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ABSTRACT: Redox flow batteries (RFBs) have emerged as a promising option for large-scale
energy storage, owing to their high energy density, low cost, and environmental benefits.
However, the identification of organic compounds with high redox activity, aqueous solubility,
stability, and fast redox kinetics is a crucial and challenging step in developing an RFB
technology. Density functional theory-based computational materials prediction and screening is
a time-consuming and computationally expensive technique, yet it has a high success rate. To
speed up the discovery of new materials with desired properties, machine-learning-based models
can be trained on large data sets. Graph neural networks (GNNs) are particularly well-suited for
non-Euclidean data and can model complex relationships, making them ideal for accelerating the
discovery of novel materials. In this study, a GNN-based model called MolGAT was developed
to predict the redox potential of organic molecules using molecular structures, atomic properties,
and bond attributes. The model was trained on a data set of over 15,000 compounds with redox
potentials ranging from −4.11 to 2.56. MolGAT outperformed other GNN variants, such as the
Graph Attention Network, Graph Convolution Network, and AttentiveFP models. The trained
model was used to screen a vast chemical data set comprising 581,014 molecules, namely OMDB, QM9, ZINC, CHEMBL, and
DELANEY, and identified 23,467 potential redox-active compounds for use in redox flow batteries. Of those, 20,716 molecules were
identified as potential catholytes with predicted redox potentials up to 2.87 V, while 2,751 molecules were deemed potential anolytes
with predicted redox potentials as low as −2.88 V. This work demonstrates the capabilities of graph neural networks in condensed
matter physics and materials science to screen promising redox-active species for further electronic structure calculations and
experimental testing.

1. INTRODUCTION
Research into high-capacity, low-cost batteries has been
sparked by the rapidly growing global demand for energy,
with a focus on electric vehicles to reduce dependence on
limited petroleum resources and advanced electrical energy
storage devices needed for the electrical grid system to stabilize
power supply fluctuations.1 Electrochemical energy storage
devices have gained attention due to their high energy density
and low cost compared to conventional batteries over the past
few decades. Although lithium ion batteries are the most
popular and widely used type of energy storage device because
of their excellent stability and storage capacity,2 their
widespread adoption has been impeded by the use of rare
metals like cobalt, despite their popularity in various
applications, particularly for portable electronic devices.
Lithium and sodium ion batteries are limited by their high
cost, slow charging, and low energy/power density when
compared to gasoline.3

The field of rechargeable batteries is currently focused on
developing next-generation batteries, such as metal−air
batteries4−6 and metal−sulfur batteries,7 as well as enhancing
the performance of existing batteries.8,9 These batteries are

mainly used in electric appliances including automobiles.
However, redox flow batteries (RFBs) have emerged as a
promising candidate for large-scale energy storage and
electricity generation, owing to their modular and flexible
design, low maintenance costs, extended cycling life, and eco-
friendliness.10−12 To achieve gigawatt-scale energy storage,
RFB research has shifted toward utilizing low-cost redox
species, such as transition-metal complexes, organic mole-
cules,13,14 and polymers.
RFBs are a type of rechargeable battery that consist of three

main components: a stack of electrochemical cells, flow
mechanisms, and energy storage tanks. At the surface of the
RFB cells, which are made of materials such as graphite felt,
carbon paper, or metal foam, redox reactions occur.15 These
reactions involve the electroactive materials that are dissolved
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in supporting electrolytes and circulate between the tanks and
corresponding compartments of the electrochemical cell.
External pumps at the electrodes drive the flow of the
electrolytes to achieve energy conversion between chemical
and electrical energy.10 The electrolytes are flowed back to the
cell stacks to increase the battery’s total state of charge. The
volume of the two tanks where the anolyte and catholyte are
stored represents the overall energy of the system, while the
size of the stack cells separated by ion-exchange materials
determines the system’s power. Catholyte and anolyte refer to
the redox-active substances dissolved in positive and negative
electrolytes, respectively. During charging, the catholyte
materials release electrons and undergo oxidation, while the
anolyte materials receive electrons and undergo reduction.15

On the other hand, ions diffuse through the membrane toward
the opposite half-cell to balance the charge. The energy needed
to charge RFBs is supplied by an external power source, such
as solar PV installations. The discharge phase involves the
reverse process, as illustrated in Figure 1.
The electrochemical behavior of organic materials in various

environments is believed to aid in identifying substitute redox-
active materials for RFBs that are more sustainable and
perform better as RFBs have a higher energy density than
conventional lead-acid batteries due to their acid-free
operation. Finding environmentally friendly and effective
substitute redox-active materials for RFBs can be challenging
due to the intricate electrical combinations and many-body
interactions in molecular structures, which make it difficult to
represent them comprehensively.16 The complexity of
identifying materials with favorable redox potential, solubility,
and chemical stability properties stems not only from the
uncertainty of redox flow battery systems but also from the
complexity of the information in chemical molecular systems,
which is challenging to discern directly from chemical
structures. Graph-based deep learning has gained attention in
both theoretical and applied machine learning for scientific
research, demonstrating improved performance in various
scientific applications such as atomic reaction analysis,
molecular property prediction, and molecular generation.17

The search for new materials is crucial to advancing
technologies that are more cost-effective, useful, and
sustainable. However, the vastness of the chemical space
makes it impractical to search for new materials through
exhaustive exploration.18 To overcome this limitation,
significant effort has been put into developing high-throughput
ab initio simulations19 that can calculate material character-
istics. The development of next-generation RFBs with high cell
voltage, energy density, cycle life, and power density requires
the discovery of redox-active materials with high redox
potential, high aqueous solubility, high stability, and faster

redox kinetics.13 Computational screening techniques have
emerged as an effective alternative to trial and error
experimentation. It is critical to discover novel electrolytes
that perform efficiently to meet the growing interest in the
development of improved electrochemical energy storage
devices.20 However, the conventional approach to creating
energy materials is fraught with obstacles, including low
success rates, prolonged time consumption, and exorbitant
computational expenses. Consequently, screening of advanced
materials and modeling their quantitative structure−activity
relationships have recently become hot and trending topics in
energy materials. Virtual screening is a computational
technique that uses computer algorithms to identify com-
pounds with high affinity for a specific target.21 Although
commonly used in drug discovery, virtual screening can be
applied to any type of molecule, including electrolyte
parameters that are universally significant for all types of
batteries, such as redox potential, solubility, and stability. A
typical screening method involves narrowing down a pool of
candidates based on subsequent property assessments
discovered through high-throughput density functional theory
(DFT) or machine-learning calculations.
As obtaining an accurate absolute potential measurement is

a difficult task, the redox potential values of both positive and
negative electrodes are compared to that of hydrogen (H2)
which is established as a reference fixed at 0 V under standard
conditions. Base metals are metals with a negative redox
potential, while noble metals have a positive redox potential.
Redox potential in aqueous solutions is an indication of the
solution’s inclination to acquire or relinquish electrons
following the introduction of a new species. Typically, a
solution with a lower (more negative) reduction potential will
release electrons to the new species, whereas a solution with a
higher (more positive) reduction potential will receive
electrons from it. The thermodynamic basis of to predict the
redox potential of redox-active species is the aqueous-phase
redox reaction M + 2H+ + 2e−⇔ MH2, in which M is the
redox-active molecular reactant species and MH2 is the
corresponding molecules that are produced as hydrogenated
products as a result of their respective chemical reactions. The
reaction energy ΔErxn of the redox couples has been calculated
by

E E E E(MH ) (M) (H )rxn 2 2= [ + ] (1)

where E(MH2), E(M), and E(H2) are the total energies of the
reactants, the product molecules, and hydrogen molecules,
respectively.
Through computational modeling, researchers can gain

insights into the electrochemical characteristics of redox-active
materials, leading to the identification of novel molecules with

Figure 1. Schematic working principle of redox flow batteries (RFBs) (a) during charging and (b) during discharging
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enhanced properties. High-throughput computational screen-
ing enables the exploration of thousands of molecules to
identify those with desirable properties, bypassing the need for
costly and time-consuming experimental trial and error.22

Machine learning proves to be a powerful tool for predicting
molecular properties for high-throughput screening in novel
materials discovery, as it can quickly analyze large data sets
such as ChEMBL23 and ZINC24 and identify complex
relationships between input features and target properties.25−28

Compared to traditional DFT-based computational screening
methods, machine learning-based high-throughput screening
for novel materials discovery can offer significant advantages.
DFT-based high-throughput screening methods are computa-
tionally expensive and time-consuming, whereas machine
learning models can efficiently process large data sets without
the need for expensive calculations.29,30 Furthermore, machine
learning models can continuously learn and improve through
iterative training, providing more accurate predictions and
better material discovery.
The application of machine learning in various fields has led

to the development of models that can perform mentally taxing
tasks and, in some cases, even surpass human performance,31,32

as well as offer significant time and cost savings.33 Among the
various subsets of machine learning, deep learning involves
training neural networks on large amounts of data to perform
specific tasks, and models such as convolutional neural
networks (CNNs), recurrent neural networks (RNNs), long
short-term memory (LSTM) networks, gated recurrent units
(GRUs), and graph neural networks (GNNs) are some of the
major examples. Machine learning models have wide-ranging
applications in condensed matter physics and materials science,
including crystal structure prediction,34 phase diagram
determination,35 aqueous solubility prediction,36 fingerprint
prediction,37 and inverse design.21,38−42

Machine learning models that utilize descriptor-based
features are models that use molecular descriptors as input
features to make predictions about various molecular proper-
ties.43 These descriptors are numerical values that represent
different characteristics of a molecule such as its size, shape,
electronic properties, and other physicochemical properties.
They are derived from the molecular structure and are often
calculated by using computational methods. The state-of-the-
art molecular descriptor is extended-connectivity circular
fingerprints (ECFP),44 which apply a fixed hash function to
the concatenated features of the neighborhood in the previous
layer to provide the features for each layer. To treat these
hashes as integer indices, a 1 is written to each node’s
fingerprint vector at the index indicated by the feature vector.45

The Morgan algorithm46 has been improved with circular
fingerprints to make them invariant to atom-relabeling and
encode the present substructures. Fingerprint representations
focus on some characteristics of the chemical structure while
ignoring others,45 unlike models that rely on data to make
decisions. A significant obstacle to widespread adoption is
identifying appropriate model inputs, or “descriptors”. These
molecular descriptors (fingerprints) are often utilized as input
in traditional quantitative structure−activity relationship
(QSAR) property prediction, and then a specific deep learning
architecture is used to train a model.47 As a result of using
structure-based descriptors, the models are limited by the same
structural constraints as ab initio approaches when looking for
new compounds.

Real-world data sets, including molecular structures,
protein−protein interactions, brain connectome data, social
networks, citation networks, and others, are frequently
connected by graph structures. Consequently, it is crucial for
machine learning research to extend deep neural networks to
handle this type of input, but until recently, this topic has
received little attention. In order to address this issue of lack of
transferability in deep learning models for predicting chemical
properties, graph-based models such as graph neural networks
(GNN) have been developed. These models utilize molecular
graphs as input to capture essential chemical information.48

Several GNN variants45,49−51 have been developed that
generalize this process to irregular molecular graphs, a natural
representation of chemical structures, similar to how
convolutions are applied to regular data, such as text and
images. Therefore, graph models, including graph convolu-
tions, extract relevant features from graph structure descrip-
tions, such as atom and bond characteristics and graph
distances, to create molecular-level representations that can
replace fingerprint descriptors in machine learning applica-
tions.52

Na et al.53 developed a graph neural network with a graph
feature vector-based attention mechanism to assess atomic
significance. They combined the reverse graph self-attention
(RGSA) method with machine learning-based methods for
atomic significance estimation. Another interesting study, the
attentive FP54 model, uses a graph-based molecular repre-
sentation that allows the model to learn nonlocal intra-
molecular interactions for specific prediction tasks. However,
there have been few studies on the applicability of the GNN to
predict electrolyte properties in RFBs. To address this gap, a
molecular graph attention network (MolGAT) was proposed.
The MolGAT model enhances the graph attention network
(GAT) model by adding edge attributes of the molecular graph
by using GNN modeling techniques. This model can predict
the redox potential of organic electrolyte materials and it
outperformed commonly used GNN variants in terms of MAE
and RMSE errors. Finally, the trained model was utilized to
screen promising novel redox-active species.

2. COMPUTATIONAL METHODS
2.1. Model Architecture. A pair (V, E) represents an

undirected graph G, where V denotes the graph’s nodes and E
denotes the edges connecting them. A matrix A of size |V|×|V|
represents the graph, with each element xij being either 1 or 0,
indicating the presence or absence of an edge between nodes i
and j. Since the graph is undirected, xij = xji holds true for all
elements of A. However, many graphs have additional
information attached to their nodes and edges. In the case of
a molecule represented as an undirected graph, the node label
matrix encodes each node’s atom type, while the edge label
matrix encodes each edge’s bond type. Hydrogen atoms are
often excluded from the picture to simplify it as their
placement can be inferred from fundamental chemical
principles. Each node in the molecular graph corresponds to
a chemical element (e.g., O, C, N, or H), and each edge
represents the type of bond (single, double, triple, or aromatic)
connecting the nodes. To encode these node and edge
properties, a node feature matrix X of size |V|× f V is defined for
the node labels, where f V is the length of the label vector of
each node. Similarly, the edge feature matrix XE of size |E|× f E
is defined for the edge labels, where f E is the length of the label
vector for each edge.
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In molecular property prediction and atomic reaction
analysis, GNNs have gained considerable attention due to
their ability to utilize the relationships between data points in
graph-structured data to generate an output. This approach has
been shown to be more promising than conventional
descriptor-based models, as demonstrated in studies such as
refs 45 and 17. GNN eliminates the need for hand-crafted
descriptors and/or fingerprints, particularly in graph-based
problems, such as predicting chemical properties using graph-
based representations of molecules.55 The aim of GNN is to
acquire a representation of each atom by transmitting messages
recursively throughout the molecular graph, to compile
information from connected bonds and neighboring atoms,
and then to update the central atoms’ states and carry out
graph aggregation read-out operations. The message passing
scheme is used to generalize the convolution operator over
irregular domains. In this approach, the message moves from
one node to the next when the dot product of the adjacency
matrix is applied to the message vector (node feature matrix)
and all nodes receive messages from their neighbors
simultaneously. Therefore, each node embedding contains
information about its k-hop neighborhood after k-iterations.
The molecular graph data is usually presented in two formats:
structural information concerning the representation of the
molecular graph and atom and bond features from node-
embedding and edge-embedding of molecular graphs.56 The
neural message passing approach produces a set of node
embeddings that need to have a graph pooling aggregation for
the embedding ZG of the entire graph.56 Finally, the
representation can be used to predict the molecular properties.
Several GNN variants have been developed for various

applications, such as Crystal Graph Convolutional Neural
Network (CGCNN),57 Neural Message Passing for Quantum
Chemistry (MPNN),58 MatErials Graph Network (MEG-
Net),59 Modeling Rational Data with Graph Convolutional
Networks (R-GCN),60 and (EGNN).61 While all of these are
used in materials science and chemistry, they differ in their
approaches and strengths. MPNN is well-suited for fixed-
topology molecules, while MEGNet can handle varying graph
structures and capture global information indirectly through its
learned distance matrix. In contrast, CGCNN is designed for
crystal structures and can extract features from both nodes and
edges to predict properties such as formation energies and
elastic moduli. R-GCN operates on directed graphs with only
node features and uses a simplified version of spectral graph
convolutions, while EGNN considers edge features by using a
gated message passing scheme that involves passing messages
along edges and updating node representations. The selection
of MPNN, MEGNet, or CGCNN depends on the specific task
and available data. MPNN and MEGNet are both suitable for
predicting molecular properties, but MEGNet may be
preferred for tasks where 3D structure is relevant. CGCNN
is ideal for predicting properties of crystal structures, such as
band gap and elastic constants. Although MPNN, MEGNet,
and CGCNN are commonly used for material and crystal
property prediction and molecular dynamics, R-GCN and
EGNN have been used in recommendation systems, knowl-
edge graphs, social network analysis, and 3D point cloud
segmentation.
GCN45 and GAT62 are two widely used types of GNNs used

in deep learning for extracting structural features from
molecular graphs.50,62 Both models utilize convolution layers
to calculate new features based on the input features and graph

structure but differ in their approach to neighborhood
aggregation. GCN uses a nonparametric weight with a
normalizing function, which limits its generalizability. In
contrast, GAT captures node importance based on spatial
topology by learning message-passing weights from hidden
embeddings using attention scores, allowing for a data-driven
approach to operator selection without prior assumptions. It is
beneficial to use atomic properties and molecular structure as
inputs in graph representation learning to allow the algorithm
to determine relevant information. Although edges and nodes
may have associated attributes, GCN and GAT mainly focus
on node features and 1-dimensional edge features, disregarding
n-dimensional edge features. GAT extends GCN with an
attention mechanism that learns message-passing weights cij
from hidden embeddings using attention scores αij

(l) in a data-
driven approach, rather than fixing the operator a priori with a
shared linear transformation weight matrix F F× , given
by the following formula:

h hi
l

j i i
ij

l l
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This “self-attention mechanism (weighting factor)” αij is
based on a simple principle that atoms (nodes) should not all
have the same relevance. It is computed as the softmax
normalized inner product between a learnable weight vector
Wa and the concatenation of the transformed hidden
embedding of the two nodes written as
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where Θ is the learnable weight matrix, Wa is the learnable
attention weight vector, LeakyReLU is the nonlinear activation
function, and aij is a pairwise unnormalized attention score.
In this study, the GAT method in eq 2 was expanded for

molecular graph regression tasks, specifically to predict the
redox potential. This was accomplished by concatenating node
(atom) representations in Table 1 with n-dimensional edge
attributes eij in Table 2. Edge attributes are structurally similar
to node characteristics except that they specify the nature of
the edge between two nodes. As a result, the edge feature
representation eij is concatenated to each node representation
hj and multiplied by the edge update matrix Θ(l)hj(l)→(Θ(l)hj(l))|
eij to produce the extended GAT model for molecular graphs
(MolGAT) as
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The molecular data normally come in the sequential form of
labeled SMILES strings. With the PyTorch Geometric63

framework and RDKit64 library these SMILES strings were
optimally converted into a structured molecular graph object
that can be used as an input for a GNN as indicated in the
graph-encoding section of Figure 2. This molecular graph
encoding process might be divided into three major parts,
which are as follows: The first step was to develop a function
that converts an RDKit atom object to the proper atom feature
vector. Additionally, a technique changes an RDKit Bond

object into the proper bond feature vector. Lastly, a function
takes a list of SMILES strings and associated labels as inputs
and creates outputs of a list of labeled Pytorch Geometric
Graph objects by combining the results of the atom-feature
vector and bond-feature vector from the previous steps. Graph-
level classification or regression tasks, in contrast to node
classification tasks, must focus on the global information
present in graphs, requiring the utilization of a graph pooling
technique to extract the global information. Therefore, after
applying a series of three convolution layers in second section
of Figure 2, the node latent representation aggregation was
applied by stacking global max pooling (GMP) and global
average pooling (GAP), both of which are permutation-
invariant functions. After these global representation aggrega-
tion, the latent representation is supplied to multilayer
perception (MLP) to predict the final target variable.
Overfitting is a common issue that arises when a model

performs well on the training data but performs poorly on new
data, and it is a significant challenge in machine learning. A
significant portion of the literature on machine learning focuses
on the development of methods to prevent overfitting.
Overfitting is also a frequent occurrence during neural network
training.65 There are several ways to avoid overfitting, but for
this study, batch normalization and dropout were used. Various
normalization techniques are used by many different kinds of
neural networks to help accelerate and/or stabilize the training
process.66 The model is atom-centric; therefore, each atom has
a set of neighbor attributes that combine the features of nearby
atoms and connecting bonds. As a result, linear transformation
and nonlinear activation were carried out to equalize the vector
length, which is notable since the vectors of the atomic features
and the nearby atomic features do not have the same length.
However, stacking extra layers to a GCN causes the classic
vanishing gradient problem, in which back-propagating across
these networks causes oversmoothing, resulting in the features
of graph vertices converging to the same values.67 Due to these
limitations, the majority of cutting-edge GCNs are no deeper
than four layers.68 Hence, we employed three layers of graph
convolution with a dropout of 0.2, one batch normalization at
the end of the convolutions, three layers of MLP and RELU
activation function in each convolution, and MLP linear years.
In addition, for both training and testing, we employed a
squared-error loss of the following form

Table 1. Atom Features in a Molecular Graph Utilized to
Train the MolGAT Model

Atom Features Descriptions Size

Atom type Type of atoms (e.g., H, C, O, N) as one-hot vector 69
Atomic number Atomic number of elements (e.g., H, C, O, N, Br) 1
Formal charge Electrical charges encoded as

[−3, −2, −1, 0, 1, 2, 3]
1

Radical
electrons

Free-radical electrons encoded as [0, 1, 2, 3, 4] 1

Valence
(neighbors)

Number of maximum valence electrons
[0, 1, 2, ... 0.7]

8

Chirality Chirality (nonsuperposable) as one-hot vector
[1, 0]

1

Chirality type Charality type (R, S) as one-hot vector 1, 0 1
Number of H’s Connected hydrogen encoded as 0, 1, 2, 3, 4 5
Hybridization Hybridization as s, sp, sp2, sp3, sp3d, sp3d2 7
Aromatic An aromatic system as one-hot vector 1, 0 2
Atomic mass Scaled atomic mass encoded as

(mass − 1.008)/237.021
1

Vdm radius Scaled Van der Waals radius for atomic volume
(RVDW − 1.2)/1.35

1

Covalent radius Scaled covalent radius encoded as
(Rcovalent − 0.23)/1.71

1

99

Table 2. Bond Features in Molecular Graph Utilized to
Train MolGAT Model

Bond Feature Description Size

Bond type Single, double, triple, or aromatic 4
Conjugated
bond

Conjugated bonds as one-hot vector 1

Ring Bond in a ring as one-hot vector 1
Stereo StereoNone, StereoAny, StereoZ, StereoE as one-

hot vector
6

12

Figure 2. Schematic representation of MolGAT workflow.
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where MLP is a densely connected neural network with an
output and yGi ∈ R is the target attribute value for the training
graph Gi and labeled training graphs T = {G1, ..., Gn}.
2.2. Data Preparation. To train the models RedDB69 was

used, which is a computational database that covers a chemical
space of two classes of organic molecules such as quinones and
aza-aromatics that are extremely promising for aqueous redox
flow batteries. This data set was generated using simulation
tools that use cheminformatics, machine learning, molecular
mechanics, and quantum chemistry methods. It contains
structural information as well as several physicochemical
properties of molecules that may be used as electroactive
materials in aqueous redox flow batteries.69 The validity of the
SMILES was verified using the rdkit library, and a
corresponding molecular graph was generated. In this data
set, redox potentials for anolytes and catholytes typically range
from −4.11 to 2.56 were selected as illustrated in Figure 3 from
a total of 15,000 molecules.
After collecting the data set, each compound was

represented as a graph whose nodes corresponded to atoms
and edges corresponded to bonds. A bond between two atoms
indicates that the atoms are linked via covalent bonding. Atom
types were encoded as binary bits indicating whether the atom
type is carbon, hydrogen, oxygen, sulfur, phosphorus, or
nitrogen. With atoms as nodes and chemical bonds as edges,
each graph represents a molecule and all its structural

information, atomic properties, and edge features are encoded
from their smile strings using RDKit.64 The n-dimensional
atomic features used in the molecular graph structure are
summarized in Table 1:
In order to include as much information as possible within

the molecular graph, a wide range of atomic characteristics are
included, such as atom type, formal charge, number of valence
electrons, radical electrons, hybridization type, whether the
atom is in a ring, whether it is aromatic, atomic mass, Van der
Waals radius, and covalent radius. Due to the fact that the final
three qualities are numerical in nature, they are automatically
scaled using estimates based on empirical data to a respectable
range. The stereochemical characteristic charity is utilized, and
hydrogen is defined to be explicitly addressed in the molecular
graph.
The n-dimensional bond attributes indicated in Table 2

include bond types, whether the bond is conjugated, and
whether the bond is in a ring including E−Z stereochemical
features. The bond types are encoded as integers correspond-
ing to the following numbers: single, double, triple, or
aromatic.
2.3. Training the Models. MolGAT model was

implemented using PyTorch and PyTorch Geometric
(PyG)63 Libraries. Three MolGATConv layers were used in
the training, each with four attention heads, 512 hidden
channels with a ReLU activation function, and a 0.2 dropout
rate. In the first convolution, 99 node features were used as
input and 12 edge attributes were concatenated in each
convolution layer operation, with batch normalization of 512

Figure 3. Some of the anolyte and the catholyte molecules with their reaction energy from RedDB: (a) catholyte materials and (b) anolyte
materials.
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hidden dimensions applied after the last convolution layer.
After the last convolution layer, batch normalization of 512
hidden dimensions was applied, followed by a permutation
invariant function, global max pooling (GMP), and global
average pooling (GAP) to generate a graph-level embedding.
These pooling operations aggregated information from all
nodes in the graph to generate a single vector, effectively
summarizing graph-level information. The final step was to use
three fully connected layers with 1024 hidden dimensions, and
ReLU activation on the first two layers was used at the end of
these global aggregations. The model contains a total of
5,219,985 parameters and produces a scalar output from the
final fc_out layer used for predicting the redox potential and is
relatively large, as shown in Table 3.

From the set of RedDB data sets, 90% was used for training
and 10% for testing to training the models. The Noam
Learning rate schedule was applied during the training. This
corresponds to increasing the learning rate linearly for the first
warmup step training steps and decreasing it thereafter
proportionally to the inverse square root of the step number,
scaled by the inverse square root of the dimension of the
model. This learning rate increases linearly from the initial

learning rate to the maximum learning rate throughout the first
warmup steps. Then the learning rate decreases exponentially
from the maximum learning rate to the final learning rate
throughout the remaining based on the scheduling technique
of Vaswani et al.70 The training was performed with GPUs on
BNL HPC for 300 epochs with a batch size of 192, an initial
learning rate of 1e−4, the maximum learning rate of 1e−3, and a
final learning rate of 1e−4 with warmup epochs of 2.0 based on
a Noam learning rate scheduler with Adam SGD optimizer.
The source code of MolGAT, the training scripts, and data sets
are found at https://github.com/mesfind/molgnn.

3. RESULTS AND DISCUSSION
The MolGAT model is a powerful tool in the field of molecular
property prediction. Its architecture is designed to take
advantage of the graphlike nature of molecules by using
graph attention networks to process the molecular graph. With
a total of 6,127,249 trainable parameters, the model is capable
of capturing complex relationships between atoms and their
surroundings as well as between different parts of the molecule.
The three MolGATConv layers in the model are responsible

for performing graph convolution operations with each layer
gradually increasing the number of output channels while
maintaining the same number of heads. The heads parameter
refers to the number of parallel attention mechanisms used to
compute the node representations. The output shape of each
convolutional layer reflects the fact that the model is capable of
processing both local and global information with the output
channels representing different levels of abstraction.
The three linear layers in the model are fully connected

layers responsible for performing the final processing of the
node and edge features. The first two linear layers have 1024
output features each, allowing for additional nonlinear
transformations of the features learned by the convolutional
layers. The final linear layer is the output layer of the model

Table 3. Trainable Parameters in MolGAT Model for Redox
Potential Prediction

Layer Shape
No. of Trainable

Parms

MolGATConv1 (heads = 4) (99, 512, 12, 4) 475696
MolGATConv2 (heads = 4) (512, 512, 12, 4) 1321520
MolGATConv3 (heads = 4) (512, 512, 12, 4) 1321520
BatchNorm (512, 512) 1024
Linear1 (1024, 1024) 1049600
Linear2 (1024, 1024) 1049600
Linear3(fc_out) (1024, 1) 1025
Total Trainable parms 5, 219, 985 5219985

Figure 4. MolGAT training performance: (a) parity plot of predicted against target values and (b) MolGAT model’s test and training losses.
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with a single output feature representing the predicted
molecular property.
3.1. Predicting Target. The Adam optimizer, an extension

of stochastic gradient descent with minibatches normalization,
enables the MolGAT model to manage a noisy optimization of
the high-dimensional nature of the network’s weights. The
training’s mean average error (MAE) and root-mean-square
error (RMSE) are 0.033 V and 0.046 V respectively as shown
in Figure 4a and Figure S7. To enhance the performance of the
MolGAT model, the redox potential values were standardized
by computing the mean and standard deviation of the data and
then using the formula (data − mean)/std to transform the
target variable to have a mean of 0 and standard deviation of 1.
Following training, the predictions were transformed back
using the inverse formula (data × std) + mean. Standardizing
the redox potential also facilitated a comparison of the
performance of different GNN models and interpretation of
their results.
The parity plot in Figure 4 revealed a close agreement

between predicted and targe values, indicating the reliability of
the MolGAT model’s predictions. Furthermore, the model’s
test and training losses were also calculated, which showed that
the model was not overfitting the data and was effectively
learning the patterns in the data.
The performance of various models on the RedDB data set

was compared after standardizing the data and training for 300
epochs using similar training procedures The performance
comparison (Table 4) shows the MAE and RMSE for different
models on the RedDB data set.

The results shows the MAE and RMSE for different models,
namely MPNN, GCN, GAT, AttentiveFP, and MolGAT (this
study, Table 4, Figure S8). It is evident that the MolGAT
model has lower MAE and RMSE values, indicating its
superiority over all of the other models. Even though MPNN
and GCN had errors higher than those of GAT and
AttentiveFP, they still outperformed the MolGAT model.
These results imply that MolGAT is more effective in
predicting the redox potential of molecules in the RedDB
data set. Thus, the MolGAT model is a promising tool for
predicting other molecular properties such as solubility,
making it a useful tool in redox flow battery, drug discovery,
and other applications.
3.2. Virtual Screening (VS) Promising Redox-Active

Molecules. High-throughput screening (HTS) is a process
used to rapidly test a large number of compounds or materials
for their desired properties. Graph neural network (GNN)
models have recently emerged as a promising tool for HTS due
to their ability to learn from graph-structured data, such as
molecular structures. GNN models can be trained on a set of
labeled compounds or materials with known properties,
allowing them to learn the relationships between the molecular
structure and property. Once trained, the model can be used to

predict the properties of a large set of unlabeled compounds or
materials, enabling researchers to quickly screen for the desired
properties. One advantage of using GNN models for HTS is
that they can capture complex relationships between atoms
and molecules, which can be difficult to model with traditional
machine learning methods.
The use of GNN also presents an exciting opportunity for

accelerating the discovery of new materials for redox flow
applications through virtual screening to identify the desired
properties. In addition, the GNN enables the exploration of
previously undiscovered chemical space, increasing the number
of libraries that can be screened by those in the field.
Specifically, the molecular graph attention network (MolGAT)
model, which is a type of GNN, predicts the redox potential of
organic compounds by leveraging fundamental chemical
properties and using molecular graphs for representation
learning with both structural and chemical features. The
MolGAT model was used to screen 581,014 molecules from
various databases and identified promising catholytes and
anolytes based on their redox potential values. The MolGAT
model was used to calculate the redox potential of 581,014
molecules from various databases such as ZINC,24

CHEMBL,23 DELANEY,36 OMDB,71 and QM972 and
identified promising catholytes and anolytes based on their
redox potential values. A data set containing 23,467 molecules
with redox potentials greater than 1 V and less than − 1 V was
created, with 20,716 molecules identified as promising
catholytes and 2,751 molecules identified as promising
anolytes. From this data set, 12 molecules with promising
redox potential values were chosen for illustration from both
catholyte in Figure 5a and anolyte in Figure 5b. This approach
provides a new way to identify potential candidates for
electrochemical storage systems, and their redox potentials can
be improved by adding substituents to the base molecules
Figure S6 using DFT methods in future research. The use of
the MolGAT model for screening redox potential values offers
a powerful tool for accelerating the discovery of new materials
with desirable properties.
MolGAT is a graph-based deep learning model that utilizes

attention-based message passing operations to extract
important features and relationships between atoms from
molecular structure input. The model is trained to predict the
redox potential of organic compounds using molecular
structures, atomic attributes, and bond attributes. This makes
it an ideal tool for virtual screening, which is a process that
involves screening large databases of compounds or materials
to identify those with the desired properties.
In this case, virtual screening was performed using the

MolGAT model to screen several redox-active molecules from
various databases, such as ZINC, DELANEY, QM9, OMDB,
and CHEMBL. The trained model was able to predict the
redox potential of these molecules accurately, as demonstrated
in Table 4. The performance of the MolGAT model was
compared to other GNN models such as GCN, GAT, and
AttentiveFP, and the results showed that the MolGAT model
had superior generalization performance. This means that the
MolGAT model was able to accurately predict the redox
potential of molecules that it had not been trained on. This is a
crucial characteristic for high throughput virtual screening, as it
allows researchers to quickly and accurately screen large
databases of compounds or materials to identify those with
desired properties.

Table 4. Model Performance Comparison Using the RedDB
Dataset

Model MAE RMSE

MPNN 0.083 0.117
GCN 0.075 0.101
GAT 0.061 0.086
AttentiveFP 0.060 0.086
MolGAT (this study) 0.033 0.046
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4. CONCLUSION
The MolGAT model is a powerful tool for predicting
molecular properties by using a graph-based deep-learning
approach. By leveraging attention-based message passing
operations, the model can effectively extract crucial features
and relationships between atoms from the input molecular
structure. Importantly, the model’s ability to learn the chemical
structure and properties, coupled with its consideration of both
structural and chemical features, enables it to accurately predict
molecular properties. This eliminates the need for complex
feature engineering, which is often time-consuming and labor-
intensive in traditional machine learning approaches. This
information is then processed through fully connected layers to
predict the redox potential of the organic compounds.
The trained model was used as a virtual screening tool to

identify promising redox-active organic compounds from
various databases to accelerate the discovery of new materials
for redox flow battery applications. These screened compounds
may be further optimized by adding functional groups to the
base molecules using forward modeling in DFT or
experimental approaches in future research. Moreover, the
proposed method can be extended to predict additional
chemical attributes such as solubility and stability, allowing for
a more targeted screening of materials. The importance of
considering edge attributes in GNN models when predicting
molecular properties is also emphasized. In general, the
MolGAT model demonstrates the potential of graph neural
networks in condensed matter physics and materials science.
Its ability to predict molecular properties with appropriate
fundamental atomic and edge features inputs, combined with

its fast and reliable prediction capabilities, opens up a new field
of virtual screening to identify materials with desirable
properties. Additionally, the model’s applicability extends
beyond the realm of battery research to the general screening
of promising materials from large databases.

■ ASSOCIATED CONTENT
Data Availability Statement
The RedDB data set used for this work was collated from the
openly available harvard dataverse studied in ref 69. The
MolGAT model screened data set redox-active organic
compounds are available for further investigation using
electronic structure methods like DFT or experimental
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Explanation of the data preprocessing steps undertaken
to train the MolGAT model; extensive analysis of the
RedDB data set, including joint plots of reaction energy
and number of atoms, box plots of the number of atoms,
the number of heavy atoms in anolyte and catholyte
molecules, and the types of functional groups present in
both catholyte and anolyte; a list of the sample SMILES
strings with their corresponding redox potentials in the
RedDB data set used for training, along with instructions
on how to load this data set in PyG library graph
representation format; normalization of the target
variable (redox potential) and sample atomic features

Figure 5. Some selected promising redox-active molecules with their corresponding predicted redox potential values screened with the MolGAT
model: (a) catholyte materials and (b) anolyte materials.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c01295
ACS Omega 2023, 8, 24268−24278

24276

https://pubs.acs.org/doi/10.1021/acsomega.3c01295?goto=supporting-info
https://pubs.acs.org/doi/10.1021/acsomega.3c01295?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01295?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01295?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01295?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c01295?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


and edge attributes used to train the MolGAT model;
outline of the error loss plots of the different graph
neural network models used in the study, including
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with their corresponding parity plots with MAE and
RMSE loss values for comparison; a list of the top-
performing molecules selected from the screened data
set, along with their corresponding number of heavy
atoms, types of functional groups, and other descriptors
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