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ABSTRACT: Proteogenomic approaches have enabled the
generati̲on of novel information levels when compared to single
omics studies although burdened by extensive experimental efforts.
Here, we improved a data-independent acquisition mass
spectrometry proteogenomic workflow to reveal distinct molecular
features related to mammographic appearances in breast cancer.
Our results reveal splicing processes detectable at the protein level
and highlight quantitation and pathway complementarity between
RNA and protein data. Furthermore, we confirm previously
detected enrichments of molecular pathways associated with
estrogen receptor-dependent activity and provide novel evidence
of epithelial-to-mesenchymal activity in mammography-detected
spiculated tumors. Several transcript−protein pairs displayed radically different abundances depending on the overall clinical
properties of the tumor. These results demonstrate that there are differentially regulated protein networks in clinically relevant tumor
subgroups, which in turn alter both cancer biology and the abundance of biomarker candidates and drug targets.
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■ INTRODUCTION

Breast cancer (BC) is the most common female malignancy.
BC is associated with increasing incidence rates, but the
mortality is steadily decreasing due to better patient care, the
availability of new treatment options, and a deeper under-
standing of the mutational and molecular dynamics of each
breast cancer type.1,2 BCs are broadly classified according to
the status of the estrogen and progesterone receptors (ER and
PgR), the receptor tyrosine kinase ERBB2 and Ki67. More
recent works based on transcriptome analysis have enabled the
definition of intrinsic (luminal A, luminal B, normal-like, Her2,
and basal)3 and molecular driver-related4 subtypes, which are
used to predict patient prognosis and to guide treatment.5

Mammographic imaging is a diagnostic modality used for
early tumor detection. Improved mammographic image
analysis has furthermore revealed that breast cancers can
manifest different appearances, such as spiculations. Spiculated
BCs have a star-like appearance, which is an indicator for
invasiveness, cancer infiltration, and fibrotic growth around the
tumor.6,7 Typically, spiculated tumors are overrepresented in
the ER+/PgR+ and luminal A tumor group and have been
linked to better prognosis when compared to well-defined and
microcalcified masses.8−10 These findings indicate that there
are both receptor status- and intrinsic subtype-dependent
molecular drivers that contribute to spiculated appearances.
However, the relationship between mutational events and

downstream protein regulation patterns responsible for
spiculation has remained uncharacterized.
Previous breast cancer reports have shown that the

integration of genomic/transcriptomic and proteomic data,
referred to as proteogenomics, can play an important role in
the definition of new molecular drivers in breast cancer. For
example, previous studies have identified protein-level evidence
of genomic aberrations such as chromosomal losses, defined
new BC subgroups such as G-protein-coupled receptors,
identified new antigens for immunotherapy, and investigated
abundance discrepancies between transcript and protein pairs
in molecular pathways (e.g., metabolism and coagula-
tion).11−13 Interestingly, several of these studies showed that
there are marked discrepancies in transcript and protein
abundances that relate to particular molecular tumor subtypes
and protein classes. In contrast, tumor subgroup-dependent
features and their influence on RNA and protein abundance
have been sparsely investigated, with little focus of their impact
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on biomarker measurement, drug target monitoring, or
immunotherapy epitope expression.
So far, most proteogenomic studies in BC have relied on

peptide fractionation followed by extensive data-dependent
acquisition (DDA) MS analysis, typically associated with high
instrument usage. However, a recent study employed data-
independent acquisition (DIA) MS to define high-quality
protein maps of BC subtypes. The study by Bouchal et al.
identified the protein markers INPP4B, CDK1, and ERBB2 as
discriminatory of key BC histopathological features (e.g.,
lymph-node status), pinpointed pathways that relates to tumor
phenotypes, and assessed the degree of similarity between
transcript and protein abundance.14 In DIA MS (or sequential
window acquisition of all theoretical mass spectra
(SWATH)15,16), consistent peptide/protein identification

rates is achieved across samples via DDA-based spectral
libraries.
The continuously increasing coverage of the breast cancer

proteome achieved by the research community provides new
opportunities to increase and refine breast cancer-specific
spectral libraries to further improve DIA-based quantification.
In addition, the use of spectral libraries has been shown to
reduce false discovery rates (FDR) for the identification of
proteins and their isoforms or mutation-defined single amino
acid variants (SAAVs) by searching against a smaller database
of previously observed peptides rather than relying on the
whole-proteome search space.17

Here, we improved a previously established DIA MS-based
proteogenomic workflow and used the workflow on a breast
cancer cohort to identify molecular pathways related to breast
cancer biology and mammographic appearances. The im-

Figure 1. Experimental workflow of this study. A total of 21 samples derived from a larger cohort (set 1, N = 172, see Experimental Procedures)
and a second set of 24 tumors from a larger study (set 2, N = 109, see Experimental Procedures) were employed (A). Panel (B) shows examples of
nonspiculated and spiculated tumor masses. Panel (C) displays the overlap between the molecular (ER status) and appearance features evaluated in
this study, for which no association was found (set 1: Fisher exact p-value = 0.665, set 2: Fisher exact p-value = 0.283, (D)). Tumor specimens were
processed as whole tissue lysates (WTL, MS-only analysis) and ALLPREP flow-throughs (FT, RNA-seq and MS analyses). Panel (E) displays the
experimental workflow of our RNA and MS (DDA and DIA) analyses: tumor tissues were cut into slices and processed by ALLPREP. RNA and
protein fractions were extracted and processed from ALLPREP sample preparation for downstream RNA-sequencing and DDA/DIA MS,
respectively. Tissue slices were prepared only for downstream MS (DDA/DIA). Samples for DDA were fractionated using strong anion exchange
columns (SAX, six fractions) to enable higher proteome coverage. DDA data (i) was submitted to with MaxQuant processing to derive protein
abundances and (ii) to the MakeGTL workflow to generate a spectral library for downstream DIA search. RNA-seq data was processed using the
standard DESeq2 workflow (see Experimental Procedures). Abbreviations: DDA: data-dependent acquisition, DIA: data-independent acquisition,
ER: estrogen receptor, FDR: false discovery rate, FT: flow-through, MS: mass spectrometry, RT: retention time, WTL: whole tissue lysate.
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proved DIA MS-based workflow in combination with RNA-seq
data from the same primary breast cancer tissues revealed
novel molecular driver candidates of relevance for the receptor
status and morphological appearance in breast cancer. The
most notable feature was related to the enrichment of the
epithelial-to-mesenchymal transition (EMT) pathway in
spiculated tumors. These findings are in line with the concept
that protrusions, i.e., spiculae form the invading front of the
cancer, can remodel the surrounding healthy breast tissue.

■ EXPERIMENTAL PROCEDURES

Experimental Design

Two samples sets of breast cancer tissues (set 1: 21 samples
and set 2: 24 samples) were analyzed by RNA-sequencing and
MS analyses. DDA MS analysis was performed for downstream
spectral library generation for downstream DIA MS (Figure 1).
Samples were processed as ALLPREP flow-throughs (FT) and
whole tissue lysates (WTL). FTs were analyzed by RNA-
sequencing, DDA MS, and DDA MS. WTL samples were
analyzed using DDA MS and merged with their FT
counterparts to maximize the number of peptides included in
the spectral library. Two external datasets were also employed
(Tyanova13 and Bouchal14 datasets) were employed to
maximize the search space for the DIA MS data. The RNA,
DDA, and DIA datasets constituted the basis for all the
analyses described in this manuscript.
Patients

Out of a large breast cancer dataset consisting of 172 samples,
a subset of 21 frozen breast tissue specimens was collected for
this study (Figure 1A).18 All specimens were collected from
women with primary breast cancer, who underwent tumor
resection between 1991 and 2004. Estrogen and progesterone
receptor (ER and PgR) statuses were assessed in tumor tissues
by quantitative biochemical assays. The tumor content was
derived from microscopic analysis of the tumor cell area in
hematoxylin−eosin-stained tissue slices by two independent
trained researchers. Breast cancer molecular subtype classi-
fication was derived from previously acquired expression data18

using the AIMS19 algorithm. IntClust4 classification was
derived by processing the RNA-seq data using the IC10
package (v1.5).
The most dominant mammographic appearance of the

tumor was retrospectively collected by one specialist in
radiology (HS). Tumors were categorized as spiculated or
other tumor appearances such as microcalcifications or well-
defined masses (nonspiculated) based on their most
dominating mammographic feature (i.e., appearance catego-
rization). Examples of digital mammographic images are shown
in Figure 1B. An overlap between spiculation and ER statuses
is displayed in Figure 1C,D. A set of four normal breast tissues
was also collected after a breast-reduction surgery at Lund
University Hospital and used to generate the DIA spectral
library. This subset of samples was selected based on the
following clinical criteria: a breast volume of more than 800
mL, no previous case nor familial history of breast or ovarian
cancer, nonsmoker, no diabetes mellitus, and a body mass
index below 30.
An additional dataset of 24 primary breast tumors was

derived from a separate study (De Marchi et al., unpublished)
was analyzed by DIA MS and RNA-seq to validate our
findings. This set was derived from a larger cohort of (109
samples), and tumors were selected based on availability of

appearance data. Subtype classification and clinical and
histopathological characteristics of breast cancer patient-
derived specimens are reported in Figure 1C,D and Tables
S1 and S2.
All tissues were collected from Lund University Hospital and

affiliated clinics located in the Skan̊e region.
This study used primary breast tumor tissues under approval

from the Ethical Review Board (Etikprövningsnam̈nden) with
number DNR 2010/127.

RNA and Protein Extraction

All breast cancer specimens and normal tissues were processed
through an AllPrep (Qiagen) protocol for the lysis and
extraction of RNA and proteins (Figure 1E). Except for the
extraction of total protein content, all protocols were
performed according to the manufacturer’s instructions
(AllPrep RNA extraction kit). An amount of 20−30 mg of
frozen tissues was cut and collected into tubes for downstream
RNA and protein extraction. An adjacent piece, or imprint in
cases where not enough tissue for embedding was available,
was taken for microscopy and evaluation of the cancer content
at the center performing RNA extraction. Steel beads (ID
79656, Qiagen) were added to each sample tube together with
400 μL of 1% β-mercaptoethanol in RLT buffer (Qiagen) and
2 μL of an antifoam agent (ID 19088, Qiagen). Tissue
disruption was then performed in a TissueLyser LT (Qiagen)
for 4 min at 50 Hz, after which a second volume of 400 μL of
1% β-mercaptoethanol in RLT buffer (AllPrep DNA/RNA
Minikit, Qiagen) was added after the steel bead removal.
Samples were then centrifuged at 14,000×g for 5 min. The
supernatant was transferred to a new tube kept at −80 °C until
RNA and protein extraction.
RNA extraction was performed as per manufacturer

instructions using the AllPrep RNA Minikit (Qiagen). Flow-
through of each column constituted the protein fraction, which
was collected and stored at −80 °C prior to MS sample
preparation.

RNA Quality Control and Sequencing Analysis

The amount, concentration, and quality of the extracted RNA
were tested using a Bioanalyzer 2100 instrument (Agilent
Technologies, CA, USA), NanoDrop ND-1000 spectropho-
tometer (Thermo Fisher Scientific, MA, USA), or Caliper HT
RNA LabChip (Perkin Elmer, MA, USA). All samples had a
RNA integrity value (RIN) of 6.0 or higher.
RNA-sequencing analysis was conducted as previously

described.20 Briefly, RNA concentration was measured in all
AllPrep RNA eluates using a Qubit fluorometer following
preparation with Qubit RNA HS assay (Thermo Fisher). A
total of 100 ng of RNA input was then used for cDNA library
preparation using a TruSeq Stranded mRNA NeoPrep kit
(Illumina), according to the manufacturer’s instructions.
Library cDNA concentration was then measured using a
QuantIT dsDNA HS assay kit (Thermo Fisher), according to
the manufacturer’s instructions. cDNA libraries were then
denatured and diluted according to the NextSeq 500 system
guide (protocol #15048776, Illumina). RNA-sequencing
analysis was then performed on a NextSeq 500 (Illumina)
sequencer generating paired-end reads of length 77 bp.

Protein Quantitation and Digestion

Collected protein flow-throughs (FT) were subjected to
protein precipitation for downstream protein content deter-
mination using a bicinchoninic acid assay (BCA, Thermo
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Fisher) and trypsin protein digestion. Protein extraction was
performed by collecting the flow-through of RNeasy spin
columns and by performing protein precipitation as follows:
for every sample tube, three volumes of acetone were added
and samples were incubated at −20 °C for 1 h. Samples were
centrifuged at 14,000×g for 20 min, and the supernatant was
removed. Protein pellets were washed twice with 200 μL of
95% ethanol solution for 10 min at room temperature. For FT
samples, protein quantitation was performed by BCA assay
after resuspension of the protein pellet in 1× PBS.
For whole tissue lysate (WTL) preparation, frozen tissues

were prepared according to previously published protocols,21

with minor modifications. Briefly, 10 slices of 10 μm in
thickness were cut for each frozen specimen and resuspended
in ∼100 μL of ice-cold radioimmunoprecipitation assay
(RIPA) buffer (150 mM sodium chloride, 1.0% NP-40
substitute, 0.5% w/v sodium deoxycholate, 0.1% w/v sodium
dodecyl sulfate, 50 mM tris-(hydroxymethyl)aminomethane,
pH 8.0) supplemented with Halt protease inhibitor cocktail
(Thermo Fisher) and sonicated in a cooled bioruptor-type
sonicator (Diagenode) for 15 min. Lysates were then
centrifuged at 14,000×g for 20 min at 4 °C, and supernatants
were transferred in a new tube. Protein concentration was
measured by BCA assay (Thermo Fisher).
For downstream trypsin digestion, proteins were precipi-

tated in acetone and washed in ethanol solution (as previously
described22). Briefly, precipitated protein pellets were then
resuspended 100 mM Tris (pH 8.0) buffer containing 100 mM
dithiothreitol and 4% w/v sodium dodecyl sulfate and
incubated at 95 °C for 30 min under mild agitation. Samples
were then cooled to room temperature and diluted in 8 M urea
in 100 mM Tris (pH 8.0) buffer for downstream protein
digestion. Samples were then loaded on 30 KDa molecular
filters (Millipore) and centrifuged at 14,000×g for 20 min.
Filters with immobilized proteins were then washed with 100
μL of 8 M urea buffer and centrifuged at 14,000×g for 10 min.
Filters with immobilized proteins were then incubated with 8
M urea buffer containing 50 mM iodoacetamide for 30 min in
the dark. Filters were washed twice with 8 M urea buffer
followed by two washes with 50 mM triethylammonium
bicarbonate buffer (pH 8.0). Proteins were then digested with
trypsin (enzyme:protein ratio of 1:50) at 37 °C for 16 h under
agitation (600 RPM). Filters were then centrifuged at
14,000×g for 20 min to retrieve tryptic peptides.
For DDA MS analysis (sample set 1), a total of 50 μg of the

protein content was digested for each sample followed by
strong anion-exchange fractionation following previously
described protocols.13 Briefly, digested peptides were dried
and resuspended in Britton and Robinson universal buffer (20
mM phosphoric acid, 20 mM boric acid, and 20 mM acetic
acid in ultrapure water; BRUB, pH 11) and loaded on strong
anion-exchange (SAX; six stacked layers; 66888-U, Sigma)
stage tips. SAX filter-containing tips were put on top of C18
(three stacked layers; 66883-U, Sigma) stage tips, and peptides
were eluted with 100 μL of pH 11 BRUB buffer. SAX stage tips
were then transferred onto new C18 tips, and peptides were
eluted serially at different pHs: 8, 6, 5, 4, and 3. C18 tips were
then collected, washed with 0.1% formic acid (FA) in ultrapure
water, and eluted with 100 μL of a solution containing 0.1%
FA and 80% acetonitrile in ultrapure water. To eliminate any
possible remaining contaminants, eluates were dried and
subjected to SP3 peptide purification (as described in Hughes
et al.23). Briefly, 2 μL of SP3 beads (1:1 ratio of Sera Mag A

and Sera Mag B resuspended in ultrapure water, Sigma) was
added to dried peptides and incubated for 2 min under gentle
agitation. A volume of 200 μL of acetonitrile was then added,
and samples were incubated for 10 min under agitation.
Sample vials were then placed on a magnetic rack and washed
again with acetonitrile for 10 min. Elution was performed by
adding 200 μL of 2% dimethyl sulfoxide in water to the beads−
peptides mixture and incubating them for 5 min under
agitation. Supernatants were then collected, dried, and stored
at −80 °C until MS analysis.
For downstream DIA MS analysis (sample sets 1 and 2), a

total of 10 μg of protein was digested as previously mentioned,
omitting SAX stage tip-based fractionation. Solid-phase
extraction was performed using the SP3 method, as
aforementioned.

Mass Spectrometry Analysis

Global proteome DDA MS analysis was performed on a Q-
Exactive Plus (Thermo Fisher) mass spectrometer (sample set
1). Around 1 μg of tryptic peptides from fractionated samples
was separated on an RP-HPLC EasySpray column (ID 75 μm
× 25 cm C18 2 μm 100 Å resin, Thermo Fisher) coupled to an
EASY-nLC 1000 liquid chromatography system (Thermo
Fisher).
For DDA analysis of SAX-fractionated samples, peptides

from each fraction (n of fractions: 6) were eluted in a 90 min
gradient (flow: 300 nL/min, mobile phase A: 0.1% formic acid
in H2O, mobile phase B: 99.9% acetonitrile and 0.1% formic
acid). The chromatographic gradient was run as follows: 5% B
for 5 min, 5−30% B in 85 min, 95% B for 10 min. The 15 most
abundant peaks from the MS scan (resolution: 70,000 at 200
m/z) were selected and fragmented by higher energy induced
collision dissociation (HCD, collision energy: 30). Dynamic
exclusion was enabled (window: 20 s). The AGC target for
both full MS and MS/MS scans was set to 1 × 106. Precursor
ions with intensity above 1.7 × 104 were selected for MS/MS
scan triggering.
For DIA MS analysis (sample sets 1 and 2), a Q-Exactive

HF-X (Thermo Fisher) mass spectrometer was employed.
Unfractionated samples were eluted in a 120 min gradient
(flow: 300 nL/min, mobile phase A: 0.1% formic acid in H2O,
mobile phase B: 80.0% acetonitrile and 0.1% formic acid) on a
Q-Exactive HFX (Thermo Fisher) instrument coupled online
to an EASY-nLC 1200 system (Thermo Fisher). Digested
peptides were separated by RP-HPLC (ID 75 μm × 50 cm
C18 2 μm 100 Å resin, Thermo Fisher). The gradient was run
as follows: 10−30% B in 90 min; 30−45% B in 20 min; 45−
90% B in 30 s, and 90% B for 9 min. One high-resolution MS
scan (resolution: 60,000 at 200 m/z) was performed and
followed by a set of 32 DIA MS cycles with variable isolation
windows (resolution: 30,000 at 200 m/z, isolation windows:
13, 14, 15, 16, 17, 18, 20, 22, 23, 25, 29, 37, 45, 51, 66, 132 m/
z; overlap between windows: 0.5 m/z). Ions within each
window were fragmented by HCD (collision energy: 30). The
automatic gain control (AGC) target for MS scans was set to 1
× 106 for MS and MS/MS scans, with ion accumulation time
set to 100 and 120 ms for MS and MS/MS, respectively (Table
S3).

DDA MS Data Processing

DDA-derived RAW files were analyzed using MaxQuant
(v1.6.0.16). MS spectra were searched using the Andromeda
built-in search engine against the Uniprot-Swissprot human
proteome database (version download 2017.06.12). Label-free
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quantification (LFQ) and match between run options were
enabled. The chosen protease was trypsin. Identification of
peptides resulting from missed cleavages was allowed. Fixed
modifications: carbamidomethylation of Cys residues. Pre-
cursor ion tolerance: 20 and 4.5 ppm for first and main
searches, respectively. Variable modifications: acetylation of
the N-terminal residue, oxidation of Met residues. Proteins
were then filtered for false discovery rate (q-value <1%),
reverse sequences (excluded), contaminants (excluded), and
identification of unique peptides (at least one unique peptide
per protein). LFQ intensities were then Log2 transformed and
protein-level scaled prior to statistical analysis.

DIA MS Data Processing and Spectral Library Generation
(MakeGTL Workflow)

The workflow used in the spectral library generation for the
DIA search is described in Figures S1A and S2A. This
computational pipeline uses the DDA raw data by first
employing MaRaCluster (v0.05.0, build date: Apr 16, 2018
21:04:32) to cluster the spectra and then generating consensus
spectra from the clustering using a 5% clustering p-value cutoff.
Other parameters in MaRaCluster were set to default. In the
next step, the consensus spectra of the selected clusters were
searched against the protein sequence database (Uniprot-
Swissprot version download 2017.06.12 for general protein
quantification) using Comet (v2017.01 rev. 424), and the
resulting peptide spectral matches (PSMs) were scored by
Percolator (v3.02.1, build date: Aug 13, 2018 15:50:5825). The
resulting scored PSMs were then processed using an in-house
built python script that selected (for each peptide) the spectral
match with the best q-value smaller than 10%. Subsequently,
our script extracted transitions from each spectrum by
matching peaks to theoretical ion masses within 1 ppm (only
y and b ions were considered here since these were the most
commonly observed ions). The resulting output consisted of
an OpenSWATH compatible generic transition list (GTL) in
tsv format. We applied this workflow to three sets of raw DDA
files (parameter sets were similar to those of MaxQuant, where
applicable): the datasets generated in this study are the
Tyanova13 and Bouchal14 datasets.

Iterative RT Peptide Selection and Quantification in DIA
Analysis (DIAnRT Workflow)

To select a set of internal iRT peptides (i.e., peptides that are
endogenously present in each sample run), OpenSWATH was
run without iRT peptide input to extract the best peptide
candidates (i.e., eluting within peptide-dense chromatogram
regions) to be used as iRT peptides for the next iteration
(Figure S1B). Naturally occurring peptides allow for high-
accuracy alignment of feature, increasing identification
sensitivity.
We used a Python script to extract from the resulting OSW

files a set of peptides that were detected closest to their library
retention time (at most 10 min). These were then additionally
filtered based on peak width (i.e., less than 16.5 s at the base)
and intensity (i.e., at least 1 × 105). Peptides detected in less
than 20 samples were discarded, and the remaining set of
peptides was randomly subsampled to not more than 100
peptides per retention time (RT) bin when splitting the DIA
gradient into 20 equally sized RT bins. This set of peptides was
then used in the next step to fit a lasso iRT model with
OpenSWATH (with parameters related to the DDA searches,
where applicable), and the results were again processed to
extract the best-fitting, sharp-peaked peptides that were found

in many samples. Each set of output files was scored using
PyProphet (v2.0.1) by merging a subsample of 5% of the
peptide-spectral matches (PSM) from each sample and scoring
the merged dataset (scoring level: MS1−MS2). The resulting
model (build on a representative sample comprised of 5% from
each individual sample) was then back-propagated to the
individual samples and used for their scoring. The scored
samples were then passed to the feature alignment.py script for
TRIC alignment.26 After five iterations, the number of proteins
identified with this method seemed to stabilize (4219, 4281,
4298, 4302, and 4301, respectively, using the library generated
from our DDA data), and for this, we chose the last iteration
results as our dataset for further analysis.
After requantification, 28,746 peptides covering 4936

proteins were quantified. These were scaled by per-sample
median intensity to account for sample-level differences. A
Log2-transformed, mean-centered, and standard deviation-
scaled version of this matrix was generated both on the peptide
and protein levels. For protein summarization, we first selected
for each protein the larges subgroup of at least three peptides
that had a Spearman correlation of at least 0.7 among them,
summed those peptides intensities, and applied the Log2
transformation, scaling, and centering on this summed
intensity. We applied the same workflow to all three generated
libraries (our own, Tyanova, and Bouchal) individually.
Combining Results from Multiple DIA Library Searches

For general peptide quantification, we employed three libraries
(Subtypes, Tyanova, and Bouchal) in the DIAnRT workflow to
create three respective sets of peptide quantifications, which
were combined before PyProphet27 scoring. For each peptide
in the superset of quantified peptides from all three libraries, p-
values were selected according to the following rules:

1. If the peptide is quantified in our own library, we used
that p-value.

2. If the peptide is quantified in only one library, we used
that p-value.

3. If the peptide is quantified in both the Tyanova and
Bouchal libraries, but not in our library, we used the
quantification with the lower p-value.

Peptide quantifications were then combined into a single
table and processed with PyProphet for q-value calculations
followed by feature alignment between DIA runs and
requantification based on the alignment.
RNA Data Processing

The demultiplexed RNA-Seq reads were aligned to the
GRCh38 human reference genome using a STAR aligner
(v020201) with an overhang value of 75 to match the read
length. Subsequently, we employed the standard GATK
analysis pipeline including duplicate removal, indel realign-
ment, and base quality score recalibration (GATK v3.7-0-
gcfedb67).
The resulting bam files were processed using the DESeq2 R/

Bioconductor package (version 1.22.2) by first generating per-
gene read counts mapping to the GRCh38 GTF file from
Ensembl version 95 using the summarizeOverlaps function in
“Union” mode so to count reads that uniquely mapping to
exactly one exon of a gene. After discarding genes with no
counts in any of the samples, DESeq analysis was performed
with the ER status (i.e., ER positive and ER negative) as the
explanatory variable in the model followed by log-fold-change
shrinkage. A separate DESeq analysis was also performed using
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the mammographic appearance (i.e., spiculated and non-
spiculated tumors) status as the explanatory variable.
For DTU detection (the computational workflow is shown

in Figure S1C), we employed RNA-guided spectral libraries.
The BANDITs28 workflow was employed to analyze the RNA-
seq data and to determine a set of genes with differential
transcript usage in the comparison of ER-positive and ER-
negative samples.
To verify DTUs at the proteome level, an isoform-aware

spectral library was generated from the Ensembl GRCh38
human proteome by in silico tryptic digestion of all protein
isoforms found in this database and the determination for each
peptide the set of protein isoforms it matched to. For each
unique combination of isoforms, all matching peptides of at
least length five amino acids were concatenated to create a
mock protein sequence specific to that combination of
isoforms. Using the resulting FASTA file and our DDA data,
an isoform-aware spectral library was created, where each
detectable peptide was matched to a set of protein isoforms
identified by their Ensembl protein IDs. The DIAnRT
workflow was employed on this library to quantify peptides
in an isoform aware fashion from our DIA data (i.e., by reusing
the set of RT peptides generated in the iterative DIA
quantification process described above). Quantified peptide
intensities of those proteins that matched to genes with
significant differential transcript usage were overlaid onto those
determined by the BANDITs workflow on the RNA-seq data.
For SNV/SAAV evaluation (Figure S1D), SNV calls were

derived out of the aligned RNA-seq reads using the h5vc R/
Bioconductor package with the callVariants function, requiring
at least 2 reads supporting the variant and at least 10 reads
total coverage. Similar to previously published workflows
employed for the analysis of DDA datasets,29 we annotated the
SNVs using the Ensembl variant effect predictor and filtered
the SAAVs to retain only those events that modify the amino
acid sequence of the affected protein.
By using the set of SAAV calls obtained from the RNA-seq

data, we generated (for each SAAV) its derived protein
sequence (DIA level only) and used in silico digestion to
determine the resulting set of tryptic peptides. By discarding all
peptides that also arose from the unmodified reference
sequence, a set of peptides that specifically identify each
SAAV was determined (typically only one peptide, except
where SAAVs generated new tryptic peptides). From these
results, a FASTA file containing the concatenated peptide
sequences that identify each SAAV was created and
subsequently used as an input within the MakeGTL workflow
to create a SAAV library for downstream SAAV quantification.

Immunohistochemistry

Formalin-fixed and paraffin-embedded (FFPE) tissues were cut
into 3−4 μm sections and put on FLEX IHC microscope slides
(K8020, DAKO). Slides were heated at 60 °C for 60 min and
deparaffinized in xylene (2 × 10 min). Rehydration was
performed in decreasing concentrations of ethanol (100%
ethanol: 1 × 5 min, 95% ethanol: 1 × 5 min) followed by
rinsing in distilled water. The immunohistochemical (IHC)
staining for KI67 was performed using an Autostainer Plus
(DAKO) instrument. Antigen retrieval was performed on a
PT-LINK (Agilent) instrument using the EnVision FLEX
target retrieval solution (pH 9, dilution: 1:10) at 98 °C for 20
min. Slides were stained by incubating the primary antibody
(Ki67:clone MIB-1, M7240, Agilent Technologies) at the

following dilution: 1:200 (temperature: RT, time: 30 min).
The antibody−antigen complex was visualized using the
EnVision FLEX DAB detection kit (K801021-2, Agilent
Technologies) and counterstained with Mayer’s hematoxylin
(S3309, Agilent Technologies). Stained slides were dehydrated
in increasing concentrations of ethanol (95% ethanol: 1 × 3
min, 100% ethanol: 1 × 3 min), followed by xylene (2 × 5
min). Cover glasses were mounted using a Coverslipper
DAKO (Agilent Technologies), and slides were left to dry
prior to staining evaluation.

Immunohistochemical Staining Analysis

All HE evaluations and IHC staining scorings were evaluated
and performed by a trained pathologist (GP). For KI67, only
the percentage of positive tumor cells was assessed. The KI67
status was defined by the current standard of practice in
Southern Sweden (positivity cutoff: ≥ 30).

Statistical and Pathway Analyses

In the analyses of the tumors included in sample set 1, proteins
with less than 30% missing observations (<30% missing data)
in the DDA set were included. This resulted in a list of 2796
proteins. Welch-corrected t test was performed to assess
significant differences followed by Benjamini−Hochberg p-
value adjustment as multiple test correction.
In our correlation analyses between transcript and protein

abundances, we employed Spearman correlation to calculate
both the correlation coefficient and p-value. To assess whether
specific protein clusters were affected by different mRNA-
protein correlation distributions, all proteins were annotated
with GOBP terms; the distribution of correlation coefficients
of each GOBP annotation was then tested against the
background (i.e., all proteins) by t test followed by
Benjamini−Hochberg p-value adjustment. The selected
adjusted p-value cutoff for GOBP annotation was 0.15.
In all the analyses for differential pathway enrichment

between ER statuses (ER positive vs ER negative), we
performed gene set enrichment analysis (GSEA,30 database:
Hallmarks v5.2, permutation type: gene set, scoring: weighted,
metric: t test, other parameters were kept at default settings,
significance cutoff: FDR < 0.25) on RNA, DDA (FT subset
only), and DIA data layers. Input data tables were filtered as
follows: RNA (no filtering), DDA (<30% missing observa-
tions), and DIA (<30% missing observations). Enrichment
scores of the top50 (or all if <50)-significant (i.e., by q-value)
pathways were then plotted for each data layer.
To define protein co-regulation clusters in our DDA and

DIA datasets, we generated Spearman correlation-based
matrices for the ER-positive and ER-negative groups. Using
the elbow method, the minimum number of clusters was then
defined for each ER-status sample group. Significant pathway
annotations (FDR < 0.05) from the Panther over-representa-
tion test (database: GOBP complete, http://www.pantherdb.
org/) were used to annotate each cluster. Distances (metric:
Euclidean) between the clusters based on GOBP annotations
were then calculated to subsequently merge highly similar
clusters employing a second iteration of the elbow method.
Plots have been generated in R v3.6.1. Quantitative

proteomic information of all datasets is available as Tables
S4−S6.
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■ RESULTS

Generation of a Proteogenomic Data Set for Breast Cancer

In this study, we selected 21 tumor samples (sample set 1)
from a larger study18 with associated mammography images,
hormonal receptor status, and clinical histopathological
information. A second set of 24 tumor tissues was selected

based on availability of RNA-seq, MS data, and mammo-
graphic imaging information (sample set 2, Figure 1A,B). In
these sets, ER-status frequency resembled the one of the
general population (i.e., ∼70% ER positive, ∼30% ER
negative): 13 (61.9%, set 1) and 17 (70.8%, set 2) tumors
were positive to ER, while only 8 (38.1%) and 7 (29.2%) were
ER negative in sample sets 1 and 2, respectively. In total, seven

Figure 2. Overall comparison between transcriptomic and proteomic data layers. Panel (A) displays the dynamic range (presented as relative
abundance over total signal) of transcript and protein intensities of matching identifications in our RNA (green), DDA (red), and DIA (blue) MS
data (examples of transcript−protein pairs displaying similar abundances across data layers are labeled). Distributions of Spearman correlations
between matching transcript and protein (DDA: top, DIA: bottom) abundances are displayed in panel (B) (gray: nonsignificant, light blue:
significant), while examples of consistent positive and negative correlation between protein levels (DDA and DIA) and RNA abundance are
depicted in panel (C). Panels (D) and (E) display the distribution of transcript−protein correlations for significant (q-value < 0.15, see
Experimental Procedures for details) GOBP pathways out of our DDA and DIA MS analyses, respectively. Color gradient is representative of the
low (pink) and high (dark red) median transcript−protein correlation for each GOBP term. Acronyms: DDA: data-dependent acquisition, DIA:
data-independent acquisition, ER: estrogen receptor, GOBP: gene ontology biological process.
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patients from sample set 1 and four patients from sample set 2
had tumors with a spiculated appearance (Figure 1C and
Tables S1 and S2). While spiculated tumors were largely ER
positive, no significant association was found between these
characteristic (Figure 1D).
RNA was extracted from all samples followed by RNA

sequencing (RNA-seq). In addition, proteins were extracted
using ALLPrep (flow-throughs, FT) and standard tissue
homogenization (whole tissue lysate; WTL, sample set 1
only) followed by trypsin digestion. The tryptic peptides were
analyzed directly using DIA MS and fractionated using strong
anion exchange (SAX) followed by DDA MS analysis (Figure
1E).
In the next step, we used the RNA, DDA, and DIA data to

develop an improved DIA MS-based proteogenomic workflow
for breast cancer (Figure S1A,B). First, we developed a DIA
library creation method that improves signal-to-noise charac-
teristics of the MS2 spectra through spectral clustering. We
applied the method to three separate datasets as follows: our
own DDA data (FT and WTL combined for increased peptide
identifications and protein coverage, Figure S3; De Marchi), as
well as the DDA data from Tyanova et al. and Bouchal et
al.13,14 The three assay libraries covered 71,152 (this study: De
Marchi), 61,282 (Tyanova), and 41,018 (Bouchal) peptide
groups (peptide + charge), which mapped to 9953, 9678, and
6971 proteins, respectively. Second, we integrated transcript
sequence information and single-nucleotide variants from
RNA-seq into the workflow used for library generation (Figure
S1C,D). In this way, a transcript-aware DIA library was created
covering 89,538 differential transcript usage (DTU) sites
matching to 43,910 different transcripts and 12,488 genes. In
addition, we predicted SAAVs by SNV calling on the RNA-seq
data to create a SAAV aware DIA library composed of 1025
RNA-guided transitions for 74 SAAVs. Third, we implemented
an iterative process for selecting intrinsic retention time (iRT)
peptides to improve retention time alignment (Figure
S1A,B).31

For quantitative analysis, we used the three spectral libraries
and improved retention time alignment to increase the peptide
identification rates from the DIA data. The results from the
three libraries were combined to create a superset, in which
peptide p-values were conditionally selected for downstream q-
value determination, feature alignment, and requantification
(Figures S1A,B and S2A), which resulted in the quantification
of 28,746 peptides matching 4936 proteins (Figure S2B).
Upon comparing the proteomic layers, we observed that the
DDA layer comprised a higher number of peptide and protein
identifications (DDA total peptides/proteins: 60,857/7106,
DIA: total peptides/proteins: 28,746/4936), though DIA MS
data displayed a higher percentage of consistent identifications
across samples (DDA-consistent peptides/proteins: 1914/
1473, DIA-consistent peptides/proteins: 18,218/3905, Figure
S4). This is likely due to the inherent difference in data
acquisition between the two methods, where DDA employs a
stochastic approach to select precursor ions to perform
fragmentation spectra acquisition, while DIA fragments every
precursor ion in the retention-time plane. This has resulted in a
sparser quantitative dataset at the DDA level.
The 28,746 identified peptides were used for protein

quantification and to detect SAAV and DTU, while the
RNA-sequencing information provides data related to SNV,
DTU, and RNA abundance. The data layers were then
integrated and compared to extract information of relevance

for spiculation and receptor status and frequency of DTU, to
determine the degree of corroboration or discrepancy between
protein- and RNA-quantitative information and to identify
SAAV-specific peptides.

Comparison between RNA and Proteomic Data Layers

Based on the combined proteogenomic data set, we compared
the overall quantitative measurements between the tran-
scriptomic and proteomic data sets in sample set 1. Transcripts
were matched to their respective protein products to assess the
dynamic range. The RNA data displayed a flatter dynamic
range slope, which might relate to technological differences
between gene and protein quantitation technologies, where
RNA-seq achieves a more even gene quantitation across the
transcriptome. Alternatively, this difference might be related to
the fact that mRNA data does not accurately reflect post-
translational processes, such as ubiquitination and degradation
processes, which operate exclusively at the protein level
(Figure 2A). The proteomic data sets displayed a wider
dynamic range, although the transcript and protein abundances
were often located in similar quantiles across each sigmoid. To
systematically compare transcriptomic and proteomics data
sets, we calculated transcript−protein correlations for all
detected transcript−protein pairs (Table S7). We observed a
relatively wide range of correlations (Spearman Rho range:
−0.752 to 0.956, Figure 2B), corroborating findings from a
previous work.12 Overall, more than 75% of the transcript−
protein pairs showed positive correlation coefficients and
agreement/disagreement between the RNA data and the
protein was often consistent for both the DDA and DIA layers
(Figure 2C). In contrast, a minority of transcript−proteins
pairs displayed negative correlations, such as RBM39 and
EXOC3. Only a handful of these negative correlations were
significant after p-value adjustment, suggesting that anticorre-
lating transcript−protein pairs might result from technical
variation (Figure S5). We could confirm this observation in
sample set 2 with a similar distribution of correlation
coefficients (Spearman Rho range: −0.667 to 0.936, Figure
S6A). In this samples set, we also observed relatively few
significant negative correlations (Figure S6B,C. Of note, the
DDA and DIA data layers displayed significant agreement in
their relation to RNA (Figure S7).
The variability of transcript−protein correlations might be

related to specific protein subclasses and biological pathways,
as recently shown in another BC study.12 Analysis of enriched
gene ontology pathways confirmed these observations,
showing that the degree of correlation was strongly related
to pathways such as RNA splicing or inflammatory response
(Figure 2D,E). Altogether, these results suggest that factors
that alter protein abundances, such as post-translational
modification and protein degradation, have a larger impact
on certain protein classes. This is likely related to cellular
regulation of internal processes and a response to external
stimuli, such as mitophagy.32

Pathways Related to the Estrogen Receptor Status and
Mammographic Appearances

The combined proteogenomic data set provides new
possibilities to investigate differences between clinically
relevant tumor groups such as receptor status and mammo-
graphic appearances such as spiculation. For this reason, we
stratified the breast cancer discovery sample set according to
ER status and mammographic appearance (Figure 1B) and
filtered for differentially expressed genes (RNA level) for each
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group comparison (Tables S8 and S9). Regulation was
concordant for most significantly regulated transcript−protein
pairs in both the ER status and mammographic appearance
comparison (Figure 3A,B, full green dots), with only a small
subset (∼18−30%) of significant transcript−protein pairs
displaying an opposite regulation pattern (Figure 3A,B, full
purple dots). The magnitude of regulation was substantially
higher in the ER status group when compared to tumor
appearance. ER has a large impact on cell proliferation

pathways and is connected to different cell lineages, i.e., basal
and luminal, which is a likely explanation to the substantial
differences observed between ER-positive and ER-negative
tumors.
We annotated the differentially significant genes/proteins

from ER and mammographic appearance status comparison
using the Molecular Signatures Database to assess whether the
RNA/protein abundance discrepancies belonged to specific
functional groups. Several of the differentially expressed

Figure 3. Comparison between transcriptomic and proteomic data in the context of the estrogen receptor and appearance statuses. Panels (A) and
(B) display all transcript−protein pairs scaled Log2Ratios for the ER status (A) and appearance ((B); DDA: left, DIA: right). Significant differential
expression at the RNA level is marked by full dots and in bigger size; concordance and discordance between RNA and protein layers are shown in
green and purple, respectively). Most significant genes (top 5% quantile) are shown in labels. GSEA analyses were performed on all data layers
(RNA, DDA, and DIA) for ER and spiculation statuses using the Hallmark database. Pathways are ranked based on the RNA-level enrichment
score. Panel (C) displays the overlap of GSEA analyses for the ER status, while panel (D) shows the results of analysis of appearance features (i.e.,
spiculation vs no spiculation). Significant pathways in each data layer (RNA: green, DDA: red, DIA: blue) are marked in full color, while
transparent ones did not pass the false discovery rate (FDR < 0.25) cutoff. Positive scores mark enrichment in ER-positive and spiculated tumors,
respectively, while negative scores define enrichments in ER-negative and nonspiculated samples. Acronyms: DDA: data-dependent acquisition,
DIA: data-independent acquisition, ER: estrogen receptor, FDR: false discovery rate, GSEA: gene set enrichment analysis.
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transcripts were enriched in immune pathways (e.g., allograft
rejection, Figure S8A,B), and the RNA−transcript correlations
had significant positive correlations independent of pathway
(Figure S8C,D). These results suggest that the transcript−
protein abundance discrepancies within the subset of
significant transcript−protein pairs are not related to particular
functional groups.
Next, we investigated whether the combined transcriptomic

and proteomic data could provide complementary information
in terms of pathway enrichment within tumor subgroups.11 We
performed gene set enrichment analysis (GSEA) on the three
data sets for the ER status and mammographic appearance
(Figure 3C). As expected, the estrogen early and late response
gene networks were the pathways with the highest positive
enrichment scores for the ER status. For spiculation, the
pathways with the highest enrichment score were myogenesis,
coagulation, and epithelial−mesenchymal transition (EMT).
To rule out tissue morphological features, we evaluated
variability in tumor cellularity, number of fibroblasts and red
blood cells, and Ki67 staining between ER and spiculation
status tissues (Figure S9A,B), though no significant differences
were observed. In contrast, immune response (e.g., allograft
rejection, interferon response) and cell cycle (e.g., G2M
Checkpoint) pathways were found enriched in nonspiculated
tumors. Pathways enriched at the RNA and protein level often
displayed similar levels of enrichment. In addition to this, the
proteomic and transcriptomic data layers provided comple-
mentary information (i.e., common enrichment) regarding
translation (e.g., E2F targets) and immune response (e.g.,
interferon gamma response) pathways, where significant
changes in metabolic networks (e.g., fatty acid metabolism)
were only detected at the protein level. Collectively, these
findings hint at the fact that alterations in specific pathways or
class of proteins might only be detected at the protein level.
To confirm these findings in an independent sample cohort,

we performed differential expression and GSEA analyses on
the RNA-seq and DIA MS data in sample set 2. Here, we
observed that RNA and protein maintained a high level of
agreement for differentially expressed genes (Figure S10A,B).
On top of this, we could confirm the enrichment of ER-related
pathways in the ER-positive tumors and immune signatures in
the ER-negative tumors (Figure S10C). In addition, the
analysis of this set confirmed the significant enrichment of
transcription-related pathways, such as the E2F targets and
EMT gene sets in the nonspiculated and spiculated tumor
groups, respectively (Figure S10D).
Of the pathways with the highest enrichment score (sample

set 1), we selected two for further analysis. The most enriched
pathway in ER-positive tumors was the estrogen response early
gene set (Figure 4A), which includes genes involved in signal
transduction processes and cell differentiation (e.g., IGF1R and
MUC1), as well as transcription factor-associated proteins such
as MED24. Here, enriched transcripts and proteins included
both ER-bound proteins (e.g., FKBP4) and genes activated
downstream of ER transcriptional activity (e.g., ABCA3),
which relate to downstream activation of breast tissue
hormone-dependent proliferation mechanisms.
Conversely, the most enriched pathway in spiculated tumors

was EMT, which is constituted by a high number of
extracellular proteins, suggesting a marked interaction between
the cancer mass and its surrounding tissue within spiculated
tumors. Proteins dedicated to extracellular matrix remodeling
(e.g., MMP2) and organization (e.g., FBLN5) as well as

molecules involved in the induction of a mesenchymal cell
state (e.g., FN1, Figure 4B) were enriched both at the RNA
and protein levels. This suggests reprogramming of the tumor
front for tissue invasion. Given the fact that spiculae protruding
from the tumor mass are signs of cancer spread into the
surrounding normal tissue, it is likely that remodeling of the
extracellular matrix takes place in spiculated cancers.
Our results confirm previously characterized properties of

ER-negative tumors such as increased immunogenicity and
genomic instability,33 as well as pinpointing the discrepancy
between RNA and protein abundances. In addition to this, we
shed light on, so far, uncharacterized tumor aspects underlying
spiculated cancer appearance, where the stroma is rearranged
around the tumor mass to facilitate invasion. Conversely, the
processes operating in nonspiculated cancers seems to revolve
around cell proliferation pathways, thus indicating that
mammographic appearance features might be related to
different cell fates (e.g., proliferation vs invasion).

Figure 4. Pathway-level comparison of transcript−protein pairs. The
figure displays transcript−protein-wise comparison within significant
pathways out of GSEA analyses for the ER status (estrogen response
early, (A)) and appearance (epithelial mesenchymal transition, (B)).
Left panels display Log2Ratios of each transcript/protein (ranked by
RNA expression) between ER-positive/negative and spiculated/
nonspiculated tumors, while center panels display the corresponding
enrichment scores in each data layer (RNA: green, DDA: red, DIA:
blue). Right panels show distribution of enrichment scores for core-
enriched (red) and noncore-enriched (gray) transcript/proteins. Left
and center plots background color denotes enrichment in ER-positive
(blue) and ER-negative (red) groups and spiculated (orange) and
nonspiculated (purple) tumor groups. Abbreviations: DDA: data-
dependent acquisition, DIA: data-independent acquisition, ER:
estrogen receptor, FDR: false discovery rate, GSEA: gene set
enrichment analysis.
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Protein-Level Translation of the Splice and Amino Acid
Variants

As outlined above, the proposed workflow facilitates
proteogenomic analyses of DTU and SNV/SAAV expression.
For the DTU analysis, the Bayesian analysis of differential
splicing (BANDITs)28 workflow was employed to define
differentially expressed transcripts belonging to the same gene
in our RNA dataset. DTU features were then integrated at the
library level by integration into our spectral library generation
and search workflow (Figure S1 and Experimental Proce-

dures). The analysis between ER-positive and ER-negative
tumors generated 539 significant cases of differential transcript
usages belonging to 451 genes (RNA-level FDR cutoff: 0.03).
Pathway enrichment analysis revealed no significantly enriched
pathway (ReactomePA R/Bioconductor package in version
1.30.034).
The same analysis was performed for the mammographic

appearance group comparison, which detected 63 differentially
used transcripts in 55 genes (FDR 0.03). Here, the Reactome
pathway enrichment analysis returned only one enriched

Figure 5. Evaluation of differential transcript usage and single amino acid variant detection at the proteomic level. We employed transcriptomic
data information to search our DIA data for DTU (A−C) and SAAVs (D, E). For DTU analysis, we employed the BANDITs workflow to define
transcript differential expression to then generate an isoform-aware spectral library with which to search our DIA MS data. Panel (A) displays
detected DTU at the protein (DIA MS) level and their expression compared to transcript levels. Examples of transcript (left) and (when detected)
their specific peptide (right) expression are shown in panel (B) (ER status) and (C) (appearance). t Test p-value is shown for box-plots (peptide
level). For SAAV detection, nonsynonymous SNVs detected at the RNA level in breast tumors and healthy breast tissues derived from
reconstruction surgery were employed to define a variant-specific library against which the DIA data was searched. Panel (D) shows in which
samples (healthy breast tissue and cancer) each variant was detected (Numbers in brackets represent peptide charge). Abbreviations: DIA: data-
independent acquisition, DTU: differential transcript usage, MS: mass spectrometry, SAAV: single amino acid variant, SNV: single nucleotide
variant.
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network: “endosomal/vacuolar pathway” (q-value = 0.032),
which relates to MHC-1 antigen presentation and adaptive
immunity. However, given the relatively sparse input data (i.e.,
55 genes, see above), these results need further investigation.
On top of this, functional assays would be required to confirm
the role of the adaptive immune system in its relation to tumor
mammographic appearance.
Out of the 539 differentially used transcripts in the ER+/−

comparison, 127 were detectable at the proteomic level (DIA
level peptide FDR < 0.01). Of these, 6 were identified by
isoform-specific peptides. Out of 63 identified DTUs between
appearance-define groups, only one had a matching peptide
(Figure 5A). Here, we observed that peptide-level DTUs could
recapture significant differences observed at the transcript level
(Figure 5B,C), such as PTCD3 (p-value = 0.018). In this
regard, we assume that the detected discrepancies between
transcript and isoform-specific peptide abundances might
either relate to post-translational regulation of protein

abundance, as shown in recent studies.12 The differential
expression of variant-specific transcript/proteins between ER-
positive and ER-negative patients suggests a different func-
tional role for isoforms of the same protein.
A similar approach was applied to test the detection of

SAAVs (see Experimental Procedures and Figure S1D). So far,
there has only been a limited number of SAAVs that have been
confirmed using protein measurement techniques, as antibody-
based techniques typically are unable to distinguish SAAVs,
and MS-based proteomics experiments typically suffer from the
limited coverage of peptides per protein. In our workflow, we
can partly circumvent this problem by specifically targeting
peptides with known SAAVs, resulting in the identification of
nine high-confident peptides with SAAVs (Figure 5D).
Annotation of the quantified SAAV peptides revealed that
several of the peptides that were identified in multiple samples
stemmed from variants known to be prevalent in the Nordic
population. One SAAV-specific peptide however (ATP5PF

Figure 6. Protein cluster regulation dependent on the estrogen receptor status. Co-regulated protein clusters in ER-positive (left) and ER-negative
(right) tumors (see Figure S15) were extracted from the DIA data, annotated with GOBP terms, condensed, and visualized in Cytoscape (A). Edge
thickness and length relate to the cluster distance (Euclidean), the node color relates to the scaled mean intensity of all proteins in each cluster, and
the node size depends on the number of proteins in each cluster. Panel (B) shows the correlation to mRNA of each protein per cluster for ER-
positive and ER-negative tumors. Panel (C) displays differences in correlation to RNA between ER-positive and ER-negative (i.e., ER positive−ER
negative) tumor groups within showcased co-regulation clusters for FDA drug targets. Abbreviations: DIA: data-independent acquisition, ER:
estrogen receptor, FDA: Food and Drug Administration, GOBP: gene ontology biological process, MS: mass spectrometry.
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V69I, Figure 5D) was detectable in only one tumor and had no
documented prevalence in the Nordic population, indicating a
case of a novel protein-level identification of a cancer mutation
or rare germline mutation. Altogether, these results serve as
proof of the detectability of splicing and mutational events
using our proposed workflow.

Molecular Signature Evaluation and Drug-Targeting
Strategies Based on Integrated Data

In the final analysis, we assessed whether protein−transcripts
pairs showed similar trends for key gene signatures currently
being explored in routine diagnostic analyses (Mammaprint,
Oncotype-DX, and PAM5035) and targets of FDA-approved
drugs. For the established prognostic signatures such as
MammaPrint, Oncotype-DX, and the PAM50 classifier, the
protein−transcript pairs generally displayed higher than
median-correlation coefficients (Figure S11A,B), as also
shown by a recent study.12 These results suggest a high
robustness of these markers and the partial transferability of
prognostic signatures from transcriptomics to proteomics. In
contrast to the prognostic signatures, FDA drug targets
displayed a considerably wider correlation range (Spearman
Rho range: −0.475 to 0.740). For this, we investigated the
discrepancies displayed in this subset further.
Upon evaluating the overall transcript−protein correlation

distributions, we observed poorly correlating transcript protein
pairs enriched for specific pathways (Figure 2). Given the fact
that transcript/protein expression and regulation is also
dependent on upstream regulators of cell biology (e.g.,
transcription factors), we argued whether Food and Drug
Administration (FDA) drug target transcript−protein correla-
tions were dependent on the ER status.
Evaluation of transcript−protein correlations by the tumor

subgroup revealed that ∼25% of the transcript−protein pairs
often displayed radically different correlations dependent on
the ER status (e.g., PARP1, Figure S12A) or tumor appearance
(e.g., MMP2, Figure S12B). Within ER-positive and ER-
negative tumors, pairs displaying disagreeing correlations
generally belonged to metabolism, protein localization, and
cellular transport networks (Figures S13 and S14). To further
clarify this (the list of all proteins correlations is reported in
Tables S10 and S11) and assess whether different correlation
between ER-positive and ER-negative tumors were associated
to specific protein networks, we extracted protein co-regulation
clusters (i.e., groups of highly correlated proteins) from the
ER-positive and ER-negative subsets of our proteomic layers
(Figures S15A and S16A). We selected a minimum number of
clusters using the elbow method (see Experimental Proce-
dures) for each tumor group (Figures S15B and S16B), and
the most enriched gene ontology terms were used to annotate
each cluster. The annotation distance between each cluster was
calculated (Figures S15C,D and S16C,D), and the number of
clusters was then condensed using a second iteration of the
elbow method (Figures S15E and S16E). The so-derived
clusters comprised metabolism, cellular transport, and immune
response (Figure 6A and Figure S17A). Here, co-regulated
protein clusters showed different correlations with RNA data
in relation to the ER status (e.g., cell metabolism, Figure 6B
and Figure S17B). Furthermore, FDA drug targets displayed
shifts in RNA−protein correlation coefficients within several
co-regulated clusters (e.g., the cell adhesion cluster in ER-
negative clusters out of DIA MS data Figure 6C; cell secretion
and immune signaling in ER-negative clusters, Figures S17C

and S18). These data suggest that subsets, or entire clusters of
protein co-regulation networks, display different degrees of
agreement between RNA and protein data dependent on the
tumor subgroup. This results in groups of proteins that, e.g.,
under regulation of the ER, display better correlations with
RNA than the same proteins expressed in ER-negative tumors,
indicating that their regulation is impacted by ER expression.
Despite the fact that diverging correlations were not

significant, likely in relation to the small number of samples
included here, these results may open new grounds for
investigation of gene/protein regulation in tumor groups/
subtypes. For this, further validation is necessary to confirm
these results, where potential prognostic markers should be
evaluated taking into account key tumor subgroups/features
and the extent of protein post-translational regulation or class.
Collectively, these results indicate that differentially

regulated protein networks exist in clinically relevant sample
groups and that these protein networks affect the abundance of
potential biomarkers and drug targets. On the one hand, we
conclude that the evaluation of new biomarkers can be
restricted to the nucleic acid or protein level analysis. On the
other hand, drug treatments affect proteins in cells, for which a
protein-wide evaluation of these targets is of considerable
relevance. Furthermore, integrated studies followed by func-
tional assays should be the method of choice to shed light on
the fine regulation of key cancer genes and their protein
products.

■ DISCUSSION
BC is the most common malignancy in women, although its
death rate continues to decline due to constant advancements
in clinical care, drug target development, and better definition
of tumor biology.1 Several key mechanisms underlying breast
cancer biology have been elucidated in detail over the years,
such as the immunogenicity of triple negative tumors and the
action of the ER transcription factor in ER-positive cancers.36

Despite this, the mechanisms underlying breast cancer therapy
resistance (e.g., ESR1 mutations37), or other prognostic factors
such as the mammographic appearance,6 have yet to be
thoroughly investigated.
In BC, recent studies have shown that the integration of

genomic and proteomic approaches expanded the knowledge
in biological networks underlined by the intrinsic molecular
subtypes and suggested that discrepancies in abundance
between RNA and protein data might derive from RNA
and/or protein regulation mechanisms.11,12

Most proteogenomic studies employ massive sample
fractionation and DDA MS acquisition methods to achieve
high proteome coverage, resulting in an extensive measure-
ment time. Here, we improved novel computational workflows
to improve the capabilities of DIA MS in proteogenomic
studies. By employing naturally occurring retention time
peptides rather than spiked-in internal retention time (nRT)
ones, our workflow achieved improved peptide identification
accuracy and high identification rates.
We here employed DIA MS to demonstrate the high

proteome depth and quantitative accuracy out of single-shot
analyses, compare transcriptome data to protein analyses, and
assess the capability of DIA in detecting genomic features such
as DTU and SAAVs and to investigate biological pathways
underlying understudied tumor features. The combined output
from the workflows improved the identification rates of DIA
MS. The spectral library used for DIA MS data analysis was
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based on DDA MS runs for 21 breast cancer tissues and 4
normal breast specimens, which was further extended with
RNA-guided assays for SAAVs and DTU. The number of
identifications we obtained through DIA MS was similar to the
ones achieved through fractionated DDA analysis of the same
samples though with fewer missing observations. A second set
of 24 samples was then employed to validate our findings out
of RNA−protein correlation and spiculated morphology
enrichment analyses.
Targeted analysis of changes in the mutational and splicing

landscapes using informed spectral assays enabled quantifica-
tion of SAAV- and DTU-specific peptides. Although the
number of quantified SAAVs and DTUs was relatively sparse,
the possibility of using genomic-informed assumptions to
identify the translation of splicing and mutational events at the
protein level opens up new possibilities for future studies. In
particular, evaluation of DTU-specific peptides is of
importance due to their repercussions on protein function or
activity, with downstream effects on molecular dynamics and
on the evaluation of patient outcome.38 To better define the
role of the aforementioned features at the protein level, further
improvements to the computational workflows and data
acquisition strategies are required to yield a higher number
of identifications out of our DIA data, which can be recurrently
mined.
Upon comparing the dynamic range of our transcriptomic

and proteomic datasets, we noticed that most transcript−
protein pairs displayed similar quantitative levels across our
dataset, as observed in a previous study.39 Only a small subset
of proteins displayed negative correlation coefficients with
their matching transcript abundances. While these results
might relate to the small sample number in our cohorts,
repeated observation of these findings across sample sets 1 and
2 increased the confidence in our results. In addition to this,
these findings confirm observations from previous reports,
where mRNA and protein abundances either display positive
significant correlations or decoupled measurements (i.e.,
nonsignificant correlations; gray bars in Figure 2B and Figure
S6A), with the latter due to RNA-independent regulation at
the protein level like post-translational modification, ubiquiti-
nation, etc.12 Here, we discovered that proteins involved in
processes such as splicing and translational regulation tend to
correlate poorly with their transcripts, as opposed to those
belonging to immune-related pathways. In this case, cellular
processes controlling cellular turnover such as ubiquitination
and proteasomal degradation,40 miRNA activity,41,42 or
epigenetic factors may actually be responsible for these
quantitative discrepancies and target-specific protein clusters.
The relatively low number of negatively correlated protein−
transcript pairs suggests that post-translational regulation
might indeed target-specific protein groups but the impact
on the entire proteome might not be as extensive as previously
thought.43 For this, further studies of functional nature are
required to verify such claims.
Following our analysis of enriched gene-protein pairs and

pathways expressed according to the expression of key
transcription factors (ER status) or tumor appearances
(spiculation), we noticed discrepancies between transcript
and protein levels of a subset of differentially expressed genes.
While these transcript−protein pairs did not enrich for
pathways previously associated to rapid protein turnover and
consequential poor RNA−protein correlation, we cannot
exclude the action of such molecular mechanisms. In fact,

this discrepant subset might have been too small to enable us
to see any significant association to protein regulation.
Interestingly, RNA and MS measurements converged at the
pathway level, as also shown in a previous study.11 This was
especially true for previously characterized breast cancer
pathways, such as the enrichment of ER responsive genes or
immune signaling molecules in ER-positive and ER-negative
tumors, respectively. In addition to this, our analyses
elucidated relevant molecular differences between spiculated
and nonspiculated appearances, where tissue remodeling and
EMT pathways were found enriched in the former and
inflammation- and proliferation-related networks were en-
riched in the latter. These results confirm that breast cancer
invasion of the surrounding tissue through spiculation has been
generally associated with stromal and extracellular matrix
remodeling. The results also imply that a possible different
transcriptional program takes place in these cancers, though
further experimental verification is needed. While the EMT
pathway has been reasoned to be a mutable transcriptional
program,44 with cells acquiring a spectrum of biological
features related to epithelial or mesenchymal fates, our data
indicates that invasion of normal tissues through spiculae
might rely on a mesenchymal cancer cell front. In the light of
this, future studies are necessary to confirm these results
through, for example, mechanistic experiments such as
overexpression studies. These would aim to clarify the
molecular mechanisms related to EMT activation and to
establish the association between these features and patient
prognosis.
Based on the results that transcriptomic and proteomic

analyses largely converge at the pathway level, we further
investigated if this also holds true for biomarkers or drug
targets. Interestingly, we observe that transcript−protein pairs
belonging to established predictive signatures (e.g., Mammap-
rint) display a high level of correlation, thus suggesting the
transferability of these biomarker panels onto the proteomic
level. In contrast, this did not hold true for FDA-approved drug
targets. Since a previous study has shown that post-transla-
tional regulation mechanisms might significantly impact
protein abundances of drug targets,12 we hypothesized that
such mechanisms might be operating at different activity levels
within critical subgroups such as ER-positive and ER-negative
tumors. Despite the fact that we were able to only partially
validate the dependency of genes displaying diverging RNA-
protein correlations between critical tumor groups (i.e., ER
positive/negative), we believe that different protein regulation
mechanisms operate within these subgroups. Further experi-
ments to validate this hypothesis are needed.
Overall, FDA-approved drug targets displayed variable

degrees of concordance between the two data layers, with
foreseeable repercussions in biomarker identification and
monitoring dependent on the measurement technology as
well as tumor subgroup inherent biology. The expression of
differential or mutually exclusive transcriptional programs or
regulatory mechanisms is a known factor in cancer.45

Transcriptional programs impact tumor diversity, establishing
cellular changes through genetic and epigenetic mecha-
nisms.46,47 These mechanisms may indeed affect genes and
proteins on different levels to alter their expression. As an
example, ER-positive and ER-negative tumors proliferate via
the activation of different proliferation signaling pathways (e.g.,
ER signaling vs MYC), which in turn are under different
regulation. This might be related to the discrepancies in the
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expression of RNA−protein pairs that we observed in our
sample set.
For this, we find it to be imperative to overlay genomic and

proteomic information to (i) determine disease subgroups with
altered gene and protein expression clusters, (ii) use such
information to derive tumor proteotype-specific biomarkers or
alternative drug targets, and (iii) choose the most appropriate
treatment strategy based on the tumor subgroup. These
findings indicate that the evaluation of protein levels should be
performed for a subset of the proteome when evaluating the
association of potential markers in the clinical laboratory or
when using mRNA as a substitute for protein abundance.
These results support the complementarity of genomic and
proteomic information in the dissection molecular pathologies,
such as the definition of pathways of interest for further
functional assessment and/or drug testing. It is important,
however, to point out that this study is based on a relatively
small patient sample set, which limits the generalization of
significant findings out of our analyses. This is especially
relevant when considering the discrepancies of RNA−protein
abundance (e.g., negative correlation), where a significantly
bigger dataset would have allowed better elucidation of such
findings.
In conclusion, we have here established and benchmarked an

improved DIA MS-based workflow in proteogenomic studies
to identify mutational processes at the protein level and the
discrepancies that arise between mRNA and protein
quantitative data layers, which are in turn dependent on
transcript and protein regulation processes. Our analyses also
validated previously established enrichments of estrogen
receptor-dependent molecular features associated to tran-
scription factor expression and provided evidence of molecular
differences related to the development of mammographic
morphologies in spiculated tumor masses. These results
suggest that there are differentially regulated protein networks
in clinically relevant sample groups and that these protein
networks impact both cancer biology and the abundance of
potential biomarkers and drug target abundance. Validation of
such claims via large-scale studies is needed.
In addition to this, to assess whether these findings related

to biological regulation of protein stability or mRNA
translation rates, biochemical and genetic/epigenetic studies
should be performed by for example functional high-
throughput knockdown models.
In conclusion, the data presented here establish a new DIA-

based proteogenomic workflow for the analysis of clinical
specimens. While our results shed light on the biological
processes related to tumor altered morphology, deeper
evaluation of the proteogenomic features presented here is
needed. This will enable not only a better understanding of
breast tumor biology but also the development of new
therapies or biomarkers.
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(22) Wisńiewski, J. R.; Zougman, A.; Nagaraj, N.; Mann, M.
Universal Sample Preparation Method for Proteome Analysis. Nat.
Methods 2009, 6, 359−362.
(23) Hughes, C. S.; Foehr, S.; Garfield, D. A.; Furlong, E. E.;
Steinmetz, L. M.; Krijgsveld, J. Ultrasensitive Proteome Analysis
Using Paramagnetic Bead Technology. Mol. Syst. Biol. 2014, 10, 757−
757.
(24) Eng, J. K.; Jahan, T. A.; Hoopmann, M. R. Comet: An Open-
Source MS/MS Sequence Database Search Tool. Proteomics 2013, 13,
22−24.
(25) The, M.; MacCoss, M. J.; Noble, W. S.; Käll, L. Fast and
Accurate Protein False Discovery Rates on Large-Scale Proteomics
Data Sets with Percolator 3.0. J. Am. Soc. Mass Spectrom. 2016, 27,
1719−1727.
(26) Röst, H. L.; Liu, Y.; D’Agostino, G.; Zanella, M.; Navarro, P.;
Rosenberger, G.; Collins, B. C.; Gillet, L.; Testa, G.; Malmström, L.;
Aebersold, R. TRIC: An Automated Alignment Strategy for
Reproducible Protein Quantification in Targeted Proteomics. Nat.
Methods 2016, 13, 777−783.
(27) Rosenberger, G.; Bludau, I.; Schmitt, U.; Heusel, M.; Hunter,
C. L.; Liu, Y.; MacCoss, M. J.; MacLean, B. X.; Nesvizhskii, A. I.;
Pedrioli, P. G. A.; Reiter, L.; Röst, H. L.; Tate, S.; Ting, Y. S.; Collins,
B. C.; Aebersold, R. Statistical Control of Peptide and Protein Error
Rates in Large-Scale Targeted Data-Independent Acquisition
Analyses. Nat. Methods 2017, 14, 921−927.
(28) Tiberi, S.; Robinson, M. D. BANDITS: Bayesian Differential
Splicing Accounting for Sample-to-Sample Variability and Mapping
Uncertainty. Genome Biol. 2020, 21, 69.
(29) Wen, B.; Wang, X.; Zhang, B. PepQuery Enables Fast, Accurate,
and Convenient Proteomic Validation of Novel Genomic Alterations.
Genome Res. 2019, 29, 485−493.
(30) Subramanian, A.; Tamayo, P.; Mootha, V. K.; Mukherjee, S.;
Ebert, B. L.; Gillette, M. A.; Paulovich, A.; Pomeroy, S. L.; Golub, T.
R.; Lander, E. S.; Mesirov, J. P. Gene Set Enrichment Analysis: A
Knowledge-Based Approach for Interpreting Genome-Wide Expres-
sion Profiles. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 15545−15550.
(31) Escher, C.; Reiter, L.; Maclean, B.; Ossola, R.; Herzog, F.;
Maccoss, M. J.; Rinner, O. Using IRT, a Normalized Retention Time
for More Targeted Measurement of Peptides. Proteomics 2012, 12,
1111−1121.
(32) Jovanovic, M.; Rooney, M. S.; Mertins, P.; Przybylski, D.;
Chevrier, N.; Satija, R.; Rodriguez, E. H.; Fields, A. P.; Schwartz, S.;
Raychowdhury, R.; Mumbach, M. R.; Eisenhaure, T.; Rabani, M.;
Gennert, D.; Lu, D.; Delorey, T.; Weissman, J. S.; Carr, S. A.;
Hacohen, N.; Regev, A. Immunogenetics. Dynamic Profiling of the
Protein Life Cycle in Response to Pathogens. Science 2015, 347,
1259038.
(33) Koboldt, D. C.; Fulton, R. S.; McLellan, M. D.; Schmidt, H.;
Kalicki-Veizer, J.; McMichael, J. F.; Fulton, L. L.; Dooling, D. J.; Ding,
L.; Mardis, E. R.; Wilson, R. K.; Ally, A.; Balasundaram, M.;
Butterfield, Y. S. N.; Carlsen, R.; Carter, C.; Chu, A.; Chuah, E.;
Chun, H.-J. E.; Coope, R. J. N.; Dhalla, N.; Guin, R.; Hirst, C.; Hirst,
M.; Holt, R. a.; Lee, D.; Li, H. I.; Mayo, M.; Moore, R. a.; Mungall, A.
J.; Pleasance, E.; Gordon Robertson, A.; Schein, J. E.; Shafiei, A.;
Sipahimalani, P.; Slobodan, J. R.; Stoll, D.; Tam, A.; Thiessen, N.;
Varhol, R. J.; Wye, N.; Zeng, T.; Zhao, Y.; Birol, I.; Jones, S. J. M.;

Marra, M. a.; Cherniack, A. D.; Saksena, G.; Onofrio, R. C.; Pho, N.
H.; Carter, S. L.; Schumacher, S. E.; Tabak, B.; Hernandez, B.;
Gentry, J.; Nguyen, H.; Crenshaw, A.; Ardlie, K.; Beroukhim, R.;
Winckler, W.; Getz, G.; Gabriel, S. B.; Meyerson, M.; Chin, L.; Park,
P. J.; Kucherlapati, R.; Hoadley, K. a.; Todd Auman, J.; Fan, C.;
Turman, Y. J.; Shi, Y.; Li, L.; Topal, M. D.; He, X.; Chao, H.-H.; Prat,
A.; Silva, G. O.; Iglesia, M. D.; Zhao, W.; Usary, J.; Berg, J. S.; Adams,
M.; Booker, J.; Wu, J.; Gulabani, A.; Bodenheimer, T.; Hoyle, A. P.;
Simons, J. V.; Soloway, M. G.; Mose, L. E.; Jefferys, S. R.; Balu, S.;
Parker, J. S.; Neil Hayes, D.; Perou, C. M.; Malik, S.; Mahurkar, S.;
Shen, H.; Weisenberger, D. J.; Triche, T., Jr.; Lai, P. H.; Bootwalla, M.
S.; Maglinte, D. T.; Berman, B. P.; Van Den Berg, D. J.; Baylin, S. B.;
Laird, P. W.; Creighton, C. J.; Donehower, L. a.; Getz, G.; Noble, M.;
Voet, D.; Saksena, G.; Gehlenborg, N.; DiCara, D.; Zhang, J.; Zhang,
H.; Wu, C.-J.; Yingchun Liu, S.; Lawrence, M. S.; Zou, L.; Sivachenko,
A.; Lin, P.; Stojanov, P.; Jing, R.; Cho, J.; Sinha, R.; Park, R. W.;
Nazaire, M.-D.; Robinson, J.; Thorvaldsdottir, H.; Mesirov, J.; Park, P.
J.; Chin, L.; Reynolds, S.; Kreisberg, R. B.; Bernard, B.; Bressler, R.;
Erkkila, T.; Lin, J.; Thorsson, V.; Zhang, W.; Shmulevich, I.; Ciriello,
G.; Weinhold, N.; Schultz, N.; Gao, J.; Cerami, E.; Gross, B.;
Jacobsen, A.; Sinha, R.; Arman Aksoy, B.; Antipin, Y.; Reva, B.; Shen,
R.; Taylor, B. S.; Ladanyi, M.; Sander, C.; Anur, P.; Spellman, P. T.;
Lu, Y.; Liu, W.; Verhaak, R. R. G.; Mills, G. B.; Akbani, R.; Zhang, N.;
Broom, B. M.; Casasent, T. D.; Wakefield, C.; Unruh, A. K.; Baggerly,
K.; Coombes, K.; Weinstein, J. N.; Haussler, D.; Benz, C. C.; Stuart, J.
M.; Benz, S. C.; Zhu, J.; Szeto, C. C.; Scott, G. K.; Yau, C.; Paull, E.
O.; Carlin, D.; Wong, C.; Sokolov, A.; Thusberg, J.; Mooney, S.; Ng,
S.; Goldstein, T. C.; Ellrott, K.; Grifford, M.; Wilks, C.; Ma, S.; Craft,
B.; Yan, C.; Hu, Y.; Meerzaman, D.; Gastier-Foster, J. M.; Bowen, J.;
Ramirez, N. C.; Black, A. D.; White, P.; Zmuda, E. J.; Frick, J.;
Lichtenberg, T. M.; Brookens, R.; George, M. M.; Gerken, M. a.;
Harper, H. a.; Leraas, K. M.; Wise, L. J.; Tabler, T. R.; McAllister, C.;
Barr, T.; Hart-Kothari, M.; Tarvin, K.; Saller, C.; Sandusky, G.;
Mitchell, C.; Iacocca, M. V.; Brown, J.; Rabeno, B.; Czerwinski, C.;
Petrelli, N.; Dolzhansky, O.; Abramov, M.; Voronina, O.; Potapova,
O.; Marks, J. R.; Suchorska, W. M.; Murawa, D.; Kycler, W.; Ibbs, M.;
Korski, K.; Spychała, A.; Murawa, P.; Brzezinśki, J. J.; Perz, H.;
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