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Abstract

Arsenic (As), a heavy metal element, causes soil environmental concerns in many parts of

the world, and ryegrass has been considered as an effective plant species for bioremedia-

tion of heavy metal pollution including As. This study was designed to investigate As con-

tent, nutrient absorption and antioxidant enzyme activity associated with As tolerance in the

mature leaves, expanded leaves and emerging leaves of perennial ryegrass (Lolium per-

enne) and annual ryegrass (Lolium multiflorum) under 100 mg�kg-1 As treatment. The con-

tents of As, calcium (Ca), magnesium (Mg), manganese (Mn) in the leaves of both ryegrass

species were greatest in the mature leaves and least in the emerging leaves. The nitrogen

(N), phosphorus (P), potassium (K) contents of both ryegrass species were greatest in the

emerging leaves and least in the mature leaves. The As treatment reduced biomass more in

the mature leaves and expanded leaves relative to the emerging leaves for annual ryegrass

and reduced more in emerging leaves relative to the mature and expanded leaves for peren-

nial ryegrass. Perennial ryegrass had higher As content than annual ryegrass in all three

kinds of leaves. The As treatment increased hydrogen peroxide (H2O2) in expanded leaves

of two ryegrass species, relative to the control. The As treatment increased the ascorbate

peroxidase (APX) activity in the expanded leaves of perennial ryegrass and the mature

leaves of annual ryegrass, the catalase (CAT) activity in the mature and expanded leaves of

perennial ryegrass and the emerging leaves of annual ryegrass, relative to the control. The

As treatment reduced peroxidase (POD) activity in all three kinds of leaves of annual rye-

grass and superoxide dismutase (SOD) activity in expanded leaves of perennial ryegrass,

relative to the control. The results of this study suggest that As tolerance may vary among

different ages of leaf and reactive oxygen species (ROS) and antioxidant enzyme activity

may be associated with As tolerance in the ryegrass.
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Introduction

Arsenic (As) is a highly toxic substance, a non-essential element of organisms, which is classi-

fied as one of the "five poisons" of heavy metal contamination, as well as a serious carcinogen

by the World Health Organization [1]. Inorganic As is a class 1 carcinogen. As contaminated

soil, water and atmosphere pose a serious threat to animals, plants and human health [2].

Plants inevitably absorb As from the environment during their growth and development.

Previous studies have shown that As has toxic effect at high concentration, inhibits the growth

and development of plants, and even leads to plant death [3]. One of the reasons why plants

are poisoned by As is that nutrient absorption and nutrient balance are disrupted [4]. In addi-

tion, As can also induce ROS production and accumulation in plants, damage cell membrane

structure, nucleic acid, chlorophyll and so on, thus affecting the normal growth and develop-

ment of plants [5]. Previous study showed that As treatment significantly decreased concentra-

tions of sulfur (S), K, Ca, iron (Fe) and copper (Cu) in rice roots [6]. Other studies have shown

that As accumulation did influence the concentrations of different mineral nutrients [zinc

(Zn), nickel (Ni), Mg, etc.] which results into neurobehavioral impairment and skin diseases

in human beings [7]. As hyperaccumulation did influence the concentrations of essential

macro-(P, K, Ca and Mg) and micro-[Fe, Mn, Zn and boron (B)] elements in the fronds of dif-

ferent age of P. vittata [8]. Similarly, Wang et al. [9] observed that the P, K contents were

mainly affected by As(III), while the N content was mainly affected by As(V).

There are different types of enzymatic and non enzymatic antioxidative system in plants,

which can scavenge ROS such as hydrogen peroxide (H2O2) and superoxide anion (O2
-) and

maintain the balance of antioxidant status in plants. Exposure to metals can cause the oxidative

stress which begins with violating the balance between the formation of ROS and their removal

by antioxidants [10, 11]. As stress can lead to the production of ROS in plants, disturb the bal-

ance between ROS production and antioxidant capacity, and lead to the accumulation of ROS

[12, 13]. The ROS can damage proteins, purine nucleotides and nucleic acids and cause peroxi-

dation of membrane lipids [14]. The ROS formation process attributes to the synthesis of

SOD, CAT, POD and other non-enzymatically antioxidants [15]. Previous study showed that

As(III) treatment caused dose-dependent increases in lipid peroxidation and increased ascor-

bate content and POD activities in Lemna paucicostata [16]. Manju Shri et al. [17] found that

As treatment could up-regulate the activities of SOD, APX, POD in rice plants. Previous stud-

ies have also shown that the lipid peroxidation amount increased under 100 μmol�L-1 and

200 μmol�L-1 As treatment, and the activity of antioxidative enzymes like SOD, POD and APX

increased under As treatment [18].

Ryegrass is a common herbaceous plant with the characteristics of rapid growth, high yield

and tolerance to mowing, and it has strong resistance and accumulation ability to heavy met-

als. It has great application potential to be used for heavy metal contaminated soil phytoreme-

diation and ecological environment protection due to its highly developed root system [19].

The study of nutrient uptake and antioxidant characteristics of plants under heavy metal stress

can explain the mechanism of plant tolerance to heavy metals. Previous studies have been car-

ried out to research nutrient uptake and antioxidant characteristics of ryegrass under heavy

metal stress, but most of them were focused on elements such as cadmium (Cd), lead (Pb).

The studies on As and nutrient uptake and antioxidant responses of ryegrass leaves under As

treatment have not been reported. However, there were significant differences between peren-

nial ryegrass and annual ryegrass, such as biomass, tolerance and growth rate. Therefore, the

objective of this study was to investigate the As and nutrient uptake and antioxidant response

of different leaves of perennial ryegrass (Lolium perenne) and annual ryegrass (Lolium multi-
florum) under As treatment and to provide theoretical basis for understanding As tolerance
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mechanism of ryegrass and analyzing the difference in As tolerance between two ryegrass

species.

Materials and methods

Plant material and site description

This experiment was conducted at Changping Experimental Station, Institute of Turfgrass Sci-

ence, Beijing Forestry University, Beijing, China. The total nitrogen content of the soil was

1.33 g�kg-1 and available phosphorus content was 13.9 mg�kg-1, available potassium content

was 70.2 mg�kg-1, organic matter content was 8.2 g�kg-1, PH 7.68, arsenic content was 0.337

mg�kg-1.

The soil was screened by 5 mm sieve after natural air drying. The experiment was carried

out in a conical plastic pot. The upper and bottom diameters of the pot were 20 and 10 cm,

respectively, and the height was 28 cm. Each pot was filled with 3 kg of mixed soil. NaAsO2

(0.5202 g) was dissolved in 200 mL water and the solution was added to the soil in each pot.

The pot was statically set for two weeks.

‘Mathilde’ perennial ryegrass (Lolium perenne L.) and ‘Idyll’ annual ryegrass (Lolium multi-
florum Lam.) were used for this study. The two grass varieties were obtained from Beijing

Zhengdao seed Industry Co., Ltd. (Beijing, China).

Plant sampling and measurements

After the ryegrass was grown for 60 days, the leaf was sampled based on the leaf age. According

to Xu [20], the leaves were divided into mature leaf, expanded leaf, emerging leaf. The yellow

leaf was defined as mature leaf; the fully stretched leaf was expanded leaf; and the upstretched

leaf was emerging leaf. After the leaves were removed, a part of fresh samples was frozen with

liquid nitrogen and stored at -80˚C for analysis.

Leaf reactive oxygen species (ROS)

Approximately 0.1 g fresh leaves were ground in liquid N2 using mortar and pestle and 2 mL

of 0.1% (w/v) TCA was added to the ground powder. The homogenate was then transferred to

2 mL microcentrifuge tube. The mixture was centrifuged at 15,000 gn at 4˚C for 20 min, and 1

mL supernatant was collected. Potassium phosphate buffer (10 mmol�L-1, pH 7.0; 1 mL) and 2

mL of 1 mol�L-1 KI were added to the supernatant. Hydrogen peroxide (H2O2) concentration

was estimated based on the absorbance of the supernatant at 390 nm. Pure water was used

instead of KI for blank measurement. The calculated standard curve was y = 0.0012x-0.0138

(R2 = 0.9976), while x was hydrogen peroxide concentration in μmol�g-1, and y was A390 [21].

Approximately 100 mg fresh leaves were ground in liquid N2 using mortar and pestle and 2

mL of sodium phosphate buffer (65 mmol�L-1, PH 7.8) was added to the ground powder. The

homogenate was then transferred to 2 mL microcentrifuge tube. The mixture was centrifuged

at 5,000 gn at 4 ˚C for 10 min, and 1 mL supernatant was collected. Hydroxylammonium chlo-

ride (1 mmol�L-1, 1 mL) was added to the supernatant and incubated at 25 ˚C for 20 min.

Then the supernatant was mixed with 0.2 mL of 170 mmol�L-1 4-minobenzenesulfonic acid

and 0.2 mL of 70 mmol�L-1 α-naphthylamine followed by being incubated at 25˚C for 20 min.

The absorbance of the supernatant was read at 530 nm after the addition of equal volume of

ether and centrifugation at 1,500 gn for 5 min. The O2
- content was calculated using the stan-

dard solution of sodium nitrite [22].
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Leaf antioxidant enzyme activity

Approximately 150 mg fresh leaves were ground in liquid N2 using mortar and pestle and 2

mL of 50 mmol�L-1 potassium phosphate buffer (pH 7.8) containing 1 mmol�L-1 ethylenedi-

aminetetraacetic acid (EDTA), 1 mmol�L-1 phenylmethylsulfonyl (PMSF), 1% (w/v) polyvinyl-

pyrrolidone (PVP), and 1 mmol�L-1 dithiothreitol (DTT) was added to the ground powder.

The homogenate was then transferred to 2 mL microcentrifuge tube. The mixture was centri-

fuged at 15,000 gn at 4 ˚C for 20 min, and supernatant was collected for assay of enzyme activ-

ity [23]. The SOD activity was measured according to the method of Giannopolitis and Ries

[24] and the activities of APX, CAT and POD was estimated by the method of Zhang and Kirk-

ham by following changes in absorbance at 290, 240 and 470 nm, respectively [23].

Leaf ions

The remaining leaves were washed with distilled water and dried at 105˚C for 30 min, and

then to constant weight at 80˚C. The leaf dry weight was measured. The dried samples were

pulverized by a pulverizer. Leaves (500 mg) were weighed after passing through 60 mesh (0.3

mm) sieve, and then HNO3-H2O2 digestion was used to digest the samples completely and

then brought up to 50 mL. The contents of As, P, K, Ca, Mg and Mn were determined by

ICP-MS (Agilent 7700). The total N content was determined by automatic flow Analyzer

(SEAL AA3) after H2SO4-H2O2 digestion of 200 mg dried samples and then brought up to 100

mL.

Experimental design and data analysis

A complete random block design was used with two As concentrations (0 and 100 mg�kg-1, in

terms of mixed soil weight). The treatments included control (PRGCK), 100 mg�kg-1 (PRG100)

with perennial ryegrass; control (ARGCK), 100 mg�kg-1 (ARG100) with annual ryegrass. Each

treatment consists of three replications, with a total of 12 pots.

Ryegrass was established in a tray and transplanted 10 plants into As treatment pot 10 days

after seedling emergence, and then were regularly watered for 60 days.

The original data was processed by Excel 2010 software and single factor ANOVA was car-

ried out by SPSS (V.20.0) for Windows (SPSS Inc., Chicago, IL, USA). The results were drawn

by Origin Pro (v.2015SR2) (OriginLab, Northampton, MA, USA). The mean separation was

performed with Duncan’s least significant difference at P = 0.05.

Results

Effects of As treatment on dry weight

The As treatment reduced plant biomass in all three kinds of leaves regardless of grass species,

except for the mature leaves of perennial ryegrass (Fig 1). The As treatment reduced biomass

by 25.0% and 44.7% for the mature leaves of perennial ryegrass and annual ryegrass, respec-

tively. The As treatment reduced 35.3% and 39.8% for the expanded leaves of perennial rye-

grass and annual ryegrass, respectively; and 57.7% and 28.1% for the emerging leaves of

perennial ryegrass and annual ryegrass, respectively.

Characteristics of arsenic content in three leaves under As treatment

The As content was the greatest in the mature leaves, and least in the emerging leaves regard-

less of grass species (Fig 2). Perennial ryegrass had higher As content than annual ryegrass in

all three kinds of leaves. The As contents of mature leaves, expanded leaves, and the emerging

leaves of annual ryegrass were 95.5%, 72.9% and 84.2% of those in perennial ryegrass,

Arsenic and nutrient absorption characteristics and antioxidant response of ryegrass under arsenic stress
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respectively, which indicated that the As absorption ability of annual ryegrass was lower than

that of perennial ryegrass.

Characteristics of nutrient contents in three leaves under As treatment

The As treatment increased N content in the mature leaves, but reduced N content in

expanded and emerging leaves of annual ryegrass. The As treatment increased N content in

emerging leaves, but did not impact N content in other kinds of leaves of perennial ryegrass

(Table 1). The As treatment decreased P content in the mature and expanded leaves, but

increased P content in the emerging leaves of perennial ryegrass. The As treatment increased P

content in mature and emerging leaves, but did not impact P content in the expanded leaves of

annual ryegrass (Table 1). The As treatment decreased K content in the expanded leaves of

perennial ryegrass, but increased K content in the emerging leaves of two ryegrass species. The

As treatment did not impact K content in the mature leaves of two ryegrass species (Table 1).

The As treatment increased Ca content in mature and expanded leaves of perennial rye-

grass, and the Ca content in mature and expanded leaves of annual ryegrass tended to increase.

The As treatment did not impact Ca content in the emerging leaves of two ryegrass species

(Table 1).The As treatment decreased Mg content in mature and expanded leaves of two rye-

grass species, but it did not impact Mg content in the emerging leaves of two ryegrass species

(Table 1).The As treatment increased Mn content in mature and expanded leaves of perennial

Fig 1. Effects of As treatment on dry weight of leaves of two ryegrass species. Note: MAL means mature leaves; EXL means

expanded leaves; EML means emerging leaves. For each histogram, bars having different letters indicate significant difference

(P<0.05) with different treatments.

https://doi.org/10.1371/journal.pone.0225373.g001
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ryegrass, but it did not impact Mn content in three kinds of leaves of annual ryegrass

(Table 1).

The N, P and K contents were the greatest in the emerging leaves, and least in the mature

leaves regardless of grass species. The Ca, Mg and Mn contents were the greatest in the mature

leaves, and least in the emerging leaves regardless of grass species.

Effects of arsenic stress on hydrogen peroxide (H2O2) content

The As treatment increased hydrogen peroxide content in the expanded leaves regardless of

grass species, and it increased hydrogen peroxide content in the emerging leaves of perennial

ryegrass (Fig 3). It increased hydrogen peroxide content by 43.6% and 31.8% for the expanded

leaves of perennial ryegrass and annual ryegrass, respectively. The As treatment did not impact

hydrogen peroxide content in the mature leaves of two ryegrass species.

Effects of arsenic stress on the content of superoxide anion (O2
-)

The As treatment increased superoxide anion content in mature and emerging leaves regard-

less of grass species, and it increased superoxide anion content in expanded leaves of perennial

ryegrass (Fig 4). The As treatment increased superoxide anion content by 25.5%, 28.8% and

47.3% for the mature leaves, expanded leaves, and emerging leaves of perennial ryegrass,

respectively; and increased superoxide anion content by 30.2%, 5.2% and 65.0% for the all

Fig 2. As content in leaves of two ryegrass species under As treatment. Note: MAL means mature leaves; EXL means

expanded leaves; EML means emerging leaves. For each histogram, bars having different letters indicate significant difference

(P<0.05) with different treatments.

https://doi.org/10.1371/journal.pone.0225373.g002
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three kinds of leaves of annual ryegrass, respectively. The superoxide anion content was the

greatest in the mature leaves, and least in the emerging leaves regardless of grass species.

Perennial ryegrass had higher superoxide anion content than annual ryegrass in all three kinds

of leaves.

Effects of arsenic stress on antioxidant enzyme activity

The As treatment increased APX activity by 60.1% and 90.9% for mature leaves of annual rye-

grass and expanded leaves of perennial ryegrass, respectively; but it decreased APX activity by

32.6% for emerging leaves of annual ryegrass (Fig 5). The As treatment increased CAT activity

by 238.7% and 66.1% for mature leaves and expanded leaves of perennial ryegrass, respectively,

but it did not impact the CAT activity in emerging leaves of perennial ryegrass. The As treat-

ment decreased CAT activity by 53.6% for the mature leaves of annual ryegrass, but it

increased CAT activity by 35.5% for the emerging leaves of annual ryegrass.

The As treatment decreased POD activity by 17.0%, 29.7% and 28.4% for the mature leaves,

expanded leaves, and emerging leaves of annual ryegrass, respectively. The As treatment

increased POD activity by 19.3% for the emerging leaves of annual ryegrass, but it did not

impact POD activity in mature and expanded leaves of perennial ryegrass. The As treatment

increased SOD activity by 54.9% and 35.3% for the expanded and emerging leaves of annual

ryegrass, but it decreased SOD activity by 27.8% for the expanded leaves of perennial ryegrass.

The SOD activity tended to increase for the mature leaves regardless of grass species under As

treatment.

Discussion

The toxicity of As to plants was shown on the leaves and roots, leading to the wilting or shed-

ding of the leaves and the inhibition of plant root elongation, and severely inhibiting the

growth and the development of the plant [25]. In this study, As treatment reduced leaf biomass

of two ryegrass species, this is consistent with the results of previous studies [26]. The results of

our study showed that the As tolerance of emerging leaves of annual ryegrass was better than

Table 1. N, P, K, Ca, Mg, Mn content in leaves of two ryegrass species under As treatment.

Treatment Nutrient element content

N

mg�g-1
P

mg�g-1
K

mg�g-1
Ca

mg�g-1
Mg

mg�g-1
Mn

μg�g-1

MAL PRGCK 15.10±0.79a 2.86±0.14a 29.11±0.82a 10.06±0.09b 3.81±0.05b 61.95±1.23a

PRG100 14.98±1.00a 1.83±0.18b 27.51±1.57a 13.27±1.28a 3.46±0.08c 50.01±1.56b

ARGCK 10.30±0.97b 1.09±0.18c 26.91±1.30a 10.53±0.20b 4.96±0.15a 57.77±1.58a

ARG100 15.42±1.10a 1.95±0.13b 29.08±1.50a 11.85±0.27ab 3.95±0.06b 58.36±2.32a

EXL PRGCK 22.48±0.64b 3.32±0.07a 39.05±0.80a 5.36±0.06c 2.97±0.06b 43.95±0.33a

PRG100 19.70±0.70b 2.62±0.21b 30.79±0.86b 6.92±0.34a 2.28±0.09d 39.68±1.01b

ARGCK 25.88±1.59a 2.19±0.16b 31.61±2.28b 5.95±0.12bc 3.53±0.11a 35.14±1.53c

ARG100 21.36±0.93b 2.33±0.30b 29.92±2.19b 6.43±0.36ab 2.56±0.05c 35.73±1.47c

EML PRGCK 26.89±1.23b 3.52±0.11c 36.85±1.23c 2.97±0.14a 2.45±0.16a 37.15±0.96a

PRG100 38.12±1.70a 4.35±0.37ab 49.05±2.26a 2.69±0.05a 2.19±0.13a 35.04±0.79ab

ARGCK 37.05±1.32a 3.76±0.18bc 32.88±1.41c 2.92±0.14a 2.40±0.07a 31.39±2.02bc

ARG100 31.35±2.02b 4.65±0.11a 43.98±0.79b 2.72±0.13a 2.23±0.12a 28.18±2.00c

Note: MAL means mature leaves; EXL means expanded leaves; EML means emerging leaves. Different letters indicate significant difference (P<0.05) with different

treatments.

https://doi.org/10.1371/journal.pone.0225373.t001
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that of perennial ryegrass, but the As tolerance of mature leaves of perennial ryegrass was bet-

ter than that of annual ryegrass. This may be related to the faster growth rate of emerging

leaves and the faster aging rate of mature leaves of annual ryegrass. The results of study also

showed that annual ryegrass had higher biomass under either control and As stress conditions.

It is generally believed that the main reason for the decrease of plant biomass under high con-

centration of As treatment is due to the decrease of soluble protein content, peroxidase activ-

ity, photosynthesis and other physiological processes [27]. Ullrich-Eberius et al. [28] have

reported that arsenite can react with tissue proteins and sulfhydryl groups of enzymes, inhibit-

ing cellular function and causing cell and even plant death. The accumulation and distribution

of heavy metals in different parts of plants determine the level of toxicity of heavy metals to

plants [29], this provide the basis for studying the mechanism of heavy metals absorption and

transport in plants and their tolerance to heavy metals [30].

The results of study indicated that the As content was greatest in mature leaves and least in

emerging leaves regardless of grass species. In addition, As content in expanding leaves and

emerging leaves was lower in annual ryegrass relative to perennial ryegrass under As stress.

This suggest that plants can protect emerging leaves and survive the As toxicity, and annual

ryegrass may have greater tolerance to As than perennial ryegrass due to its lower As accumu-

lation and higher biomass relative to perennial ryegrass. Plant stores heavy metal ions trans-

ported to the aboveground in the mature leaves. As the mature leaves gradually shed, heavy

metals were discharged out of the body, thus reducing the absorption of emerging leaves and

Fig 3. Hydrogen peroxide content in leaves of two ryegrass species under As treatment. Note: MAL means mature leaves;

EXL means expanded leaves; EML means emerging leaves. For each histogram, bars having different letters indicate

significant difference (P<0.05) with different treatments.

https://doi.org/10.1371/journal.pone.0225373.g003
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reducing their own toxicity, which is similar to the results of Cd distribution on Tall fescue

and Kentucky bluegrass [20].

The effect of As on plant growth may not be due to the interference of plant and biological

interaction, but due to the interaction of As with plant nutrition or plant metabolism. As may

indirectly affect plant growth by interrupting nutrient absorption [31, 32]. When the soil envi-

ronment changes, plants actively adjust their nutrient requirements to adapt to the soil envi-

ronment, thereby adjusting the abundance of elements in the body [33]. There are few studies

on the relationship between As and N uptake by plants. It has been reported that As may affect

the key nitrogen assimilatory enzymes, decrease NO3
- uptake, and reduce nitrogen concentra-

tion in leaves [34]. In this study, the N content of the two ryegrass decreased in the expanded

leaves, but the N content in the emerging leaves of perennial ryegrass and the mature leaves of

the annual ryegrass showed an increasing trend, which was contrary to the previous results.

This may be related to the different genotypes of plants used, this also suggests that different

plants have different adaptation mechanisms to stress.

The absorption of P in all parts of annual ryegrass has a tendency to increase, which is also

reflected in the results of Pigna et al. [35]. It may be related to P and As sharing a transport

channel in the root plasmalemma and controlled by the same gene. As and P have similar elec-

tron configurations and chemical properties, arsenate and phosphate compete with each other

for soil sorption sites in soil. This competition leads to a reduction in its sorption by soil and

an increase in solution concentration of P under As treatment, plant uptake increased with

Fig 4. Content of superoxide anion in leaves of two ryegrass species under As treatment. Note: MAL means mature leaves;

EXL means expanded leaves; EML means emerging leaves. For each histogram, bars having different letters indicate significant

difference (P<0.05) with different treatments.

https://doi.org/10.1371/journal.pone.0225373.g004

Arsenic and nutrient absorption characteristics and antioxidant response of ryegrass under arsenic stress

PLOS ONE | https://doi.org/10.1371/journal.pone.0225373 November 27, 2019 9 / 15

https://doi.org/10.1371/journal.pone.0225373.g004
https://doi.org/10.1371/journal.pone.0225373


increasing P availability in soil [28, 36]. K content in emerging leaves of two ryegrass species

increased significantly under As treatment, which may be due to the fact that K is a stress resis-

tant element for plants to adapt to stress [37], plants distribute more K elements to emerging

leaves to reduce the toxicity of emerging leaves. According to Lombi et al. [38], while investi-

gating As distribution in Pteris vittata, As and K were positively correlated (R = 0.87). The

results of our study showed that As was positively correlated with Ca in the mature leaves of

annual ryegrass and the expanded leaves of perennial ryegrass, which is consistent with the

results of previous studies [39]. This may due to the long-distance transportation and distribu-

tion of Ca in the plant primarily rely on both the transpiration rates and duration of transpira-

tion. Thus, the mature leaves had the highest Ca concentration relative to expanded and

emerging leaves [8]. In this study, the content of Mg decreased in the leaves of two ryegrass

species, similar result was reported by Shaibur et al. [40]. This may be due to the fact that Mg

plays important roles in photosynthesis process but As has a negative effect on the growth,

chlorophyll content and photosynthesis rate [41, 42]. The effect of As stress on trace elements

such as Mn, Fe, Zn was greater than on major elements. In this study, As and Mn in the mature

leaves and expanded leaves of perennial ryegrass were negatively correlated significantly. Simi-

lar results were also reflected in the research results on barley seedlings [43].

Although As is not a redox metal, there is significant evidence showing that exposure of

plants to inorganic As results in the generation of ROS [44]. H2O2 and O2
- play important

roles in plant growth and development and signal transduction. The H2O2, O2
- can be pro-

duced in many plant physiological processes [45]. When plants are under heavy metal stress,

their photosynthetic and respiratory electron transport chains will be affected, resulting in a

Fig 5. Antioxidant enzyme activities in leaves of two ryegrass species under As treatment. Note: MAL means mature leaves; EXL

means expanded leaves; EML means emerging leaves. For each histogram, bars having different letters indicate significant difference

(P<0.05) with different treatments.

https://doi.org/10.1371/journal.pone.0225373.g005

Arsenic and nutrient absorption characteristics and antioxidant response of ryegrass under arsenic stress

PLOS ONE | https://doi.org/10.1371/journal.pone.0225373 November 27, 2019 10 / 15

https://doi.org/10.1371/journal.pone.0225373.g005
https://doi.org/10.1371/journal.pone.0225373


large amount of ROS accumulation. In this study, As treatment increased the O2
- content in

the leaves of perennial ryegrass and annual ryegrass, and the H2O2 content in the expanded

leaves tended to increase. The results of our study also showed that H2O2 content was

increased in emerging leaves of PRG, but did not in annual ryegrass under As stress. Similarly,

O2
- content increased in the expanding leaves of perennial ryegrass, but did not in annual rye-

grass under As stress. This suggests that annual ryegrass may have greater antioxidant system

to detoxify ROS and reduce ROS accumulation in cells. The greater As tolerance of annual rye-

grass relative perennial ryegrass may be associated with low level of ROS under As stress. The

phenomenon of stress-induced accumulation of H2O2 and O2
- is also reflected in the previous

study [46]. The results of our study suggested that plants with relatively lower ROS level may

have greater tolerance to As than those with higher level of ROS under As stress.

Plants may regulate their antioxidant enzyme activity in order to alleviate membrane lipid

peroxidation injury to resist oxidative stress in vivo under heavy metal stress [47]. SOD is the

first line of defense for plants to scavenge active oxygen free radicals, it can transfer O2
- to

H2O2, and POD, CAT, APX can convert H2O2 to H2O [48]. The antioxidant responses to the

same As stress were different between the two ryegrass species leaves, and there were signifi-

cant differences between the two ryegrass species. Srivastava et al. [18] thought that As stress at

lower concentration would lead to the increase of antioxidant enzyme activity, but with the

increase of As concentration and stress time, the peroxides in plants would accumulate and

the antioxidant enzyme activity would decrease. In this study, the activity of CAT in expanded

leaves and emerging leaves of ryegrass increased under As treatment, but the activity of CAT

in mature leaves decreased. This may be due to the fact that the accumulation of As in the

mature leaves can inhibit the CAT activity and the expression of CAT related genes in the

annual ryegrass leaves. Under As treatment, the SOD activity in mature leaves of perennial rye-

grass increased, but decreased in the expanded leaves and emerging leaves, this may be due to

the fact that the SOD related genes in emerging leaves of perennial ryegrass were more sensi-

tive to As, a lower concentration of As can inhibit its expression.

In this study, we also found that SOD activity increased in expanding and emerging leaves

of annual ryegrass, but did not in perennial ryegrass when exposure to As stress. Similarly,

CAT activity increased in emerging leaves of annual ryegrass, but did not in perennial ryegrass

in response to As stress. In addition, POD activity declined in all three types of leaves and APX

declined in emerging leaves in annual ryegrass, but did not in perennial ryegrass. Mylona et al.

[49] demonstrated that SOD activity increased in response to low As concentration but high

concentration of As inhibited the accumulation of SOD mRNA and led to decline its activity.

Higher activity of CAT has been shown in As-tolerant Chinese brake fern (Pteries ensiformis)
and boston fern (Nephrolepis exaltata) [50]. This suggests that annual ryegrass may have

greater SOD activity to convert O2
- to H2O2, and also greater CAT activity to remove H2O2

when compared to PRG, reducing ROS toxicity. The decline in POD and APX activity in

annual ryegrass under As stress may be associated with consumption during H2O2 scavenging.

The results of our study suggested that annual ryegrass may have greater antioxidant defense

capacity, especially SOD and CAT, to remove toxic ROS more effectively, relative to perennial

ryegrass. The antioxidation response of ryegrass to As treatment varies in different kinds of

leaves and species, and its tolerance mechanism is complicated. The further studies on As tol-

erant mechanism of molecular biological level is necessary.

Screening of suitable plants to remediate heavy metal contaminated environments is the

first limiting factor of phytoremediation. Due to phytoextraction plants yield a low biomass

and grow relatively slowly, grass species are preferred for phytoremediation because their high

biomasses and they have a fast growth rates and are easier to manage [51, 52]. Thus, it is eco-

nomical to use them for phytoremediation. Many studies have demonstrated the great
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potential of ryegrass in phytoremediation [53, 54]. Our study has investigated the As and

nutrient uptake and antioxidant response of two ryegrass species under As stress. It can better

reveal the physiological response of ryegrass under As stress so that to provide theoretical basis

for the application of ryegrass in phytoremediation.
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