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A B S T R A C T

Background: Prediction of curve progression risk in adolescent idiopathic scoliosis (AIS) remains elusive. Prior
studies have revealed the potential for three-dimensional (3D) morphological parameters to prognosticate
progression, but these require specialized biplanar imaging equipment and labor-intensive software recon-
struction. This study aimed to formulate a deep learning model with standing posteroanterior (PA) X-rays at
first clinic visit to differentiate between progressive (P) and non-progressive (NP) curves.
Methods: For this retrospective cohort study, we identified patients presenting with AIS between October
2015 to April 2020 at our tertiary referral centre. Patients with mild curvatures (11 – 30o) who were skele-
tally immature (Risser sign of ≤2) were recruited. Patients receiving biplanar X-ray radiographs (EOS™) were
divided between a training-cross-validation cohort (328 patients) and independent testing cohort (110
patients). Another 52 patients receiving standard PA spinal X-rays were recruited for cross-platform valida-
tion. Following 3D reconstruction, we designated the major curve apex upon PA X-rays as the region of inter-
est (ROI) for machine learning. A self-attentive capsule network was constructed to differentiate between
curves manifesting P and NP trajectories. A two-stage transfer learning strategy was introduced to pre-train
and fine-tune the model. Model performance (accuracy, sensitivity, specificity) was compared to that of tra-
ditional convolutional neural networks (CNNs) and a clinical parameter-based logistic regression model.
Findings: 3D reconstruction identified that apical rotation of the major curve and torsion were significantly
different between P and NP curve trajectories. Our predictive model utilizing an ROI centered on the major
curve apex achieved an accuracy of 76.6%, a sensitivity of 75.2% and a specificity of 80.2% upon independent
testing. Cross-platform performance upon standard standing PA X-rays yielded an accuracy of 77.1%, a sensi-
tivity of 73.5% and a specificity of 81.0%. Errors in prediction occurred when the degree of apical rotation /
torsion was discrepant from that of the subsequent curve trajectory but could be rectified by considering
serial X-rays. Performance was superior to that of traditional CNNs as well as clinical parameter-based
regression models.
Interpretation: This is the first report of automated prediction of AIS curve progression based on radiomics
and deep learning, towards directing treatment strategy at first visit. Patients predicted to be at-risk of pro-
gression may be counselled to receive early bracing with enforcement of treatment compliance. Over-treat-
ment may be avoided in curves deemed to be non-progressive. Results need to be consolidated in larger
sample populations of different ethnicities.
Funding: The Society for the Relief of Disabled Children (SRDC).
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
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1. Introduction

Adolescent idiopathic scoliosis (AIS) is a three-dimensional spinal
deformity affecting up to 3% of the population [1]. AIS is diagnosed
when Cobb angles (a measure of coronal plane deformity) exceed
10°, and progressive deterioration during puberty occurs in two-
thirds of patients [2]. Delaying treatment of scoliosis can lead to
increased back pain, significant cosmetic deformity, as well as com-
promised pulmonary function [3]. A prognostic uncertainty remains
in distinguishing between progressive (P) and non-progressive (NP)
curve trajectories when skeletally immature patients first present
[4].

Currently, patients with a curve ≥ 25o and significant remaining
growth potential as reflected by change in body height, skeletal age
(Risser stage, DRU grading), and timing of menarche [5] are referred
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Research in context

Evidence before this study

We searched PubMed on July 15, 2021, for articles that
described the application of deep learning algorithms to predict
curve progression from X-rays in adolescent idiopathic scolio-
sis, using the search terms “deep learning” OR “machine learn-
ing” AND “adolescent idiopathic scoliosis curve progression”
AND “X-rays”, with no language or date restrictions. Previous
studies were limited to the use of 3D spinal morphological
parameters, demographic parameters, and molecular bio-
markers. Deep learning-based radiomics had yet to be incorpo-
rated for the automated prediction of curve progression.

Added value of this study

This study combines recent advances in machine learning with
our understanding on curve morphology in adolescent idio-
pathic scoliosis (AIS). We reveal that posteroanterior (PA) X-
rays of AIS patients carry discriminatory features around the
major curve apex which facilitate identification of progressive
curves. We developed a deep learning model with the capacity
to predict progressive curves from PA x-rays taken at first clinic
visit in patients with AIS.

Implications of all the available evidence

Our platform provides an automated means to predict for curve
progression upon diagnosis of AIS in a cost-effective and non-
invasive manner that does not require specialized imaging
equipment. A radiomics-based prediction model holds
immense value for AIS screening programmes by facilitating 1)
early referral to specialist centers, and 2) pre-emptive bracing
of at-risk curves. This is a necessary advancement beyond the
current practice to observe mild curves in skeletally immature
patients.
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for bracing. A management dilemma remains in skeletally immature
patients with a curve < 25 o. As their subsequent curve trajectories
remain unknown, they are observed with X-rays repeated at next fol-
low-up for Cobb angle measurements. Bracing remains reactionary to
documented curve progression beyond a defined threshold indicated
for brace prescription. Therefore, it is of significant clinical impor-
tance to be able to prognosticate curve trajectories when patients
first present to the specialist clinic for management, often after an
initial diagnosis from school-age screening programmes. Promisingly,
measurement of three-dimensional (3D) parameters of scoliotic
curves have been described to identify curves at risk of progression
[6,7]. However, barriers to application remain in the prerequisite for
expensive biplanar X-ray systems followed by time-consuming and
error-prone software reconstruction of each individual vertebra [8].

Aforementioned findings on curve morphology have yet to be
applied upon recent advances in radiomics, which promise auto-
mated prediction of curve progression [9]. Pre-labelled datasets (i.e.
presenting X-rays of curves with progressive and non-progressive
trajectories) may be utilized for training and validation of machine
learning models that extract and process imaging features towards
achieving correct classification. Performance may then be assessed
upon an independent testing dataset. Prediction models that mimic
the layered and interconnected architecture of neurons within the
human brain are referred to as artificial neural networks. These neu-
ral networks have the capacity for deep learning, which is a subset of
machine learning allowing for features and patterns to be ‘learnt’ by
software towards continued refinement in order to improve
prediction accuracy. The objective of our study was to develop an
artificial neural network capable of differentiating between P and NP
curve trajectories from spinal radiographs obtained at first clinic
visit.

We hypothesized that uniplanar posteroanterior (PA) X-rays,
which convey features of three-dimensional spinal morphology of
prognostic relevance such as asymmetry of pedicle shadows and spi-
nous processes to reflect rotation [10] as well as rib vertebral angles
[11] would suffice for prediction of progressive curves. To this end,
capsule neural networks (CapsNet) possess distinct advantages in
comparison to traditional convolutional neural networks (CNNs) in
detecting spatial relationships among features to account for geomet-
ric transformations, possessing a property known as equivariance,
[12] which improves upon model performance. By incorporating a
non-iterative and highly parallelizable self-attention routing algo-
rithm, Efficient-CapsNet is another recent advancement in model
architecture that reduces model complexity whilst achieving similar
results [13].

We first validated differences in 3D spinal parameters reported in
a Canadian study to be statistically different between progressive and
non-progressive curves in our study population [14]. We identified
that morphology of the major curve apex demonstrated the strongest
correlation with progression risk, which was thereby designated as
the region of interest (ROI) for deep learning. We subsequently devel-
oped an Efficient-CapsNet-based radiomics method for automated
classification of progressive and non-progressive AIS. A curvature
magnitude-sensitive transfer learning scheme was applied, with the
model pre-trained upon skeletally mature curves and those having
progressed to require surgery. Fine-tuning of the pre-trained model
was conducted upon X-rays of mild curves at first presentation in
skeletally immature individuals, which was the population of interest
for prediction.

To the best of our knowledge this is the first attempt at automated
prediction of AIS curve progression that is based on radiomics and
deep learning, without necessitating software reconstruction of curve
morphology. Advantages of CapsNet in overcoming feature invari-
ance is highlighted in the clinical context of scoliosis as a three-
dimensional deformity. Towards clinical application, performance
upon a proprietary biplanar imaging platform was extensible across
standard standing PA X-rays.
2. Methods

2.1. Patient recruitment

This manuscript adhered to STROBE guidelines. We recruited a
total of 490 patients with clinic attendance at the Duchess of Kent
Children's Hospital between October 2015 to April 2020 for this ret-
rospective cohort study (Figure 1). The inclusion criteria were (1)
diagnosis of AIS, (2) Cobb angle between 11° and 30° upon X-rays at
first visit, (3) Risser sign of ≤2 to demonstrate growth potential, and
(4) regular follow-up concluding at skeletal maturity (Risser sign of 4
or more) or upon receiving surgery . For patients with more than one
curve, only the major curve (largest Cobb angle) was analysed. Skele-
tally immature patients were followed up in 3 – 6 month intervals
with standing X-rays repeated at every visit.

Progression (P) was defined by an increase ≥ 6° between first visit
and skeletal maturity, as well as a Cobb angle ≥ 25° at skeletal matu-
rity. Non-progression (NP) was defined by < 6° of curvature increase,
or in those with a Cobb angle < 25° at skeletal maturity. Patients with
non-progressive curves according to these definitions yet having
received brace treatment were excluded.

Informed consent was obtained from all participants and their
parents / legal guardians before examination and measurements
were conducted. Ethical approval from the Institutional Review Board



Figure 1. Patient recruitment and workflow (a) Patient recruitment with division into training, validation, and testing datasets. (b) Two-stage transfer learning and cross-validation
facilitated hyperparameter searching for model optimisation. (c) Independent testing on the established model with PA films obtained via EOS imaging. (d) Cross-platform valida-
tion on standard standing whole spine PA films.
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(IRB) of the University of Hong Kong / Hong Kong West Cluster was
obtained for this study.

2.2. Reconstruction and morphological parameter analysis

To validate differences in 3D spinal parameters between P and NP
curve trajectories upon our local population, [14] we randomly
selected 138 patients (65 P, 73 NP) with biplanar EOS X-rays taken
upon clinic presentation as an exploration dataset. Reconstruction
was conducted by a skilled research assistant using sterEOS software
(v1.6). The calculated parameters were divided into three categories
- (1) Global descriptors: 3D Cobb angles, thoracic kyphosis (T4–T12)
and lumbar lordosis (L1–L5); (2) Regional descriptors: Torsion, which
denotes mean of intervertebral axial rotations over the curvature
region; (3) Local descriptors: Axial intervertebral rotation of the
curve apex, upper, and lower end vertebra.

2.3. Data preprocessing

Amongst our cohort, local descriptors surrounding the major
curve apex were highly correlated with curve progression. We there-
fore selected the apical vertebrae or disc of the major curve, together
with at least two adjacent vertebras above and below as well as the
lateral rib articulations as the region of interest (ROI). ROIs were
extracted within a 150×100-pixel fixed window and saved as single
channel grayscale images in JPG formatting (Figure 2).

2.4. Deep capsule network with self-attention routing

Hinton et al. first described the concept of a vectorial organization
of neurons to encapsulate both probability and instantiation parame-
ters of a detected feature [15,16]. Recently, Mazzia et al. proposed a
highly efficient capsule network (Efficient-CapsNet) with self-atten-
tion routing to achieve state-of-the-art results with only 2% of the
original CapsNet parameters [13]. This lightweight network allows
capsule mechanisms to be applied to complex datasets with more
efficient feature encoding, reducing overfitting. Our optimised Cap-
sNet model (Figure 3) starts from an input layer comprising of a
150×100-pixel grayscale image. Primary features were extracted via
five convolutional layers. Each output from a convolution layer was
followed by a Batch Normalization layer and Rectified Linear Unit
(ReLU) activation function, and L2 regularisations were introduced to
reduce overfitting [17]. To decrease the number of parameters
required for the capsule creation process, there was a depth-wise
spatial convolution operation with linear activation following the
multilayer convolutional block, mapping extracted features to the
primary capsule layer [13,18]. The base expression of features
changed from a single neuron to a vectorized capsule. An activation
squash function was employed to normalize the probability of a cer-
tain entity between zero and one, while vector direction described
the entity's attributes. A non-iterative routing algorithm was intro-
duced to exploit a self-attention mechanism. This allowed for
reduced numbers of capsules to be routed to the output capsule layer
[13,18]. Margin loss was introduced for model optimisation and to
determine object class [13,19]. Capsule units in the primary capsule
layer were set at 64 to represent characteristic entities. The output
capsule layer comprised of two units quantified by 16 vectors to
express P and NP classes. Adaptive moment estimation was utilized
for training, with batch size set at 30, maximal number of iterations
at 260 and initial learning rate at 0.0001. Further details of the Cap-
sNet algorithm and network configuration are respectively shown in
Supplementary Figure 1 and Supplementary Table 1.

2.5. Cross-validation and two-stage transfer learning scheme

For each training-cross-validation process, a two-stage transfer
learning framework was proposed. PA X-rays upon skeletal maturity
(NP group) or immediately prior to treatment (P group) were com-
piled to pre-train the model, followed by fine-tuning of pre-trained
weights upon the dataset of skeletally immature patients with X-rays
taken at presentation. Transfer learning allowed for efficient model
development with smaller datasets whilst avoiding overfitting and
mode collapse. We acquired 328 X-ray for model pre-training and
fine-tuning respectively. Flip horizontal was conducted, followed by
adjustment for brightness, contrast and sharpness by random factors
for data augmentation [20]. There were 2096 paired images for



Figure 2. Determining location of the major curve, apex, and region of Interest (ROI) for deep learning (A) The major curve (hatched area) denoted by the largest Cobb angle mea-
sured upon standing posteroanterior (PA) X-rays, with upper and lower end vertebra demarcated by red lines. (B) The curve apex (highlighted area) was centered upon in the selec-
tion of an ROI measuring 150×100 pixels (C).

Figure 3. Proposed Efficient CapsNet model with self-attention routing for prediction of progression in adolescent idiopathic scoliosis The model begins with an input layer com-
prising of a 150×100 pixel grayscale image centered upon the major curve apex. Primary features were extracted via five convolutional layers, followed by a Batch Normalization
layer and Rectified Linear Unit (ReLU) activation function, and L2 regularisations were introduced to reduce overfitting. A depth-wise spatial convolutional operation with linear
activation followed the multilayer convolutional block, mapping extracted features to the primary capsule layer. A non-iterative routing algorithm was introduced to exploit a self-
attention mechanism to efficiently rout reduced numbers of capsules to the output capsule layer. The output capsule layer comprised of two units quantified by 16 vectors to
express P and NP classes.
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training in each fold cross-validation. For optimal hyperparameter
searching, the developmental dataset was divided into five parts.
Four parts were utilised for training, while the remaining part was
utilized for validation purposes [21]. Augmentation was not con-
ducted upon the validation set in each fold of cross-validation. This
process was repeated and an averaged performance was calculated,
guiding optimization of model hyperparameters. The proposed
model was implemented by Tensorflow and Keras frameworks based
on Mazzia's open-source work [13]. The training process was con-
ducted on a server equipped with two NVIDIA Tesla T4 GPUs and
128GB RAM.
2.6. Statistical analysis and model evaluation

Student's t-test was conducted upon continuous variables
describing patient characteristics, as well as to compare morpho-
logical parameters extrapolated following 3D reconstruction from
P and NP curves. We utilized Chi-squared test to compare non-con-
tinuous patient variables. A p-value < 0.05 was determined as the
threshold for statistical significance. Model prediction perfor-
mance was evaluated by accuracy, sensitivity, and specificity. SPSS
software (v26.0) was used for statistical analysis. For comparison
with our CapsNet-based model, a radiomics-based CNN model and
deep residual network (ResNet) [22] were implemented under the



Table 1
Clinical and radiological characteristics of the overall patient cohort divided into progressors (P) and non-progressors
(NP)

Combined cohort P Group NP Group p-value
Demographics

Number of patients 490 258 232 -
Age (years) 12.1±1.4 12.4±1.1 11.8±1.2 0.259
Sex 0.811
Male 118 61 57
Female 372 197 175

Maturity
Risser sign 0.226
Stage 0 291 149 142
Stage 1 107 56 51
Stage 2 92 50 42

Pre-Menarche at first visit 202 109 93 0.869
Coronal deformity
Initial Cobb angle of the major curve (°) 20.7±4.5 22.2±4.5 19.7±3.8 0.129
Final Cobb angle of the major curve (°)a 27.8±10 34.8±8.8 20±4.3 < 0.0001
C7PL-CSVL (mm) 13.3±7.4 13.6±7.5 12.4±6.9 0.079
Coronal imbalanceb Balanced (409)

Imbalanced (81)
Balanced (207)
Imbalanced (51)

Balanced (202)
Imbalanced (30)

0.060

Types of scoliotic curvec RT (189)
RTL (48)
LL (31)
LTL (97)
RT-LL (67)
LT-RL (24)
Triple (7)
Other (27)

RT (98)
RTL (23)
LL (21)
LTL (50)
RT-LL (37)
LT-RL (14)
Triple (3)
Other (12)

RT (91)
RTL (25)
LL (10)
LTL (47)
RT-LL (30)
LT-RL (10)
Triple (4)
Other (15)

0.679

a Final Cobb angle refers to the latest Cobb angles before initiation of bracing / surgery for patients with progressive
curve trajectories, and upon latest follow-up after skeletal maturity for non-progressive patients.

b Imbalance was measured as discrepancy between a C7 plumb line and center sacral vertical (CSVL) line exceeding
20 millimeters.

c RT, right thoracic; RTL, right thoraco-lumbar; LL, left lumbar; LTL, left thoraco-lumbar; RT-LL, right thoracic-left
lumbar; LT-RL, left thoracic-right lumbar; other, left thoracic, right lumbar.

Table 2
3D parameters at first visit in progressive and non-progressive curves

3D Parameter (O) P group NP group p-value

3D Cobb angle 23.7 ± 6.2 24.1 ± 5.3 0.714
Kyphosis (T4-T12) 22.3 ± 8.5 21.4 ± 9.2 0.635
Lordosis (L1-L5) 40.7 ± 9 40.1 ± 11.7 0.227
Apical vertebral rotation 7.3 ± 4.9 4.3 ± 3 0.006
Upper curve intervertebral rotation 2.8 ± 1.3 2.7 ± 1.6 0.106
Lower curve intervertebral rotation 2.9 ± 1.7 3.1 ± 1.9 0.143
Torsion 6.1 ± 3 3.3 ± 2.1 0.020

3D reconstruction of presenting X-rays demonstrated that apical vertebral rota-
tion and curve torsion were significantly increased in progressive curves (P
group) in comparison to non-progressive curves (NP group).
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same cross-validation and transfer learning scheme. Furthermore,
a logistic regression model (LR) for curve progression utilizing clin-
ical parameters of chronological age, gender, Risser sign, curve
imbalance, apex location and Cobb angle of the main curve was
included [23]. We assumed values of > 0.5 to represent progression
in this LR model.

2.7. Role of the funding source

The funder of the study had no role in study design, data collec-
tion, data analysis, model development, data interpretation, or writ-
ing of the manuscript.

3. Results

3.1. Demographics of the study cohort

As shown in Figure 1, a total of 490 patients were recruited. Of
these, 438 received standing EOS X-rays upon presentation, with 328
randomly selected for model development (training-cross-validation
cohort), while the remaining 110 served as an independent dataset
for testing. Another cohort of 52 patients receiving standard standing
PA X-rays at first visit were recruited for cross-platform validation.

Details regarding age, gender, skeletal maturity, curve types and
curve magnitude for the overall study population are shown in Table 1.
A total of 258 patients (52.6%) demonstrated curve progression while
232 patients (47.4%) were non-progressors. Female patients (75.9%)
were predominant in comparison to male patients (24.1%). There were
291 patients (59.4%) at Risser stage 0 at their first clinical visit, 107
patients (21.8%) at stage 1 and 92 patients (18.8%) at stage 2. A total of
202 female patients (54.3%) were pre-menarchal at first visit. There
were no statistical differences between P and NP patients in the overall
cohort for any of the analysed variables except for final curve magni-
tude. There were no significant differences between individual patient
cohorts utilised for model development, independent testing, and
cross-platform validation (Supplementary Table 2).

3.2. Analysis of three-dimensional morphological parameters

Three-dimensional reconstruction was performed upon present-
ing X-rays for 138 patients comprising of 65 P and 73 NP curves,
allowing for comparison of sevenmorphological parameters (Table 2).
Apical vertebral rotation of the major curve demonstrated the most
significant difference between P and NP curve trajectories and was
3.0° higher in the P group. This was followed by torsion, denoting
cumulative intervertebral axial rotation spanning the curvature,
which was 2.8° higher in the P group. Therefore, our ROI selection
was directed towards the major curve apex on standing PA X-rays.

3.3. Performance of CapsNet in comparison to alternative prediction
models

The prediction task was performed with our Efficient-CapsNet
model as well as more traditional algorithms. Mean values for model



Table 3
Performance comparison between prediction models

Data Model Accuracy (95%CI) Sensitivity (95%CI) Specificity (95%CI)

Independent Testing (n=110) LR model 59.0% (56.1-60.4%) 56.2% (54.4-57.1%) 62.4% (59.7-64.0%)
CNN 56.3% (54.4-57.2%) 54.2% (52.7-55.3%) 59.4% (56.1-62.2%)
ResNet 61.7% (59.2-63.0%) 58.3% (56.6-60.1%) 62.5% (59.4-64.6%)
Efficient CapsNet 76.6% (74.9-78.0%) 75.2% (73.3-76.3%) 80.2% (78.8-81.4%)

Cross-platform
Testing (n=52)

LR model 58.3% (57.2-61.1%) 55.4% (53.0-56.9%) 63.3% (60.2-65.1%)
CNN 55.9% (54.1-58.0%) 54.4% (51.6-56.1%) 60.1% (57.7-62.5%)
ResNet 60.2% (58.6-63.7%) 59.8% (57.6-61.9%) 61.7% (59.4-63.9%)
Efficient CapsNet 77.1% (75.8-78.1%) 73.5% (71.9-75.6%) 81.0% (79.2-81.9%)

Comparison in model accuracy, sensitivity, and specificity upon PA X-rays captured via EOS imaging apparatus (Indepen-
dent Testing), and standard PA standing X-rays (Cross-platform Testing). Efficient CapsNet outperformed a residual neural
network (ResNet), convolutional neural network (CNN), and a logistic regression (LR) – based model utilising clinical and
radiological parameters. CI = confidence interval.

Figure 4. Receiver operating characteristic (ROC) curve for independent testing and cross-platform validation

Table 4
Analysis of 3D parameters in false negatives in comparison to progres-
sive curves

3D Parameter (O) False negatives P group p-value

3D Cobb angle 23.1±3.5 23.7±6.2 0.872
Apical vertebral rotation 3.5±2.9 7.3±4.9 0.023
Torsion 3.9±2.6 6.1±3 0.036

3D reconstruction of false negative results subject to prediction by the
CapsNet model demonstrated significantly decreased apical vertebral
rotation and torsion as compared to curves correctly predicted to be
progressive in trajectory (P group). N = 13 for false negatives, N = 65 for
correctly labelled progressive curves within the exploration dataset.

Table 5
Analysis of 3D parameters in false positives in comparison to non-pro-
gressive curves

3D Parameter (O) False positives NP group p-value

3D Cobb angle 22.7±4.4 24.1±5.3 0.721
Apical vertebral rotation 7.4±5.8 4.3±3 0.015
Torsion 5.4±3.3 3.3±2.1 0.034

3D reconstruction of false positive results subject to prediction by the
CapsNet model demonstrated significantly increased apical vertebral
rotation and torsion as compared to curves correctly predicted to be
non-progressive in trajectory (NP group). N = 11 for false positives,
N = 73 for correctly labelled non-progressive curves within the explora-
tion dataset.
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performance of five repeated experiments are shown in Table 3. The
Efficient-CapsNet model achieved an accuracy of 82.1%, sensitivity of
80.8% and specificity of 88.6% on the validation folds. For indepen-
dent testing on a cohort of 110 patients (55 P and 55 NP), the model
achieved an accuracy of 76.6%, sensitivity of 75.2% and specificity of
80.2%. A corresponding ROC (receiver operator characteristic) curve
with area under the curve (AUC) of 0.75 is shown in Figure 4A. Upon
independent testing, Efficient-CapsNet outperformed CNN (accuracy
of 55.7%, sensitivity of 53.3%, and specificity of 60.2%) and ResNet
classification models (accuracy of 60.0%, sensitivity of 56.4%, specific-
ity of 60.6%). The clinical and radiological parameters-based regres-
sion model also fared poorly in comparison (accuracy of 59.1%,
sensitivity of 56.3%, specificity of 61.8%).

Cross-platform validation was conducted to test model perfor-
mance upon standard standing PA whole spine X-ray images. The
Efficient-CapsNet model achieved an accuracy of 77.1%, sensitivity of
73.5% and specificity of 81.0%. A corresponding ROC curve exhibited
an AUC of 0.74 as shown in Figure 4B. Again, performance of Effi-
cient-CapsNet was superior to CNN (accuracy of 54.7%, sensitivity of
52.1% and specificity of 55.3%), ResNet (accuracy 58.6%, sensitivity of
57.4%, and specificity of 58.8%), and logistic regression-based classifi-
cation models (accuracy of 57.7%, sensitivity of 57.1%, specificity of
58.3%).

3.4. Analysis of patients with erroneous trajectory predictions

Three-dimensional curve reconstruction and parameter analysis
was performed upon 13 false negative (FN) and 11 false positive (FP)
results present within the 110 patients from the independent testing
cohort. Values for apical intervertebral rotation (3.5°±2.9°) and tor-
sion (3.9°±2.6°) for false negatives were significantly lower in
comparison to the progressive group (Table 4). Conversely amongst
false positives, apical vertebral rotation (7.4°±5.8°) and torsion (5.4°
±3.3°) significantly exceeded that of non-progressive curves (Table 5).
Representative case examples are illustrated in Figure 5. To improve



Figure 5. Case illustrations of four classes of patients subject to our predictive model. The true negative patient (A) exhibited minimal apical axial rotation (0.9°) and torsion (2.1°)
upon first visit and was correctly classified as a non-progressor. In contrast a false positive patient (C) exhibited increased apical axial rotation (6.7°) and torsion (5.6°) that persisted
at latest visit despite there being no progression to the coronal curve magnitude. A false negative patient (B) demonstrated comparatively limited apical rotation (0.8°) and torsion
(0.6°) at presentation which ‘corrected’ by an increased magnitude in combination with Cobb angles at latest visit. A true positive patient (D) demonstrated significant axial rotation
(7.4°) and torsion (10.1°) upon presentation, and at next follow-up Cobb angles had increase by 14o.
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model performance, we show in Supplementary Table 3 that a ‘false
negative’ patient demonstrated marked increase in apical rotation as
well as torsion at a juncture preceding Cobb angle deterioration. Our
model accurately predicted progression upon the 2nd set of X-rays
when early bracing could still be initiated.

4. Discussion

The objective of our present work was to utilize radiomics to pre-
dict curve progression in skeletally immature patients suffering from
AIS. We first validated associations between 3D parameters and AIS
curve progression [6,14]. This formed the basis for deep learning
upon a region of interest centered upon the major curve apex. Fol-
lowing optimisation, our CapsNet-based deep learning model
achieved an accuracy, sensitivity, and specificity approaching 80%
across different imaging platforms. The capacity for early prognosti-
cation of curve trajectories promises to direct pre-emptive treatment.
Widespread application of our findings may be feasible not only at
first clinic presentation subsequent to referral, but also upon diagno-
sis at school-age screening programmes, in the absence of specialized
equipment and expertise.

Whilst guidelines for intervention exist for ‘larger’ skeletally
immature curves, namely bracing at Cobb angles >25o and surgery
when curves exceed 50o, [24] our study was specifically designed to
address the management conundrum for those with milder curves,
in whom the present practice of watchful waiting remains inade-
quate [25]. Expert opinion amongst an international multidisciplin-
ary group has deemed treatment of the 20° curve in the skeletally
immature to be equipoise, and thus in desperate need of further
study [4]. Careful labelling of our dataset was a prerequisite to correct
recognition of curve progression within this specific patient cohort.
Firstly, we avoided labelling curves deteriorating ≥ 6o yet attaining a
magnitude of < 25° at maturity (i.e. from 11o to 24o) as progressive
since such curves have minimal effect on cosmesis and function, and
observation alone would suffice. Secondly, we excluded from analysis
patients that did not reach these thresholds for progression only as a
response to brace treatment, as intervention affected natural curve
trajectories. The impact of our findings is to allow for triage of
patients for referral following diagnosis, as well as to identify those
at-risk of progression to receive pre-emptive bracing. Patients at our
locale await several months following diagnosis to be reviewed by an
orthopaedist, and as curve magnitude alone is an indicator for earlier
appointments, those with mild yet progressive curves are attended
to in a delayed manner. The effectiveness of bracing is well supported
in mild curvatures of < 25° and therefore may be offered as a ‘prophy-
lactic’ measure after appropriate counselling of at-risk individuals
[26]. On the contrary, close observation may be recommended in
confidence for non-progressive curves to avoid over prescription as
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bracing is a potential source of discomfort, skin irritation, and psy-
chological distress.

Logistic regression-based models utilizing discrete clinical and
radiological parameters were proposed early on to prognosticate
curve trajectories yet fared poorly upon our dataset [23]. This was
expected as indices of age, skeletal maturity, and curve descriptors
were of no discriminatory value at baseline. The performance of 3D
parameter-based prediction [6] (75% sensitivity, 94% specificity),
albeit exceeding our present model, is tempered by the requirement
for expensive EOS biplanar imaging apparatus and software recon-
struction that is both time consuming as well as prone to measure-
ment error in being a semi-automated process. Most studies utilizing
machine learning for AIS have focused upon attaining Cobb angles
measurements and classification by curve type [27]. One related
study utilized Independent Component Analysis to predict evolution
in scoliotic curve morphology over time, which nevertheless was
dependent upon 3D reconstruction for feature engineering and simu-
lation [7]. These highlight the advantages of our radiomics-based
approach in being non-invasive, cost-effective, and automated after
the ROI is specified. The excellent performance of CapsNet compared
to other classes of neural networks may be attributed to its capacity
to preserve and detect spatial hierarchies between features – unique
in the context of scoliosis as a complex multiplanar deformity – and
used as a means to supersede 3D reconstruction. Scoliosis screening
programs around the world rely on standard (not biplanar) standing
X-ray images of the whole spine for definitive diagnosis, following
forward bend test and/or Moiré topography for initial screening [25].
Cross-platform validation ensured that our model may be seamlessly
incorporated for prognostication upon initial diagnosis.

Our analysis of cases with erroneous prediction of curve trajecto-
ries provided valuable insight into discriminatory features identified
by the trained model. Apical rotation and torsion were mismatched
in comparison to curve trajectory in false positive and false negative
cases. Our results come full circle as it is implied that the same 3D
parameters that we deemed to be significantly different between P
and NP curves in our groundwork were extrapolated via deep learn-
ing. It may be argued that reducing the number of false negatives
(type II error) is most pertinent to real world application as bracing is
relatively safe and well tolerated. A means to rectify this was to apply
our model upon serial X-rays.

A limitation to our study was restricting analysis to the major
curve alone. The effect of double and triple major curves upon pro-
gression risk remains unclear. Further study is indicated in consider-
ation of whole spine X-ray images as input, as well as upon
corresponding lateral projections. Utilizing serial images as we
described in our analysis of erroneous prediction is another approach
that promises improved prognostic accuracy. Our model did not
incorporate clinical parameters relating to growth rate nor more
comprehensive measures of skeletal maturity (Saunders staging, DRU
staging) as the accuracy of Risser scoring, which was part of our
inclusion criteria, has been challenged [28]. Finally, it is essential that
results are consolidated with larger study populations, as well as to
establish external validity across different ethnicities as our cohort
was predominantly Chinese.

In summary, we demonstrate that a CapsNet-based deep learning
model utilizing X-rays at first visit predicted subsequent curve trajec-
tories. The application of CapsNet was essential to overcoming fea-
ture invariance as AIS is a complex three-dimensional deformity. In
the context of screening, prediction of progressive curves facilitates
early referral. At the specialist clinic one may counsel progressors to
receive pre-emptive bracing. This is a necessary advancement upon
the present practice of watchful waiting to reveal curve progression,
which inevitably delays treatment.
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