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Abstract

Echinoderms have long been considered to be one of the animal phyla that is strictly marine. However, there is growing
evidence that some recent species may live in either brackish or hypersaline environments. Surprisingly, discoveries of fossil
echinoderms in non-(open)marine paleoenvironments are lacking. In Wojkowice Quarry (Southern Poland), sediments of
lowermost part of the Middle Triassic are exposed. In limestone layer with cellular structures and pseudomorphs after
gypsum, two dense accumulations of articulated ophiuroids (Aspiduriella similis (Eck)) were documented. The sediments
with ophiuroids were formed in environment of increased salinity waters as suggested by paleontological,
sedimentological, petrographical and geochemical data. Discovery of Triassic hypersaline ophiuroids invalidates the
paleontological assumption that fossil echinoderms are indicators of fully marine conditions. Thus caution needs to be
taken when using fossil echinoderms in paleoenvironmental reconstructions.
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Introduction

Numerous studies dealing with salinity level and its impact on

modern echinoderms showed that this parameter is important in

terms of their spatial distribution and size [1–8]. In general,

modern echinoderms have a more limited salinity range than any

other invertebrates because they have a permeable body wall and

lack differentiated osmoregulatory or excretory organs [2–9]. This

limit can especially be drawn for fossil echinoderms, among which

only stenohaline taxa have been documented. Although, some

authors recently described Messinian echinoids from non-normal

saline deposits deposited during evaporitic episode of the

Mediterranean region [10], [11]; however, it seems that these

echinoids [Brissopsis gr. lyrifera (Forbes)] occurred in interbedded

horizons with rather normal(?) salinity (personal communication,

A. Kroh, Naturhistorisches Museum Wien).

Intriguingly, in situ and labolatory experiments demonstrated

that some extant echinoderms, in particular ophiuroids, asteroids

and holothurians, can tolerate a great range of salinities [12]. So

far, an ophiuroid Ophiophragmus filograneus (Lyman) constitutes an

echinoderm species living in the lowest salinity in the field [13].

This form was found in the brackish facies of salinity level of 7.7%.

Remarkable salinity tolerance of this species has been also

confirmed under laboratory conditions [14], [15]. Likewise, many

authors draw attention to the fact that certain species of

echinoderms can tolerate very low salinity [7–16]. Additionally,

it has been pointed out that low salinity may lead to size

abnormalities (dwarfism) [17–20].

On the other hand, echinoderms can tolerate hypersaline

conditions (i.e.,.35.5 psu according to [21]). For example, Price

[22] reported two ophiuroid [Amphipholis squamata (Chiaje) and

Amphiura fasciata Mortensen), and one holothurian (Leptosynapta chela

Mortensen) species in Arabia Gulf with salinity ranging form 52 to

55%. Furthermore, the latter author documented two stunted

asteroid species (Astropecten polyacanthus phragmorus Fisher and Asterina

burtowi Gray) in lagoons with salinity exceeding 60% which to date

constitute the highest record for salinity tolerance by echinoderms

in the wild.

In this paper, we report for the first time well-preserved

ophiuroids Aspiduriella similis (Eck) from the Middle Triassic

sediments of Poland that were deposited in hypersaline conditions.

Materials and Methods

Geological Setting
Abandoned quarry ‘‘Wojkowice’’ is situated in the so-called

Silesian-Cracow Monocline, in Upper Silesia, Southern Poland

(Figure 1). This monocline contains mainly Triassic sediments

deposited in the Germanic Basin on the northern margin of the

Tethys Ocean [23].

In Wojkowice, carbonate deposits of the Upper Buntsandstein

(Röt or Roetian) as well as the lowermost part of the Lower

Muschelkalk (the Lower Gogolin Beds and lowermost part of the

Upper Gogolin Beds; lithostratigraphic division of the Lower

Muschelkalk after [24]) are exposed (detailed description of the

lithostratigraphy and paleontology of the Wojkowice Quarry see
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[25]; Figure 2A). Two ophiuroid accumulations were found in the

Cellular Limestones Unit (the so-called ‘‘Zellenkalk 20) - upper-

most lithological unit of the Lower Gogolin Beds. Its thickness in

Wojkowice is up to ca. 1.3 m. This unit represents Aegean [26].

The Cellular Limestones Unit is considered equivalent of the

Grenzgelbkalk and Liegende Dolomite in Germany [23], [27] and

crops out in the whole area in the Upper Silesia where the

sediments of Lower Muschelkalk are present. The thickness of

these sediments varies from 0.8 to 2.0 m depending on the locality

[24]. In contrast to other units of the Gogolin Beds, body fossils are

extremely rare in the Cellular Limestones Unit of Silesia. Only

occasionally, bivalves: Hoernesia socialis (Schlotheim), Gervilleia

mytiloides (Schlotheim), Myoconcha gastrochaena Dunker and isolated

crinoid ossicles were recorded [24]. In numerous outcrops of this

unit, body fossils are absent [28], [29]. Similarly, ichnofossils were

not documented whereas they are numerous in the Lower

Muschelkalk (e.g., [23]).

In Wojkowice, the Cellular Limestones Unit is represented by

yellow dolomitic limestones and dolomitic marls. Lower part of

this unit consists of dolomitic limestones. Above, a few (45 cm

thick) layers are exposed [23]: palisade calcite layer, dolocrete

layer, rauhwacke, cellular limestones and rauhwacke layer,

respectively. In the upper part of the Cellular Limestones Unit,

dolomitic limestones and marls are exposed. Two dense

accumulations of ophiuroids have been found on the upper

surface of the cellular limestone layer that was covered by a thin

(ca. 2 mm) muddy layer.

Sampling
During the field work about 28 square metres of the sediments

of the Celullar Limestones Unit (including 4 square meters layer of

cellular dolomitic limestone) were investigated (Figure 2). Fossils

are extremely rare in this unit: we recorded only three poorly

preserved bivalve molds and surprisingly two accumulations of

ophiuroids (26 and 6 specimens) that were found within one

horizon near the upper surface of the cellular dolomitic limestone

layer (Figure 2C,D). Both accumulations were separated from each

other by a distance of ca. 80 cm. Additionally, three bulk samples

from the cellular dolomitic limestone (each ca. 2 kg) were taken

and transported to the laboratory of the Department of Earth

Sciences of University of Silesia. No specific permissions were

required for collection of fossils form this location. Field studies

were carried out at an abandoned quarry with public right-of-way

and did not involve endangered or protected species.

Slabs with ophiuroids were initially cleaned with hot water.

Later the samples were slightly treated using peroxide in order to

clean them off from the remnants of the thin layer of muddy

sediments and again washed with hot water. Slabs were dried and

watched under a binocular microscope for taphonomic studies. All

ophiuroids from the Celullar Limestones Unit were examined

carefully for evidence of breakage, abrasion, dissolution, re-

generation traces and evidence of bite marks. Three selected bulk

samples of dolomitic limestone were dissolved using glauber salt (8

cycles of boiling-freezing procedure). Later they were washed

using hot tap water and sieved using Ø 0.5 mm, 0.315 mm and

Figure 1. Fossil locality and geological setting. Map of Poland with investigated area indicated and enlargement of Upper Silesia with the
sampled Wojkowice Quarry (circle). Figure slightly modified from [25].
doi:10.1371/journal.pone.0049798.g001
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0.1 mm mesh widths. After drying in 180uC, samples were

screened under a binocular microscope.

Petrographic and Geochemical Analyses
Polished and carbon-coated thin sections of the samples from

the Celullar Limestones Unit were examined with cathodolumi-

nescence microscope equipped with a hot cathode integrated with

spectograph and linked to a Kappa video camera for recording

digital images, at the Institute of Paleobiology of the Polish

Academy of Sciences in Warsaw. Integration times for CL-

emission spectra of luminescent samples were 50 s. The cath-

odoluminescent properties of sections were additionally examined

using the Cambridge Image Technology Ltd CCL 8200 mk3

model system with 12–15 kV beam potential and 400 mA beam

current attached to a NIKON ECLIPSE E400 Pol optical

microscope at the Department of Stratigraphical Geology of

Wrocław University. The petrographical investigations were

carried out at the Institute of Geological Sciences of Wrocław

University and at the Institute of Paleobiology of the Polish

Academy of Sciences in Warsaw.

Seven samples (two from limestones and five from dolomitic

limestones) were selected for geochemical analysis (in particular

boron content) using PGNAA (Pulsed Gamma Neutron Activation

Analysis) method (Figure 2B). 1 g samples are encapsulated in

a polyethylene vial and placed in a thermalized beam of neutrons

produced from a nuclear reactor. Samples are measured for the

doppler broadened prompt gamma ray at 478 KeV using a high

purity GE detector. Samples are compared to certified reference

materials used to calibrate the system. A minimum of four

standards are analyzed with every work order. Duplicates were

analyzed to check method stability. The detection limit (0.5 ppm)

reported is a function of the counting times required for each.

The collections are housed at the Department of Palaeontology

and Biostratigraphy of the University of Silesia, Sosnowiec, Poland

(catalogue number GIUS 7-3601– Geological Institute of the

University of Silesia).

Results

Paleontology
Macerated samples did not contain any macro- or microfauna.

However, surprisingly two dense ophiuroid accumulations were

found in the field on the surface of two slabs. These ophiuroids

were scattered across the area of 15 and 30 cm2, respectively. The

first accumulation yielded 26 specimens whereas the second

yielded only 6 specimens. All specimens were represented by

complete or nearly complete forms (disc plus arms or partly

preserved arms; see details below). Only 6% of total number of

ophiuroids (2 specimens) were preserved in situ, i.e., with oral side

directing towards the bottom (more details in discussion).

Ophiuroid specimens lack clear evidences of abrasion, extensive

dissolution, regeneration or bite mark traces (Figure 2E,F,G).

Three specimens yield (likely post-diagenetic) evidence of breakage

(specimens no. 10 and 23 on the slab no. 1; specimens no. 2 on

the slab no. 2; see Table 1,2). Most speciemens possess complete

disc with partly preserved arms, i.e., 70% of speciemens lack

distalmost part of arms. Two states of preservations can be

distinguished:

1. Well-preserved ophiuroids (Taphonomic Group 1), with only

minor signs of disarticulation (e.g., lack of distal arm portions);

2. More disarticulated specimens (Taphonomic Group 2) com-

prising central disc with attached less than five and partly

preserved arms (having only proximal and median portions of

their arms).

Aspiduriella Description
The ophiuroid assemblages from Wojkowice consist of mono-

specific and multiindividual accumulation with small ophiuroids

Aspiduriella similis (Eck) with narrow range size 2.7–3.4 mm

(Table 1,2). This species is thought to have been a slow-moving,

low-level epifaunal detritivore and/or suspension feeder [30].

These ophiuroids have central disc of oval outline (Figure 2E). The

center of the disc has a small and distinctly pentagonal

centrodorsal plate. The first circlet of disc is composed of five

hexagonal basal plates. The radial plates are relatively large and

drop-shaped; they are covered by single and small protuberances

on the radial position on each plate. Numerous and irregular

secondary plates occur between basal and radial plates. The arms

are rather short and their tips are usually not preserved. The

lateral plates in the proximal part are narrow and low. The dorsal

plates are smooth, romboid and decrease in size distally

(Figure 2F). The ventral plates have sharp edges.

Petrography and Geochemistry
The cellular limestone layer consists of fine-grained, sometimes

laminated and microfolded dedolomites with irregulary distributed

voids built mainly of fine pseudospar crystals (Figure 3). Occa-

sionally, pseudomorphs after gypsum (Figure 3E) and rhombohe-

dral crystals of calcitized dolomite are observed. Some of them

possess distinct zonal structures (Figure 3F). The dedolomites

contain Fe-Mn oxides and hydrooxides as suggested by cathodo-

luminescent analyses, i.e., non-luminescent zones are due to Fe2+-

rich (‘‘quencher ion’’) diagenetic fluids whereas bright orange

luminescent areas are due to changing diagenetic fluid chemistry

leading to Mn2+incorporation (‘‘activator ion’’). The CL emission

spectrum of an orange luminescing Mn2+-activated showed

emission maximum at about 660 nm (Figure 4, Mn2+activation

in the MgCO3 position).

Geochemical analyses revealed that the boron is non-uniformly

distributed within a part of investigated section. The main feature

of boron distribution is a relatively low B concentration in the

lower part of the section (10–23 ppm) and much higher

Figure 2. Stratigraphical section of Triassic sediments with ophiuroids. (A) Section of the northern and southern part of the Wojkowice
Quarry (from [25]). 1, dolomitic limestones and marls; 2, cellular dolomitic limestones; 3, organodetrital limestones with bivalve detritus and
columnals; 4, marly limestones; 5, pelitic limestones with abundance shells of bivalves; 6, pelitic limestones; 7, wavy limestones; 8, nodular limestones;
9, vertebrate remains; 10, Dadocrinus columnals; 11, encrinid columnals; 12, intraclasts; 13, regurgitalites; 14, Rhizocorallium commune; 15, numerous
gastropods; 16, numerous Plagiostoma; 17, numerous Pseudocorbula sp.; 18, numerous Gervillia sp.; 19, Thalassinoides; 20, Holocrinus columnals; 21,
layer(s) with presently recorded ophiuroids. I, Roetian; II, ‘‘limestones with Entolium and Dadocrinus unit’’; III, ‘‘first wavy limestones unit’’; IV, ‘‘cellular
limestones unit’’; V, ‘‘thick-bedded limestones’’ and ‘‘wavy limestones unit’’. (B) Investigated section of ‘‘first wavy limestones unit’’ and ‘‘cellular
limestones unit’’; S1–S7 = rock samples for boron content analyses. Scale bar equals 1 m. (C) Enlargement of the ophiuroid layer. Arrows show the
place of accumulations. Scale bar = 10 cm. (D) Slab (described in the paper as no. 1) with ophiuroid accumulation. (E) SEM micrographs of the oral
view of the ophiuroid disc. (F) SEM micrographs of the aboral view of the near complete ophiuroid specimen. (G) SEM micrographs of the contact of
arm plates showing relicts of the stereom microstructure. Scale bar = 10 mm.
doi:10.1371/journal.pone.0049798.g002
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concentration in upper part of the section (44–58 ppm) (see

Figure 2B).

Discussion

Depositional Paleoenvironment of Cellular Limestones
Unit

The Silesian Cellular Limestones Unit (Zellenkalk 2) was

formed at the end of the highstand system tracts phase, when

significant shallowing of the basin occurred [23]. This led to the

temporarily emergence of the bottom and strong evaporation

which is supported by isotopic data of d13C and d18O [23], [31].

The Cellular Limestones Unit has no evidence of marine

intercalations and was presumably deposited in sabkha environ-

ment with a dominant sedimentation of lime mud [31]. Analogical

cellular structures (cells) in cellular limestone in Silesian Roetian

(Zellenkalk 1) are interpreted as voids after dissolved and removed

gypsum and halite crystals [32]. Similar voids from Zellenkalk 2 of

the same origin are observed (Figure 3 C).

Supra-normal salinity during deposition of this unit is supported

by low abundance and diversity of fossils (3 bivalve molds and two

opiuroid accumulations on 28 square metres investigated) and lack

Table 1. Taphonomic features of Aspiduriella similis from Celullar Limestones Unit (accumulation no 1).

Specimen number Disc diameter [in mm] Life position: oral side up [u], down [d] Breakage Taphonomic group

1 2.7 d no 1

2 2.9 u no 1

3 3.0 u no 2

4 3.0 u no 2

5 3.1 u no 2

6 2.8 u no 2

7 3.2 u no 2

8 3.3 u no 2

9 3.2 u no 2

10 2.9 u yes 2

11 3.0 u no 2

12 2.9 u no 2

13 3.4 u no 1

14 3.1 u no 2

15 3.2 u no 2

16 2.8 u no 2

17 2.8 u no 2

18 2.9 u no 2

19 3.1 d no 1

20 3.3 u no 1

21 3.2 u no 1

22 3.1 u no 2

23 3.0 u yes 1

24 2.8 u no 1

25 3.0 u no 2

26 3.1 u no 1

doi:10.1371/journal.pone.0049798.t001

Table 2. Taphonomic features of Aspiduriella similis from Celullar Limestones Unit (accumulation no 2).

Specimen number Disc diameter [in mm] Life position: oral side up [u], down [d] Breakage Taphonomic group

1 3.0 u no 2

2 2.8 u yes 2

3 2.7 u no 1

4 2.8 u no 2

5 2.9 u no 2

6 3.0 u no 2

doi:10.1371/journal.pone.0049798.t002
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of ichnofossils. By contrast, fossils (especially crinoids) are

numerous in the adjacent lithological units [25], [33]. It is

noteworthy that previous studies have documented three bivalve

species within the Cellular Limestones Unit: Hoernesia socialis

(Schlotheim), Gervilleia mytiloides (Schlotheim), Myoconcha gastrochaena

Dunker [24]. According to the literature [34], all these species are

euryhaline. Especially, Hoernesia has been commonly reported in

hypersaline deposits of Europe and Canada [34], [35].

The occurrence of some postevaporatic structures (including

layer of palisade calcite and the rauhwacke layers) is also consistent

with increased salinity interpretation [23] although according to

some authors [31] the Cellular Limestones Unit comprises also

early diagenetic evaporites. Additionally, our microfacial observa-

Figure 3. Petrographical and cathodoluminescent features of the layer with ophiuroids. (A) Fine-grained dedolomites under transmitted
light and (B) in crossed-nicoles. (C) Laminated dedolomites with irregulary distributed voids under transmitted light. (D) Laminated and microfolded
dedolomites under cathodoluminescence. (E) Pseudospar crystals and rhombohedral crystals of calcitized dolomites and pseudomorphs after
gypsum (arrows) in crossed-nicoles. (F) Rhombohedral crystals of calcitized dolomites under cathodoluminescence showing zoned crystal growth.
Dolomite rhomboids have non-luminescent and bright orange luminescent zones. Non-luminescent areas are due to Fe rich diagenetic fluids and the
incorporation of Fe in the dolomite lattice (‘‘quench ion’’) during crystal gwowth, bright orange luminescent areas indicates changes in the diagenetic
fluid chemistry into Mn enrichment and the incorporation of Mn in the dolomite lattice (‘‘activator ion’’) during crystal growth.
doi:10.1371/journal.pone.0049798.g003
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tions indicate that within the Cellular Limestones Unit two

standard microfacies types can be distinguished: SMF 23: Non-

laminated homogeneous micrite and microsparite without fossils

(Figure 3A,C) and SMF 25: Laminated evaporite-carbonate

mudstone (Figure 3D) which are both indicative of increased

salinity (such as sabkha) environment [36]. It is worth mentioning

here that an equivalent of the Silesian Cellular Limestones Unit in

Thuringian Basin, the so-called Gelbkalke is also interpreted as

saline dolomite formed in sabkha environment [37].

It has been argued that light stable isotopes (d13C and d18O)

may be useful in paleosalinity reconstruction [38]. However, our

petrographical data suggests that lime mud in Wojkowice un-

derwent early diagenesis and later complete calcitization. There-

fore, any isotopic analyses within this layer are herein impossible.

Nevertheless, another important argument for an increased

salinity comes from geochemical data. It has been suggested that

boron content of the sediment shows a positive correlation with

salinity and can be used as paleosalinity indicator [39–47].

However, many complexities (including diagenetic changes,

different illite and organic carbon concentrations) can plague the

use of boron as a paleosalinity proxy [48]. Nevertheless, other

workers indicated a lack of correlation between boron concentra-

tion and either the clay-silt ratio or the percent organic carbon

[47] as well as degree of diagenetic changes [49]. Results of our

geochemical analyses indicate a remarkable boron concentration

(up to about 58 ppm) in the Cellular Limestones Unit (Figure 2B).

By contrast, boron concentration in the lower part of the section

(considered fully marine) is more than twice lower.

Origin and Taphonomy of Ophiuroid Accumulations
from Wojkowice

Considering the origin of ophiuroid accumulations described

here, it is necessary to determine if these accumulations are

autochthonous or allochthonous (e.g., transported from the

nearshore part of the marine basin onto the sabkha by storms).

Layer with ophiuroids, similarly to the adjoining layers, consists of

fine-grained (mud fraction) sediment without any sedimentary

structures which are indicative of high energy environment (e.g.,

intraclasts, channel erosion, ripple marks, grading). The top

surface of the layer with ophiuroids is plain with no signs of erosion

and is covered by an undeformed thin (ca. 2 mm) muddy layer.

The influence of incidental tidal sedimentation on the exposed and

dried surface is also unlikely as such deposits typically yield

characteristic structures (e.g. mudcracks, raindrops or herringbone

cross-stratification) that are not seen within the investigated unit.

Furthermore, transportation induces characteristic signs of abra-

sion on the ossicle surface which are not observed in studied

ophiuroids (Figure 2E,F,G). Only 3 specimens yield evidence of

(possibly post-diagenetic) breakage. If the sediment with ophiur-

oids was transported by storm, Cellular Limestones Unit should

contain other macro- and microfossils (such as crinoids, forami-

nifers, ostracods) that are commonly present in marine deposits of

the Gogolin Beds. However, in analysed samples macro- and

microfossils were not documented (except bivalve molds). Admit-

tedly, although lack of the distalmost parts of the arms in 70% of

the specimens may be indicative of transport, it has been argued

that storms do not appear to cause arm damage in extant living

ophiuroids [50]. A possible explanation for that mode of

preservation is that after the death, initially distalmost parts of

the arms become disarticulated and as the smallest and the lightest

ossicles they could have been easily transported. It cannot be

completely excluded that some of the arms could have been also

autotomized before death.

The found ophiuroids are generally classified within the first

taphonomic group (Type 1 echinoderms; [51]). This group

comprises echinoderms with ossicles that are held together only

by soft tissues such as ligaments and muscles. These echinoderms

do not remain articulated for very long after death because their

ossicles are rapidly disarticulated by decay [51]. Therefore, the

perfect state of preservation of our ophiuroids indicates rather

short post-mortem seafloor exposure. Taken together, it seems that

these ophiuroids appear to be para-autochthonous in that they

have not been transported away from their life habitat.

Extant echinoderms living in hypersaline environments com-

monly display dwarfism [22], [52], [53]. Studied ophiuroids from

Wojkowice are relatively small (max. disc diameter equals 3.4 mm,

mean disc diameter equals 3.0; see Table 1,2). However, data on

size range as well as relationship between the size and the age of

the specimens of Triassic Aspiduriella are rather sparse. Within the

genus Aspiduriella several species have been documented: A. camuna

(Rossi Ronchetti), A. dorae (Lepsius), A. italica (Crema), A. ludeni (von

Hagenow), A. montserratensis (Calzada and Gutiérrez), A. scutellata

(Blumenbach), A. similis (Eck) and A. streichani (Kutscher M.) [54–

58]. However, of these species only four are typical for the

Muschelkalk Germanic Basin (A. ludeni, A. scutellata, A. similis and A.

streicheni). The most reliable size data is the maximum disc

Figure 4. CL-activated UV-VIS spectrum of the luminescent dolomite (see Figure 3F). Spectrum shows Mn2+ emission maximum at ca.
660 nm (Mn2+ activation in the MgCO3 position).
doi:10.1371/journal.pone.0049798.g004
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diameter. A. ludeni occurring commonly in the Lower Muschelkalk

of the Polish part of the Germanic Basin is the largest form with

disks reaching up to 8.2 mm. This form was also noted from the

Lower Muschelkalk of the eastern Germany (Rüdersdorf near

Berlin) [57], [59–61]. A. streichani is similarly-sized to A. ludeni and

its disk reached up to ca. 8 mm. This species is common only in

the vicinity of the Lower Muschelkalk of Rüdersdorf [62].

However, it should be pointed out that the morphology of this

species is very similar to the previously mentioned A. ludeni. Stoll

[63] ascribed this taxon to A. ludeni with a question mark. A.

scutellata with its maximum disk diameter equaling 6.9 mm occurs

in the Lower and Upper Muschelkalk of Poland and Germany

[54], [55], [62–64]. This species is the only one that also has been

reported from the Tethyan Realm of Italy [65]. The maximum

disk diameter of A. similis commonly occurring in the Lower

Muschelkalk of Poland equals 5 mm [66]. Unfortunately, data on

range size as well as mean size are sparse. Previous workers [30],

[66] have mentioned that ophiuroids from various localities in

Poland have mean disc diameter commonly not exceeding 3 mm.

However, these ophiuroid taphofacies are connected with

transportation from their life habitat due to storm-related obrution

events. In such cases, segregation of the skeletons is likely. Thus,

data on mean disc diameter of these ophiuroid populations are

probably underestimated. Therefore, given our current state of

knowledge on ontogenesis of A. similis it is impossible to clearly

state if ophiuroids from Wojkowice underwent dwarfism or not.

Good state of preservation (see taphonomic groups in Table 1,2)

and an overall sedimentological context indicate that the death of

ophiuroids was not caused by high-energy (storm or tidal) event.

Predation is also not a likely cause of their death as ophiuroids do

not display evidence of damages of their discs and arms (such as

bite marks comparable to those observed in crinoids from the

lower part of this section; [33], [67]). Furthermore, the Cellular

Limestone Unit in the Wojkowice lacks potential body predatory

fossils (e.g., cidaroids, crabs, hybodontid sharks) or ichnofossils

(e.g., Thalassinoides, Rhizocorallium) that are ascribed to predatory

decapods. Such fossils do not occur also in other outcrops of this

unit in the Upper Silesia [23], [24], [68], [69].

One possible explanation is that the ophiuroids from Wojkowice

died due to the gradual deterioration of environmntal conditions.

In the unstable sabkha environment, progressive evaporation

might have been stressful for ophiuroids. For example, subaerially

weathered dolomites indicate that this area might have been

episodically lifted up [23]. In such drying sabkha, elevated

temperatures, increasing salinity, as well as progressive oxygen

depletion might have been responsible for the ophiuroid death.

The fact that nearly all ophiuroids are preserved with their oral

side turned up is consistent with such interpretation as studies on

modern ophiuroids from the Northern Adriatic Sea [70] indicate

that oxygen depletion commonly leads to their arm-tipping and

the accompanying uplifted disc [71–72]. This behaviour is

generally interpreted as an attempt to reach higher oxygen

concentrations. In such humped postures, ophiuroids are prone to

overturn. Similar arm-tipping behaviour have been recorded

elsewhere during hypoxia in modern opiuroid species, including

Ophiura texturata (Linnaeus) [73], [74], O. albida (Forbes) [75], or

Amphiura chiajei (Forbes) and A. filiformis (Müller) [76], [77].

Alternatively, other factors may have also contributed to such an

inverted position. It is noteworthy that extant ophiuroids can

change body posture to an upside down position, with oral side of

the disc facing upward and arms raised above the disc [78].

Furthermore, these organisms can curl into a ball-shaped

configuration leading to the overturn due to shift of the center

of gravity. Finally, the inverted position of extant ophiroids has

been also reported in ophiuroids escaping from sediments [79].

After the overturn of ophiuroids, initially distalmost parts of the

arms became disarticulated (if not earlier autotomized) and as the

smallest and the lightest ossicles could have been easily

transported. Then, within several? days the speciemens must have

been covered by thin ca. 2 mm thick layer of the sediment

allowing their near-complete preservation [51].

Conclusions
Fossil echinoderms are generally considered ideal indicators of

fully marine conditions. Thus they have been commonly used in

paleoenvironmental reconstructions. For example, echinoderm

fossils (in particular asterozoan traces) have recently warranted

a re- interpretation of the depositional environment of Stuttgart

Formation (Middle Keuper) from the non-open marine into fully

marine environment [80]. Discovery of ophiuroid accumulations

from the Middle Triassic of Poland constitutes the first and the

oldest fossil record to our knowledge of echinoderms found in

hypersaline environment. Our discovery suggests that some

echinoderm species might have been euryhaline and imply that

adaptation to increased salinity might have already appeared in

the Middle Triassic. Therefore, great care needs to be exercised

when using fossil echinoderm as paleoenvironmental proxies.
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36. Flügel E (2004) Microfacies of Carbonate Rocks. Analysis, Interpretation and
Application. Berlin: Springer-Verlag. 976 p.

37. Assaruri M, Langbein R (1990) Dolomitische Gelbkalke des Unteren

Muschelkalks (Mittlere Trias) im Thüringer Becken. Zeit Geolog Wissensch
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