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Simple Summary: Plutella xylostell is a worldwide migratory insect pest that mainly damages
cruciferous vegetables. In this study, we established a system for measuring the diel locomotor
activities and used it to evaluate the locomotor circadian patterns of P. xylostella. We tested the
locomotor activities of P. xylostella adults under several laboratory settings. We found that both the
males and females showed nocturnal activity under a light:dark (LD) cycle, with activity peaking
very early after lights off and quickly declining after lights on. Both males and females had high
locomotor activity levels in constant darkness (DD) but weak in a constant light condition (LL). In
addition, circadian patterns analysis showed that males exhibit much better rhythmic characteristics
than females, especially in low temperature conditions. Overall, our proposed system for studying
the locomotor activities in P. xylostella is reliable, which will help us to have a better understanding
of the diel activity of P. xylostella and may finally be helpful in the development of an effective pest
management strategy.

Abstract: The Diamondback Moth (Plutella xylostella) is a highly destructive lepidopteran pest of
cruciferous crops. However, there still is relatively little known about the locomotor activities of diel
and the circadian patterns in P. xylostella. Here, we present an analysis of the diel locomotion of P.
xylostella under several laboratory settings. We established a system for measuring the individual
locomotor activities of P. xylostella and found that both males and females showed a nocturnal pattern
of activity under 26 or 20 ◦C LD conditions, with activity peaking immediately after lights off and
quickly declining after lights on. In addition, we showed that it is difficult to assess the free-running
circadian rhythms of P. xylostella under 26 ◦C DD conditions. However, we found that males showed
a higher power, rhythm index (RI) and rhythmic ratio than females under 20 ◦C DD conditions,
which indicated that males in low-temperature conditions are much more suitable to study the
free-running circadian rhythms of P. xylostella. The findings of this study will help us to have a better
understanding of the diel activity of P. xylostella and may provide a foundation for the development
of an effective pest management strategy.

Keywords: Plutella xylostella; locomotor activity; circadian rhythm

1. Introduction

Circadian rhythms are found in most species as the earth rotates around its axis
every twenty-four hours. The circadian clock controls daily rhythms in animal physiology
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and metabolism, thus playing important roles in organismal health and fitness. Insect
behaviors, including locomotion, courtship, mating, sperm release, etc., are all affected
by the circadian rhythm system [1,2]. Understanding the circadian rhythm of insects,
especially lepidopteran pests, has an important reference value for formulating effective
pest management strategies [3].

The circadian rhythms control various physiological activities of lepidopteran insects.
The circadian rhythms of adult lepidopteran insects have specific characteristics, in which
the butterfly species are active during the day, and many moths are active at night [4].
The male gypsy moth (Lymantria dispar) exhibits a bimodal rhythm of locomotion and
pheromone response, with one peak during the day and one peak at night [5]. This
periodic change is affected by the endogenous circadian oscillator. Studies in Antherea
pernyi, Hyalophora cecropia and Samia cynthia have shown that the biological clock controls
the rhythm of emergence and migration [1]. The previous studies in Pectinophora gossypiella
showed that the circadian clock controls the hatching time of eggs [6]. Egg hatching, adult
emergence and adult activity showed prominent circadian rhythms in the Mediterranean
meal moth (Ephestia kuehniella) [7]. In moths, pheromone-mediated reproductive behaviors
at specific times have also been extensively studied. Female moths produce and release
pheromones at specific times of the day, which is synchronized with the rhythm of male
moths; those are sensitive to pheromones [8]. The phototransduction and circadian rhythm
synchronization play a key role in the signal transduction mechanism of lepidopteran
treetop disease caused by baculovirus [9].

The study in Drosophila melanogaster has laid an important foundation to understand
the phenomenon of circadian rhythm and related mechanisms [2,10]. In Drosophila, the
circadian rhythm of locomotor activity is usually measured by using the Drosophila Ac-
tivity Monitoring (DAM) system (TriKinetics; Waltham, MA) [11]. Under light–dark (LD)
conditions (usually alternating 12 h light and 12 h dark), flies exhibit a morning activity
peak during dawn and an evening activity peak during dusk [2,10]. In constant darkness
(DD), the morning peak gradually shrinks; only the evening peak persists and reflecting
a circadian clock function with a near-24-hour period [2,10]. At the molecular level, a set
of proteins (e.g., PERIOD, CLOCK, CRYPTOCHROME) function as transcription-based
feedback loops or post-translational regulation within the clock [2,10]. At the level of
the cells, a circadian pacemaker neural network mediates distinct aspects of locomotor
behavior [2,10].

However, studies on the biological clock of other insects have shown that there may
be some differences from Drosophila [12]. The differences in the circadian clock genes in
insects stress the complexity in the evolution of clock genes in different insects [13]. P.
xylostella is a worldwide migratory insect pest that mainly damages cruciferous vegetables
and causes economic loss up to USD 4–5 billion annually [14,15]. Here, we explore the
locomotor activity rhythms of P. xylostella in the laboratory using the DAM system. The
main objective of this study is to assess the diel locomotor activities in P. xylostella adults.
We developed a modified system that can stably monitor the locomotor activities of adult P.
xylostella. In addition, we discovered robust rhythmic behavior in males but weak rhythmic
in females under DD conditions.

2. Materials and Methods
2.1. Insect Sample

P. xylostella Geneva 88, an insecticide-susceptible strain, was provided by Professor
Shelton from Cornell University in 2016 and kept in Fujian Agriculture and Forestry
University under 25 ± 1 ◦C, 70–80% relative humidity and 14L:10D (14 h light:10 h dark)
photoperiod. The larvae were reared in a paper cup (10.4 cm × 7.3 cm × 8.5 cm) with an
artificial diet. The pupae were transferred to a new paper cup for eclosion. Newly emerged
G88 adults were fed with 10% honey water to supplement their nutrition.
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2.2. Activity Monitor System

A basic system contains the following components: data collection computer, PSIU9
power supply interface unit, activity monitors, tubes and caps and incubator to provide
temperature/light stability. Locomotor activity monitors (model number LAM16) and the
PSIU9 power supply interface unit were obtained from Trikinetics Inc. (Waltham, MA,
USA). Each LAM16 monitor unit has 32 independent channels (16 mm diameter), which
were used to load the adults of P. xylostella in sampling tubes and to measure locomotor
activity using infrared beams and sensors. The sample tubes were made of Polymeric
Methyl Methacrylate (PMMA) with a 12-millimeter inside diameter × 100 mm length.
Usually, the length of P. xylostella adults is about 6 mm. After being occupied by food and
stopper, there is about 50 mm length of free space left. After eclosion, the three days old
P. xylostella were anesthetized with CO2 and loaded into the sample tubes at Zeitgeber
time 10 (ZT10). Both sexes were kept in the same incubator, and they were able to smell
the pheromones of the others. Incubators with a white LED (light-emitting diode) light
source were used (light intensity is about 500 lux). LAM16 monitors were connected to
the computer with PSIU9 Power Supply Interface Unit. The DAMSystem3 (Waltham, MA,
USA) data collection program was set to collect 1-minute bins data from each activity
monitor and saved the data in the respective raw monitor file on the hard drive. Then, the
FileScan (Waltham, MA, USA) program was used to scan and produce 1-minute bins and
30-minute bins channel files. These files are then ready for analysis.

2.3. Locomotor Activity Behaviors Analysis

Rhythmic data can be considered as a wave, and the analysis of locomotor activity
data is mainly concerned with a period (the time for a rhythmic event to repeat itself)
and amplitude (the robustness of the endogenous clock) [16]. Here, locomotor activities
were analyzed using the MATLAB toolboxes developed in Jeffrey Hall’s laboratory [17]
and the FaasX developed in François Rouyer’s laboratory [18]. The output of MATLAB
toolboxes provides data on the individual’s locomotor activities throughout the experiment
in the form of an actogram, an autocorrelation, which calculates the strength of their
rhythms using circular statistics [17]. Double-plotted actograms were used to highlight
the locomotor activity patterns at different days. Mean activity plots were used to show
the activity patterns of 24 h. Autocorrelation plots were used to determine the rhythm
index (RI), as described previously [17]. Briefly, the oscillation of this autocorrelation
function shows periodicity. The asterisk above the third peak of the autocorrelation graph
indicates the specific time point used to assess the RI [17]. Phase under LD conditions was
determined with the FaasX software. Briefly, individuals’ survival at least through the
data range requested was used. Data with high frequencies were filtered and the peak was
selected as the phase point. Chi square periodogram analysis in FaasX was performed to
determine the rhythmicity under DD conditions. Briefly, to justify rhythmicity, Chi-square
significance level was set to 0.05, and minimum period peak power and minimum period
peak width were set to 20 and 1.5 h, respectively. The parament of power derived from Chi
square periodogram analysis reflects the robustness of the endogenous rhythm.

3. Results
3.1. System for Measuring the Individual Locomotor Activities of P. xylostella

The locomotor activity monitors were developed by Trikinetics Inc. (Waltham, MA,
USA) and used to quantify animal movement over time [19]. Here, we used model number
LAM16 to monitor the circadian rhythm of P. xylostella, which has previously been used to
measure individual locomotor rhythms in honey bees or mosquitoes [20–22] (Figure 1a).
In this study, individuals of P. xylostella were placed into the tubes with a supply of food,
which contains an infrared beam. The computer recorded the locomotor activity as the
individuals move back and forth to break the beam. A single activity monitor consists of
32 independent channels, which measure activity using three pairs of infrared emitters
and sensors positioned alongside the tubes. The associated electronic components convert
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analogue information into binary data. One of the main challenges in using the Trikinetics
system in P. xylostella is the supply of food. We designed a food system that can provide
honey food for several days. The food system was built from the head of a 3-milliliter
Pasteur pipette, filter paper, cotton, sampling tube, gummed tape and honey (Figure 1a).
Firstly, the 2.5-milliliter honey was diluted twice by sterile water, packed into the head of
the 3-milliliter Pasteur pipette and 2–3 pieces of suitable size filter paper were put into the
diluted honey (Figure 1b). Secondly, the head of the 3-milliliter Pasteur pipette with the
honey and filter paper was assembled into one side of the sampling tube and stuffed with
a cotton ball to absorb the honey (Figure 1b). Then, the connection between the head of the
3-milliliter Pasteur pipette and the sampling tube was fixed with gummed tape (Figure 1b).
Finally, the P. xylostella adults were placed in the sampling tube, a stopper was added at
the other end of the tubes and then assembled on the LAM16 monitor (Figure 1b).
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Figure 1. Locomotor activity monitoring system for P. xylostella. (a) Description of what is contained
in the panel (b); (b) System assembly ensures that every P. xylostella individual has a constant supply
of honey solution. Fully assembled LAM system, including the food system assembly and the
sampling tubes.

3.2. Locomotor Activities of P. xylostella under Different Temperatures

To test whether the conditions of our activity monitoring system can work well on P.
xylostella, we started by analyzing the locomotor activities of the male and female moths
under standard laboratory conditions. The locomotor activities of the single female and
male moth were assessed under 26 ◦C and 14L:10D conditions for four days, followed by
DD for five to six days. Consistent with previous reports that the P. xylostella adults are
usually active at twilight and throughout the night [23], we found a nocturnal pattern of
activity under LD, with peaking immediately after lights off and quickly declining after
lights on (Figure 2a). The autocorrelation analysis of the circadian locomotor activities
under LD revealed that both the female and male moth had a period of nearly 24 h (male
24.03 ± 0.16 h, female 24.07 ± 0.16 h), and both had an average rhythm index (RI) of
about 0.3 (male 0.28 ± 0.02, female 0.26 ± 0.02) (Figure 2a and Table 1). The peak phase
or average activity analysis was comparable in the males and females (Tables 1 and 2).
In DD conditions, we found that both the male and female moths had high locomotor
activity levels, either in the subjective day or night (Figure 2b). However, the analysis of
the locomotor activity rhythms under DD revealed that they were highly arrhythmic (male
arrhythmic = 21/29 vs. female arrhythmic = 33/35). Autocorrelation analysis showed that
both the female and male moth had very weak oscillation in the period, and the average RIs
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of the males and females were only 0.15 ± 0.01 and 0.12 ± 0.02, respectively (Figure 2b and
Table 1). Although the Chi square periodogram analysis of rhythmic individuals showed
that the males have higher power than the females under the DD condition (Table 1), all
of these data indicate that it is difficult to assess the free-running circadian rhythms of P.
xylostella under the 26 ◦C condition.
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Figure 2. Locomotor activity rhythms of P. xylostella male and female at 26 ◦C. (a) Locomotor activity rhythms of P. xylostella
under the 14L:10D condition. Double-plotted actograms show the locomotor activity patterns of the different days (the left
panel). Each row contains two consecutive days of locomotor activities (counts per 30 min), and the last day is repeated to
ensure that the next day is always the beginning of the next row. The x-axis shows the day under the light–dark condition.
Average activity plots show the activity patterns (the middle panel). The blue dots on the plots are SEM. The gray shadings
in the plot denote the light-off condition. Autocorrelation plots are used to determine the rhythm index (RI) (right panel).
(b) Locomotor rhythms of P. xylostella under constant darkness.

Table 1. Locomotor activity circadian rhythms of P. xylostella under different light conditions.

Condition Phase (95% Confidence
Limit) Power

Average
Rhythm Index

(RI)

Phase (95% Confidence
Limit) Power

Average
Rhythm

Index (RI)

Male Female

LD (4 days)

26 ◦C 14L:10D 1.4 ± 1.1 54.2 ± 3.07 n.s. 0.28 ± 0.02 n.s. 2.8 ± 0.8 50.4 ± 3.07 0.26 ± 0.02
20 ◦C 14L:10D 2.0 ± 0.6 70.9 ± 3.98 ** 0.31 ± 0.02 ** 2.4 ± 1.1 54.5 ± 3.36 0.23 ± 0.02
20 ◦C 10L:14D 22.5 ± 0.9 55.9 ± 2.87 * 0.29 ± 0.02 ** 22.0 ± 0.3 50.4 ± 3.81 0.16 ± 0.04

Condition Arrhythmic
Ratio Period Power

Average
Rhythm Index

(RI)

Arrhythmic
Ratio Period Power

Average
Rhythm

Index (RI)

LD-DD or LD-LL (5–6 days)

26 ◦C
14L:10D-DD 21/29 * 24.3 ± 2.85 41.3 ± 6.07 * 0.15 ± 0.01 n.s. 33/35 25.8 ± 1.25 25.7 ± 2.58 0.12 ± 0.02

20 ◦C
14L:10D-DD 20/38 *** 24.0 ± 0.31 46.4 ± 3.80 ** 0.19 ± 0.01 ** 36/41 27.0 ± 1.81 37.6 ± 3.47 0.14 ± 0.02

20 ◦C
10L:14D-DD 10/21 *** 23.8 ± 0.28 36.6 ± 6.35 0.16 ± 0.02 ** 20/20 - - 0.10 ± 0.03

20 ◦C
14L:10D-LL 20/20 - - - 16/16 - - -

Note: Period, power and arrhythmic ratio were calculated using Chi-square periodogram analysis. Individual survival at least through the
data range requested were used to perform analysis, and only the rhythmic individuals were used to calculate period and power. Rhythm
index was calculated using autocorrelation analysis (all survival individuals were used). Comparisons were made between males and
females with a two-tailed, unpaired Student’s t-test. * p < 0.05, ** p < 0.01, *** p < 0.001, n.s. no significance.
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Table 2. Daily activity levels of P. xylostella under different light conditions.

Condition Number Activity: Average/30 min Number Activity: Average/30 min

Male Female

LD (4 days)

26 ◦C 14L:10D 42 31.5 ± 4.05 46 30.4 ± 2.94
20 ◦C 14L:10D 40 35.8 ± 3.22 42 31.7 ± 3.62
20 ◦C 10L:14D 30 46.5 ± 4.55 28 26.7 ± 2.81

Condition Number Activity: Average/30 min Number Activity: Average/30 min

DD (4 days) or LL (4 days)

26 ◦C 14L:10D-DD 29 23.9 ± 3.11 35 26.0 ± 3.00
20 ◦C 14L:10D-DD 38 20.3 ± 3.07 41 15.6 ± 2.31
20 ◦C 10L:14D-DD 21 24.7 ± 2.85 20 19.3 ± 2.53
20 ◦C 14L:10D-LL 20 6.1 ± 1.44 16 8.2 ± 1.53

We then decided to test whether temperature compensation is involved in affecting the
locomotor rhythm under DD. Temperature compensation enables organisms to maintain
robust rhythms with a period close to a day over a wide range of physiological temperatures.
We set the locomotor activities of single females and males P. xylostella under 20 ◦C and
14L:10D conditions. Similar to the results of 26 ◦C, we still found that both the male and
female moths showed a nocturnal pattern of locomotion under LD and had similar phases
(male, 2.0 ± 0.6 h; female, 2.4 ± 1.1 h) (Figure 3a and Table 1). Furthermore, we found that
the average activity levels of the males and females were similar (Figure 3b and Table 2).
The arrhythmic ratio of the females was significantly higher than that of the males under
20 ◦C and DD conditions (male arrhythmic = 20/38 vs. female arrhythmic = 36/41) (Table 1).
The average power and RI of the males under DD were also significantly higher than the
females (Figure 3b and Table 1). These results indicated that the males had a better rhythm
than the females under a low temperature. This finding is surprising because the ability
to maintain a fixed endogenous period throughout a range of physiological temperatures
(temperature compensation) is a defining feature of circadian rhythms. Subsequently, we
carried out the experiments under 20 ◦C.

3.3. Locomotor Activities of P. xylostella under a Winter-like Short Day

Light is the dominant environmental cue that provides temporal information to
circadian pacemakers. Here, we wondered whether the photoperiod affects the locomotor
rhythm of P. xylostella. In the former 14L:10D condition, we provided a summer-like long
day. Next, we set a winter-like short day condition with 10L:14D. We found that both the
male and female moths still showed nocturnal patterns under 10L:14D and had comparable
peak phases (Figure 4a and Table 1). Similar to the results under 14L:10D, the females
still showed a higher arrhythmic ratio than the males when transferred from 10L:14D to
DD (male arrhythmic = 10/21 vs. female arrhythmic = 20/20) (Figure 4b and Table 1).
The average power and RI of the males under DD were also significantly higher than
the females (Figure 4b and Table 1). Together, these data show that P. xylostella under a
winter-like short day had a similar locomotor rhythm as the moths under a summer-like
long day (Figures 3 and 4).
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Figure 3. P. xylostella males exhibit better rhythm than females under 20 ◦C. (a) Locomotor activity rhythms of P. xylostella
under 14L: 10D and 20 ◦C conditions. Double-plotted actograms show the locomotor activity patterns of the different days
(left panel). Each row contains two consecutive days of locomotor activities (counts per 30 min), and the last day is repeated
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panel). (b) Locomotor activity rhythms of the P. xylostella under the changing condition from 14L:10D to DD at 20 ◦C.
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Figure 4. P. xylostella males show better rhythm than females under a winter-like short day at 20 ◦C. (a) Locomotor rhythm
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rhythm index (RI) (right panel). (b) Locomotor activity rhythms of P. xylostella under the changing condition from 10L:14D
condition to DD at 20 ◦C.
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3.4. Locomotor Activities of P. xylostella under Constant Light Condition

In Drosophila melanogaster, constant light (LL) conditions stop the molecular cycling
and cause wild-type flies to become arrhythmic [24]. To test whether the P. xylostella has a
rhythm activity pattern under the LL condition, we kept the P. xylostella individuals under
LD condition for four days and then transferred them to LL. Both the male and female
moths showed the normal nocturnal activity pattern during LD (Figure 5a). However,
in contrast to the males with normal rhythm under DD conditions, we found that both
the males and females showed arrhythmic activity in LL with only about 6–8 counts of
activity events every 1 h (Figure 5b and Tables 1 and 2). These data indicate that light is an
important factor in inhibiting the locomotor activities of P. xylostella.
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4. Discussion

Most insects show unimodal activity patterns [25]. However, small insect species
with crepuscular habits are bimodal. The most important species with these aspects are
Drosophila and mosquitoes. Many Drosophila species show a bimodal activity rhythm
with peaks close to dawn and dusk, and a suppression of activity around noon [2,10].
Drosophila gradually increases their locomotor activity in advance of both dark-to-light
and light-to-dark transitions, a phenomenon termed anticipation [2,10]. Interestingly,
our data show that P. xylostella also appears to increase their activity gradually before
switching from light to dark (see the average activity plots under LD conditions). Most of
the moths show unimodal activity patterns may peak at different times. Here, we found
the rhythm of the male and female locomotor activity reaching the peak at dusk in P.
xylostella, whether under the long-day (14L:10D) or the short-day (10L:14D) conditions.
Similar to our results, circadian locomotor activity in the adult fall armyworm, Spodoptera
frugiperda, shows activity during darkness, with activity immediately after lights-off [26].
Both the Indian meal moth, Plodia interpunctella and the Mediterranean flour moth, Ephestia
kuehniella show daily rhythms in calling and locomotor behaviors [27]. The rhythm of male
locomotor activity reaches the peak at dusk in P. interpunctella and dawn in E. kuehniella [27].
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However, under long-day conditions (17L:7D), both P. interpunctella and E. kuehniella tend
to display bimodal activity patterns [28]. Whether P. xylostella will also show bimodal
pattern under longer daytime is worthy of being studied further. Interestingly, the rhythms
of calling behavior turn arrhythmic in P. interpunctella females in DD, whereas E. kuehniella
females showed a persistent rhythm in DD, suggesting a different circadian clock regulation
mechanism of moths [27]. On the other hand, a lot of the general activity level of P. xylostella
can be explained by just the absence/presence of light. The activity, at least in the females,
seems to be a direct light response (inhibition of locomotor activity) rather than a circadian-
driven behavior. In the future, we may be able to study this question by making mutants
of different clock genes.

It has been reported that different behaviors in insects are affected by temperature
change. The circadian rhythm of locomotor activity under DD has been observed in many
insect species and is now regarded as a property of the endogenous system [29]. However,
we found that both P. xylostella males and females showed highly arrhythmic free-running
behavior under 26 ◦C. In contrast, males show better locomotor rhythm under 20 ◦C.
Circadian clocks are synchronized with both light:dark cycles and temperature fluctuations.
Temperature changes may affect the clock mechanism by changing the component process,
as seen in Drosophila and other insects. The Drosophila clock genes can be entrained by
temperature cycles [28]. Antennal temperature signals regulated by the TRPA channel
PYREXIA synchronize clock neurons in the brain to regulate the Drosophila circadian clock
protein PERIOD [30]. Similar to locomotor rhythm, it has been reported that the adult
emergence rhythm can also be affected by different temperature cycles [31]. The peaks of
emergence in P. xylostella were delayed with the increase in temperature [32]. Temperature
affects the sexual activity of moths generally, such that at lower temperatures females
call earlier, and that a decrease in temperature may lift the inhibition of calling instead of
inducing calling [8]. Temperature can also play a critical role in the circadian system to
control sperm release in moths [33]. Measuring the locomotor rhythm of the honey bee
at different temperatures reveals that testing the endogenous rhythm at 35 ◦C results in
periods closer to 24 h compared with 25 ◦C [20]. These findings suggest that the degree of
tuning of circadian temperature compensation may vary among different species.

According to ‘Aschoff’s rule’, τ lengthens with an increase in light intensity, or on
transfer from DD to LL, for dark-active animals (i.e., τDD < τLL, nocturnal), but shortens
for light-active animals (i.e., τDD > τLL, diurnal) [34]. However, the general applicability
of this ‘rule’ in insects is in doubt. In some nocturnal species, the results for a transfer from
DD to LL, and vice versa, are generally in agreement with ‘Aschoff s rule’. Locomotor and
flight activity rhythms frequently become arrhythmic in LL at higher light intensities. Here,
we also found that P. xylostella became arrhythmic in LL. However, whether light intensity
affects the rhythm of P. xylostella under LL needs to be studied further.

Understanding the biological clocks of insects could help us to develop more effective
pest control strategies. The circadian rhythms of certain insects make them more susceptible
to insecticides at certain times of the day than at other times [35], because the susceptibility
to insecticide can be influenced by the rhythmic activity of xenobiotic metabolizing (XM)
enzymes. For example, the enzymatic assay of glutathione S-transferase (GST), esterase and
P450 in Cimex lectularius reveal significant time-of-day specific changes that have similar
peak phases with the highest activity consistently recorded during the late photophase
at ZT9 in LD [36]. The XM gene expression assays also reveal significant time-of-day
differences in mRNA expression patterns in both LD and DD. Here, for the first time, we
systematically studied the locomotor circadian rhythm of the P. xylostella. We believe that
our results will be helpful in the future to clarify the molecular mechanism of the circadian
rhythm of the P. xylostella and finally be helpful in the development of an effective pest
management strategy.
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5. Conclusions

A system for measuring the individual locomotor rhythm of P. xylostella is established.
Both the males and females show a nocturnal pattern of activity, with activity peaking
very early after lights off and quickly declining after lights on. It is difficult to assess
the free-running circadian rhythms of P. xylostella under 26 ◦C DD conditions. Males in
low-temperature conditions are much more suitable to study the free-running circadian
rhythms of P. xylostella.
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