entangle-
ment33,34. Accordingly, the experimental realization is more complex and the key generation rate is lower when 
compared with the prepare-and-measure QKD. An easy way to beat the detector side channel attack from the 
physics principle is expected.

Quantum theory is exclusive with the local hidden variable (lhv) theory35–37. Loophole-free Bell violation 
means that the lhv theory can be excluded. Or else, if no Bell violation can be obtained in the loophole-free Bell 
test, the quantum theory is incorrect. Recently, Bell violation is experimentally obtained with all loopholes are 
closed38–40. These significant results mean the lhvs do not exist. Based on this fact, the detector side channel attack 
in the prepare-and-measure QKD can be beat with a simple but efficient way. Random Bell test is required to 
be carried out at Bob’s side to check the quantum correlations between Alice and Bob. Though this protocol is 
devised for the BB84 protocol1, it is applicable to any prepare-and-measure QKD.

The prepare-and-measure Bell test
In the Bell test, a parametric-down-conversion (PDC) source is set between Alice and Bob. Entangled photon 
pairs are generated and distributed to them. Alice has two sets of two-channel measurement devices, A1 and A2. 
Similarly, Bob has two sets of two-channel measurement settings, B1 and B2. Alice and Bob randomly choose their 
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measurement settings to measure their incoming photons. The binarily possible measurement outcomes obtained 
from the measurement settings are assigned with −​1 and 1. Alice and Bob use their basis choices and measure-
ment outcomes to calculate the CHSH polynomial37

≡ + + − .S A B A B A B A B (1)CHSH 1 1 1 2 2 1 2 2

Here 〈​Ai〉​, 〈​Bj〉​ are the average values generated on Ai and Bj, with i, j ∈​ {1, 2}.
In local hidden variable theory and classical physics, the measurement outcomes at Alice’s side cannot be 

affected by those at Bob’s side. Similarly, the measurement outcomes at Bob’s side cannot be affected by those at 
Alice’s side, namely, the relation 〈​AiBj〉​ =​ 〈​Ai〉​ 〈​Bj〉​ obeys41. Because −​1 ≤​ 〈​Ai〉​ ≤​ 1 and −​1 ≤​ 〈​Bj〉​ ≤​ 1 should be 
satisfied, SCHSH varies from −​2 to 2. Quantum-mechanically, its lower bound and upper bound are −2 2  and 
2 2, respectively42. Now that the Bell violation has been obtained with loophole-free Bell test38–40, the lhv theory 
does not need to be considered. If the experiment is not artificially controlled, Bell violation certifies the existence 
of entanglement.

Suppose that the entangled photon pair generated from the PDC source is encoded with 
Φ = ++ ( 00 11 )AB AB AB

1
2

, where the subscripts A and B denote Photon A and Photon B, respectively. 
After the photon pairs generated from the PDC source, Photon A is distributed to Alice, while Photon B is 
sent to Bob. In order to maximize the Bell violation, confinements are put on their basis choices. Without loss 
of any generality, one can assume that σ≡ ˆA z1 , σ≡ ˆA x2 , σ σ≡ +ˆ ˆB ( )x z1

1
2

, and σ σ≡ −ˆ ˆB ( )x z2
1
2

, where 

σ̂x  and σ̂z  are the Pauli operators. Because the state Φ+AB  is rotationally invariant in the X −​ Z plane,  
one can obtain that Φ = + = ++ + −−+ ( 00 11 ) ( )AB AB AB AB AB

1
2

1
2

, with + = +( 0 1 )1
2

 and 
− = −( 0 1 )1

2
. In this case, it is easy to verify that =S 2 2CHSH .

Traditionally, the PDC source is usually set between Alice and Bob to exclude the locality loophole. Because 
the lhv theory is refuted, it is not necessary to care about this loophole. Alice can set the PDC source in her labora-
tory. When the entangled photon pair is generated, she keeps one of them and transfers the other to Bob. As there 
is no need to care about the locality loophole, the measurement sequences of Alice and Bob do not affect their 
experimental results. Alice’s measurement can be implemented before that of Bob, and vise versa. If Eve does not 
intervene, Bell violation must be obtained.

The moment Alice measures on Photon A, the state on Photon B collapses accordingly. It means that Alice 
prepares the state on Photon B the moment she measures on Photon A. Because the photon pair is prepared with 
the state Φ = ++ ( 00 11 )AB AB AB

1
2

, the state on Photon B should correlate with what Alice obtains in her 
measurement. The same correlation can also be obtained with prepare-and-measure procedure: Suppose that 
single photon is generated from Alice’s source. She randomly chooses the rectilinear basis σ̂z or the diagonal basis 
σ̂x, together with random bit value −​1 or 1, to prepare Photon B. Before Photon B is measured, its state correlates 
with the state chosen by Alice.

If Alice’s basis choices and bit value choices on Photon B are totally random, the item 〈​A1B1〉​ in (1) can be 
calculated as

= − .A B B B1
2

0 0 1
2

1 1
(2)B

B
B

B1 1 1 1

Similarly, one can obtain

= −

= + + − − −

= + + − − − .

A B B B

A B B B

A B B B

1
2

0 0 1
2

1 1 ,

1
2

1
2

,

1
2

1
2 (3)

B
B

B
B

B
B

B
B

B
B

B
B

1 2 2 2

2 1 1 1

2 2 2 2

Substituting B1 and B2 with σ σ+ˆ ˆ( )x z
1
2

 and σ σ−ˆ ˆ( )x z
1
2

, one can obtain that =A B1 1
1
2

, =A B1 2
1
2

, 

=A B2 1
1
2

, and = −A B2 2
1
2

. The value of the CHSH polynomial is calculated to be =S 2 2CHSH . It is the 

same as that when the entangled state Φ+AB  is used. This is because the correlations between the state on Photon 
B and that of Alice are the same in these two cases.

BB84 protocol with the prepare-and-measure Bell test
The BB84 protocol is a prepare-and-measure QKD protocol. Alice prepares the state on Photon B and transfers it 
to Bob. Bob measures it in randomly chosen basis to read its state. The states |0〉​B and |+​〉​B are used to encode the 
bit value 0, while the states |1〉​B and |−​〉​B are used to encode the bit value 1 (Here the definitions of the bit values 
in the quantum key distribution and those of the Bell test are different).

The prepare-and-measure BB84 protocol is characterized as follows:

(a) N single photons are generated in Alice’s laboratory. She randomly chooses between the diagonal basis 
σ= ˆA x1  and rectilinear basis σ= ˆA z2  and the random bit values 0 and 1 to prepare her state on the photon. Then 

the photon is transferred to Bob.



www.nature.com/scientificreports/

3Scientific Reports | 6:35032 | DOI: 10.1038/srep35032

(b) Bob has two modes: with probability p he chooses the signal mode and with probability 1 −​ p he chooses 
the test mode (Only Bob himself is aware of the value of p). In the signal mode, Bob’s measurement bases are 
randomly chosen from σ= ˆB s

z1  and σ= ˆB s
x2 . In the test mode, his measurement bases are randomly chosen 

between σ σ= +ˆ ˆB ( )t
x z1

1
2

, and σ σ= −ˆ ˆB ( )t
x z2

1
2

.
(b′​) When Bob chooses the signal mode, Alice and Bob publish their measurement bases through the public 

channel. They keep their measurement outcomes in the same bases as the sifted key bits.
(b″​) When Bob chooses the test mode, Alice and Bob announce their basis choices and measurement out-

comes through the public channel to calculate the value of SCHSH.
(c) After the key distribution, Alice and Bob implement error correction (EC) and privacy amplification (PA) 

on their sift key bits. If secure key bits can be generated, their key distribution task is fulfilled. Or else, their task 
is failed.

Because Alice randomly chooses her basis and bit values on Photon B ,  the state on it is 
ρ = + = + + + − −( 0 0 1 1 ) ( )B B B B B

1
2

1
2

 for any third party. The state is uniformly prepared in the 
conjugated bases. Eve cannot differentiate which state is prepared. If she carries out state distinguishing task on 
the photon, disturbance must be introduced43,44. Without loss of any generality, one can assume that Eve interacts 
on Photon B with a probe. If the interaction between the probe and Photon B can be characterized as a unitary 
process, one can obtain

→ +

→ +

+ + → + + + + − −

− − → − − + + + − .

E f e

E f e

E f e

E f e

0 0 0 ( 0 0 1 ) 1 ),

1 1 1 ( 1 0 0 ) 1 ),

( ) ),

( ) ) (4)

A B
U

A B E B E

A B
U

A B E B E

A B
U

A B E B E

A B
U

A B E B E

Here |E〉​ is the blank state on Eve’s probe. f and e correspond to the probability that the state on Photon B is 
intact and the probability that the state on Photon B is changed, respectively. It means that Eve’s intervention 
introduces quantum bit error rate (QBER) with probability e. The amount of information for Alice and Bob 
used to correct the errors on their bit string is h(e), with h(x) =​ −​xlog2x −​ (1 −​ x)log2x the binary entropy. In 
the prepare-and-measure QKD, Eve’s ability to attack on the communication can be bounded with the collective 
attack3,45. In this case, the rate for Eve to tag Bob’s key bits is upper bounded with46,47

≤






+ − 




.I h

S1 ( /2) 1
2 (5)

E
CHSH

2

After Eve’s intervention, 〈​A1B1〉​ is recalculated to be

= −





−



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2
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Similarly, one has

= −

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2

1
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B
B

B
B

B
B

B
B

B
B

B
B

1 2 2 2

2 1 1 1

2 2 2 2

It means Alice’s and Bob’s states are correlated with probability f, and anti-correlated with probability e that is 
also known as the QBER. After Eve’s intervention, = −S f e2 2 ( )CHSH  is obtained.

Refute the detector side channel attack
In the BB84 protocol, Eve’s illegal information is also bounded as3,4,7

≤ .I h e( ) (8)E

Here e is the phase error rate gained on Bob’s state. Strictly speaking, phase error rate is the concept of entan-
gled states. Because of the symmetry of BB84 protocol, however, the phase error rate is estimated from the bit 
error rate on the results generated from the conjugated bases4,7. Within the process of Eve’s attack, if she can hide 
the bit error rates of both bases, Alice and Bob cannot find her existence. In the detector side channel attack, for 
instance, it is possible for Eve to intervene without introducing any bit error rate.

If Bob’s detectors are imperfect, the detector side channel information leaking problem may exist. Eve can 
exploit the flaws of Bob’s detectors to carry out the detector side channel attacks.
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Theorem 1 The detector side channel attacks can be successfully carried out if and only if Eve’s information of Alice’s 
bit value conditioned on Bob’s measurement outcome is partially or totally certain. 

Proof: In the BB84 protocol, Eve interacts with Photon B to extract Alice’s state on it. After Bob measuring on the 
incoming photons, he and Alice declare their basis choices. When considering the individual attack, Eve’s infor-
mation gain from Alice is bounded by her entropy decrease on her state3

= − .I H H (9)E a priori a posteriori

In the detector side channel attack, though drawbacks exist on Bob’s detectors, it is indispensable to assume 
that no unwanted information can leak out of his laboratory. Or else, the security of QKD cannot be ensured. It 
means that Eve should control the information leaking from the detectors indirectly. If Alice’s state on Photon B 
is uniformly prepared, Ha priori =​ 1 is obtained.

Consider that Ha posteriori =​ ∑​rP(r)H(i|r), with P(r) the probability Eve obtains the measurement result r, and 
H(i|r) the information gain of i conditioned on r. If Eve does not interact with Photon B, Ha posteriori =​ 1 after Bob 
declaring his basis choices. Thus IE =​ 0 and Eve cannot obtain any illegal information on Alice’s state. In the detec-
tor side channel attack, r has two possible values: the registered and the unregistered, and ∑​rP(r) =​ 1 is satisfied. 
Whether for the registered pulses or for the unregistered pulses, Bob’s measurement outcomes are controlled to 
be bit value biased. Bob announces Alice the values of r after his measurements. The bias of Bob’s measurement 
outcomes is known to Eve in the detector side channel attack and H(i|r) should be less than 1. Correspondingly, 
Ha posteriori <​ 1 and IE >​ 0 are satisfied. In some detector side channel attacks, Eve’s uncertainty on Alice’s states is 
eliminated with the intercept-resend attack. However, only the pulses encoded with Eve’s expected bit values and 
expected bases are forced to be detected by Bob. Or else, Alice and Bob can find Eve’s presentence according to 
the correlations between them. In any case, Bob’s measurement outcomes are partially or totally certain to Eve. 
Thus we end the proof.​

In order to refute the detector side channel attack, Alice and Bob should estimate Eve’s information gain from 
the attack. In practical QKD, time-windows is set for the detectors so that their dark count rate can be decreased. 
Thus their detection efficiencies are time-dependent. If the time windows of the two detectors are not the same, 
there are detection mismatches between them. This can be exploited by Eve to launch the so-called time-shift 
attack. Furthermore, the detector flaws may also be used by Eve to control the detectors to detect unwanted 
signals. Taking the blinding attack for instance, the detectors can be blinded with strong illuminations so that 
they are insensitive to single-photon pulses but to strong pulses. Both in the time-shift attack and in the blinding 
attack, Eve’s a posteriori information on Alice’s bit value is partially or even totally deterministic.

In practical Bell test with EPR pairs, the quantum channel is lossy and one has to consider the detection loop-
hole. It means that any pulse in quantum channel cannot represent the others in violating the CHSH inequality. If 
the devices are inefficient, fair-sampling assumption must be made to obtain the Bell violation. If Alice and Bob 
can implement quantum non-demolition measurement on the photon number, they differentiate the vacuum 
pulses from the non-vacuum pulses. With this technique, they can remove the channel loss. Now that the lhv 
theory has be excluded by recent experiments, it is reasonable to assume that the movements all pulses obey the 
quantum principles and all photon pulses experience the same transmission situation. Thus one can sample the 
behaviors of some of the incoming pulses on the behalf of those of the others.

We consider the QKD with active basis choice. Bob has two detectors D0 and D1 to decode the key bits 0 and 1 
encoded on Alice’s pulses. Their detection efficiencies are assumed to be η0 and η1, respectively. D0 and D1 are 
manufactured to be the same so that η0 =​ η1 =​ η is satisfied when there is no detector side channel attack. We 
assume that Bob has another detector Dt whose detection efficiency is ηt. Dt is also the same as D0 and D1 apart 
from its big time window. The time window of Dt is big enough so that its detection efficiency is stably kept within 
the whole time windows of both D0 and D1. This can be realized by keeping Dt switched on within this period of 
time. When Bob receives the pulses from Alice, she randomly detect them directly with Dt or decode their key bits 
with D0 and D1 in randomly chosen bases. When detector side channel attacks randomly happen on D0 and D1, η0 
and η1 decrease. For Bob, the detection efficiency he can observe for D0 and D1 is η =

η η+

2
0 1 . According to Eqs (2) 

and (3), the value of the CHSH polynomial should be normalized as

η η= .−S S/ (10)tCHSH
side channel

CHSH

This relation can also be explained with the theory raised by Garg and Mermin where the photons that can 
be detected by Dt but are missed by D0 and D1 can only be assigned with the bit value 048. Accordingly, the illegal 
information gain Eve obtained within her detector side channel attack is calculated to be

≤







+ −





.−

−

I h
S1 ( /2) 1

2
(11)

E
side channel CHSH

side channel 2

The performance of the present protocol
In practical QKD, instead of single-photon source, weaken coherent sources are used for Alice to encode her 
key bits. Compared with single-photon source, multi-photon pulses exist. It is proven that Eve can exploit the 
multi-photon pulses to launch the so-called PNS attack. Thus decoy states are usually added in practical QKD 
protocol to beat this attack12–14. We consider the practical decoy state protocol raised by Ma et al. where a signal 
source, a weaker decoy source and a vacuum decoy source are used14. The intensities of the signal source and the 
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weaker decoy source are μ and ν, respectively. After randomization of the phase, the photon number distributions 
of the sources obey

µ

ν

=

= .

µ
µ

ν
ν

−

−

P i
i

e

P i
i

e

( )
!

,

( )
! (12)

i

i

Here i is the photon number in the pulses.
Alice randomly chooses the signal source and the decoy sources to encode her bit values and transfers them to 

Bob. When Bob takes the pulses from Alice, with probability p he chooses the signal mode that he measures the 
incoming pulses randomly in σ= ˆB s

z1  and σ= ˆB s
x2  to extract the key bits on them. With probability p′, he 

chooses the test mode that his measurement bases are randomly chosen between σ σ= +ˆ ˆB ( )t
x z1

1
2

, and 
σ σ= −ˆ ˆB ( )t

x z2
1
2

. With probability 1 −​ p −​ p′​, however, Bob directly measures Alice’s pulses in his detector Dt. 
The gains on the detectors D0/D1, and Dt write

= + − = + −

= ′ + − = ′ + − .
µ
η ηµ

ν
η ην

µ
η η µ

ν
η η ν

Q Y e Q Y e

Q Y e Q Y e

1 , 1 ,

1 , 1 (13)

0 0

0 0t t t t

Here Y0 and ′Y0 are the dark counts on D0/D1 and Dt that can be estimated from the vacuum decoy state. After 
Bob’s measurements, Alice announces Bob her state choices with which Bob can calculate the values of η and ηt.

After the EC and PA, the final key generation rate is

≥ − −ν
ν ν

η
ν

−R Q I f E Q h E(1 ) ( ) ( ), (14)E1
side channel

where νQ1  is the gain on the untagged pulses of the weaker decoy source, f(Eν) is error correction efficiency, and 
Eν is the total QBER on the sifted key bits generated from the decoy source. Here we choose the weaker decoy 
source for key generation because the multi-photon pulses affect the value of the CHSH polynomial greatly. 
Numerical results shows that no Bell violation can be obtained when the intensity of the signal source is greater 
than 0.659 even if D0 and D1 have perfect detection efficiency. The fraction of the multi-photon pulses in the 
decoy source is comparably small, however, thus we assume Alice and Bob use it to generate the key bits.

We will give some numerical simulations on the performance of the QKD with prepare-and-measure Bell test. 
We will use the setup parameters from the QKD experiment completed by Gobby, Yuan and Shields (GYS)49 that 
has also been taken used for numerical simulation in ref. 14. Namely, the transferring coefficient is β =​ 0.21dB/km, 
the detector’s detection efficiency is ηB =​ 4.5%, the misalignment coefficient is ed =​ 3.3%, and the dark count rate 
Y0 =​ 1.7 ×​ 10−6. The intensities of the signal pulses, weaker decoy pulses and vacuum pulses are 0.48, 0.1 and 0, 
respectively. One thing should be pointed out that we will not consider the contribution of the misalignment to 
the value of the CHSH polynomial.

Firstly, we want to show the performances of the present protocol under the blinding attack and the time-shift 
attack. For blinding attack, Eve controls the basis of Bob. When Bob’s basis choices coincide with hers, there are 
efficient registers on his measurement settings. Or else, no clicking event happens. Thus one can obtain ηt =​ 2η, 
and the value of CHSH polynomial is 2  for perfect single-photon source. It means that no secure key bits can be 
generated between Alice and Bob. For the time-shift attack, the CHSH inequality after the time-shift attack is 
calculated to be η η

η

+2 ( )

t

0 1 . In this attack, however, Eve’s illegal information gain is calculated to be 

= − +−I h r r1 ( /( 1))E
time shift , with =

η

η

η

η{ }r min ,0

1

1

0
. For simplicity of discussion, one can assume that η0 <​ η1. 

It is apparent that the big the value η η η∆ = − +( )t
1
2 0 1  is, the more key bits should be sacrificed for PA. The 

amount of information Alice and Bob should sacrifice for PA is =










− + + −I hE
rside channel 1 (1 ) /2 1

2

2
.

From Fig. 1, it is apparent that the amount of information (dash line) Alice and Bob sacrificed for PA is greater 
than that (solid line) Eve obtained in her time-shift attack. Thus the present protocol is secure under the time-shift 
attack. The value of r begins from 0.414 because + −r(1 ) /2 12  required that ≥ − ≈ .r 2 1 0 414. When 
≤ −r 2 1, however, one can obtain SCHSH ≤​ 2. It means that the classical bound of the CHSH inequality cannot 

be violated and no secure key bit can be generated. We can also compare the key generation rate of the present 
protocol with that of the practical decoy state QKD14. In Fig. 2, one can see that the key generation rate of the 
present protocol is small than that in ref. 14. This is because we generate the key bits from the weaker decoy state 
whose intensity is smaller than that of the signal state. Furthermore, the transmission distance of the present 
protocol can reach about 103 km (solid line). This distance is also shorter than that in ref. 14 (dash line).

Discussion and Conclusion
In this paper, the QKD protocol with prepare-and-measure Bell test has been proposed. Though the security 
of the present protocol is based on Bell’s theorem, it is different with the DI-QKD protocol46,47 and the Ekert91 
protocol2. First, there is no need to care about the detection efficiency. In the present protocol, only the regis-
tered photons are used to calculate the CHSH polynomial. Second, entanglement is not required in the present 
protocol. The protocol is implemented in a prepare-and-measure way. Furthermore, the Bell test in the present 
protocol is only carried out at Bob’s side. Our protocol is also different with the detection device-independent 
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QKD protocols of the ref. 50. In the detection device-independent protocols, Alice and Bob have characterized 
sources but uncharacterized detectors. In the present protocol, however, Bob’s detectors are partially character-
ized. We assume that the detectors have the same attributions. Furthermore, Bob can control the time window of 
the testing detector.
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