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Interleukin-17 (IL-17A) is a cytokine involved in a complex array of both protective and
detrimental processes. Although early biological studies focused on the pro-inflammatory
function of IL-17 in the context of autoimmune and inflammatory disorders, it has become
increasingly evident that the roles of IL-17 are far more nuanced. Recent work has
demonstrated that the functions of IL-17 are highly context- and tissue-dependent, and
there is a fine balance between the pathogenic and protective functions of IL-17. This is
especially evident in mucosal tissues such as the female reproductive tract, where IL-17
has been shown to play an important role in the immune response generated during
fungal, bacterial and viral infections associated with protection, but also with inflammation.
In this review, we discuss the evolving landscape of IL-17 biology within the context of the
vaginal mucosa, focusing on key findings that highlight the importance of this cytokine in
genital mucosal immunity.

Keywords: IL-17, FRT, infection, fungal, bacterial, HIV, HSV, mucosal
INTRODUCTION

Interleukin 17A (IL-17A; referred to as ‘IL-17’ here) was cloned in the early 1990s and initially
known as cytotoxic T lymphocyte-associated antigen 8 (CTLA-8) (1). Although first recognized as a
new cytokine in 1995, the importance of IL-17 remained obscure until almost a decade later, when it
was discovered that a novel population of CD4+ T helper (Th) cells, subsequently named Th17 cells,
were characterized by their secretion of IL-17 (2–4). Following this discovery, the role of IL-17 has
been examined in the context of many disease models.

The IL-17 family of cytokines includes six similarly structured ligands (IL-17A to IL-17F), of
which, IL-17A and IL-17F are most closely related functionally. IL-17 cytokines signal through a
dimeric receptor composed of pairs of five subunits: IL-17RA through IL-17RE (5, 6). IL-17 and
IL-17F exist either as homodimers or as a heterodimer, and signal through an obligate dimeric IL-
17RA and IL-17RC receptor complex (7). There are two primary signalling pathways initiated upon
IL-17 binding to its receptor complex [reviewed in (5, 8)] (Figure 1). The first is a canonical
pathway, which leads to the activation of nuclear factor kappa B (NF-kB), mitogen-activated protein
kinase (MAPK) and CCAAT-enhancer-binding protein (C/EBP) pathways, and results in
transcriptional activation of downstream, pro-inflammatory target genes. The second, noncanonical
pathway, leads to the stabilization of mRNA transcripts which encode for intrinsically unstable
targets including cytokines and chemokines. Overall, at the transcriptional and post-transcriptional
level, IL-17 enhances the production of several immune mediators including chemokines, cytokines,
antimicrobial peptides (AMPs) and other primarily inflammatory effectors (9).
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IL-17 has several immunoregulatory functions, as detailed in a
recent review (10). During infection, IL-17 is actively involved in
neutrophil andmonocyte recruitment through enhanced induction
of various chemoattractants includingCXCL1, CXCL2 andCXCL5
(11, 12). IL-17 is also known to induce granulocyte-colony-
stimulating factor (G-CSF), which is involved in promoting the
expansion and survival of neutrophils (13). Additionally, IL-17
Frontiers in Immunology | www.frontiersin.org 2
plays an important role inmaintaining epithelial barrier integrityby
regulating the induction of AMPs during periods of homeostasis
when the barrier is intact, and then by inducing immunemediators
upon the loss of barrier integrity (14). Taken together, IL-17 is
considered a key cytokine involved in the clearance of extracellular
bacteria and fungi. However, in some cases aberrant IL-17
production can augment inflammation and cause tissue damage,
FIGURE 1 | IL-17A-mediated immunity. IL-17A (IL-17) is produced by a variety of cells including Th17 cells, gd T cells, natural killer (NK) cells, natural killer T (NKT) cells and
group 3 innate lymphoid cells (ILC3). IL-17 binds to the IL-17 receptor (IL-17R)A and IL-17RC complex, expressed by a variety of cells including macrophages, fibroblasts,
keratinocytes, and epithelial and endothelial cells. This initiates two primary IL-17 signalling pathways which mediate the essential functions of IL-17. The canonical pathway
activates the nuclear factor kappa B (NF-kB), mitogen-activated protein kinase (MAPK) and CCAAT-enhancer-binding protein (C/EBP) pathways, that trigger transcriptional
activation of downstream target genes, including pro-inflammatory cytokines, chemokines and anti-microbial peptides, as well as genes related to tissue remodeling. The non-
canonical pathway leads to the stabilization of mRNA transcripts. Together, these pathways mediate immune responses which contribute to the pathogenesis of autoimmune
and inflammatory diseases, neutrophil recruitment and are important for host defence against pathogens including bacteria, viruses and fungi. Created with BioRender.
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which has been shown to occur in autoimmune or chronic
inflammatory diseases such as rheumatoid arthritis (6).

The production of IL-17 is linked to several cellular sources.
Traditionally, IL-17 is considered a cytokine secreted by Th17 cells,
a subset of activated CD4+ T cells that secrete signature cytokines
IL-17A and IL-17F, as well as IL-21 and IL-22 (12). Exposure of
naïve CD4+ T cells to combinations of antigen-presenting cell
(APC)-derived polarizing cytokines, including transforming
growth factor-beta (TGF-b), IL-6, IL-21, IL-23 and IL-1b, leads to
the differentiation of Th17 cells (15–18). Furthermore, Th17 cells
are regulated by a master transcription factor, retinoic acid
receptor-related orphan receptor gamma t (ROR-gt, encoded by
Rorc), which induces the production of their signature cytokines
(19). ROR-gt is also a major transcription factor associated with all
subsets of IL-17-secreting cells, along with the transcription factor
aryl hydrocarbon receptor (Ahr) (10).

In addition to Th17 cells, other cell types are also capable of
producing IL-17. This includes innate and innate-like lymphocytes
such as gamma-delta (gd) T cells (20), natural killer (NK) cells,
natural killer T (NKT) cells (21), lymphoid tissue inducer-like cells
(LTi) and several populations of group 3 innate lymphoid (ILC3)
cells (22, 23). These additional sources of IL-17 tend to accumulate
atmucosal surfaces and have been shown to play an important role
in the early immune response against pathogens, emphasizing the
importance of IL-17 in innate immunity. Different pro-
inflammatory cytokines including IL-1b and IL-23 are known to
induce IL-17 production by these cells. Interestingly, gd T cells in
particular have been shown to be the primary source of IL-17
production in various settings of tissue homeostasis and infection
[reviewed in (24)]. gd T cells develop early in the fetus and provide
immunity prior to the generation of adaptive immune responses
(25). Unlike traditional T lymphocytes, gd T cells can acquire their
effector function during thymic development (25); thus, allowing
them to produce baseline levels of IL-17 and/or respond early and
more rapidly to pathogens compared to Th17 cells.

IL-17-mediated immunity has been demonstrated to play an
important role in the immune response generated against
pathogens in mucosal tissues including the female reproductive
tract (FRT). The FRT is a unique mucosal site that is regulated by
several factors in the microenvironment, including sex hormones
and the vaginal microbiota [reviewed in (26–28)]. Importantly,
the FRT is a critical site for enabling human reproductive success
as well as protecting against sexually transmitted pathogens;
thus, immune responses in this tissue must be well understood in
order to help facilitate positive reproductive health. As such, we
and others have focused on the role of this important
immunoregulatory factor in the context of genital tract
infections, and in this review, we will summarize and highlight
the recent progress in the field of IL-17-mediated immunity
during fungal, bacterial and viral infections in the FRT.
FUNGAL INFECTIONS

Candida species are part of the normal microflora of the FRT but
can become pathogenic under certain circumstances (29).
Vulvovaginal candidiasis (VVC) caused by Candida albicans
Frontiers in Immunology | www.frontiersin.org 3
(C. albicans), is an opportunistic fungal infection that affects
approximately 75% of healthy women of reproductive age
globally at least once during their lifetime (30). Furthermore,
following primary infection with C. albicans, 5-10% of women
will subsequently experience recurrent infection (31), which is
defined as experiencing at least 3-4 episodes yearly (32). Thus,
VVC infection is a very frequent and distressing condition that
can significantly impact quality of life.

Both human and animal studies have examined the role of IL-17-
mediated immunity during C. albicans infection. Animal models are
commonly used to study VVC pathogenesis (33), and the mouse
model closely recapitulates thehumandisease.Althoughmice arenot
naturally susceptible to vaginal infection with C. albicans, treatment
with estradiol (E2) enables persistent infection to occur. In several
studies, IL-17was seen toplaya clearprotective role in several typesof
mucosal candidiasis (i.e. chronicmucocutaneous and oropharyngeal
candidiasis) and help regulate antifungal immunity by upregulating
pro-inflammatory cytokines, neutrophil-recruiting chemokines and
AMPS (11, 34–36). The role of IL-17 duringVVC, however, remains
unclear. For example, patients who have genetic defects in IL-17 do
not show increased susceptibility to VVC as they do to other
mucocutaneous forms of candidiasis (37, 38). Similarly, animal
studies have shown that in the absence of IL-17 and/or IL-17-
mediated signalling, mice demonstrated worsened disease
outcomes following both systemic (39) and oral infection with
C. albicans (34), and this was related to impaired neutrophil
recruitment and AMP production. However, unlike candidiasis
infections at other mucosal sites, neutrophils have been shown to
be more damaging than protective during VVC (29, 40) or they
appear to have a limited impact on fungal infection in the FRT. For
instance, Yano et al. (41) reported that in the absence of IL-17 and
otherTh17-relatedcytokines,micehadsimilar levelsoffungalburden
following vaginal C. albicans infection compared to wildtype (WT)
mice, suggesting IL-17 was not involved in response to infection. In
addition, recent findings from Peters et al. (42) demonstrated that
mice lacking IL-17RA did not exhibit altered VVC susceptibility,
regardless of E2 administration, further supporting the idea that the
Th17/IL-17 axisplaysno role in the immunopathogenesis ofVVC. In
contrast, Pietrella et al. (43) found thatwhenTh17differentiationwas
inhibited during VVC challenge, there was greater exacerbation of
disease, along with significantly less production of protective AMPs.
This suggests that IL-17 and AMPs play an important role in VVC
immunity. Based on the limited studies conducted, it appears that
instead of being neutrophil-dependent, protection against VVC is
reliant on extrinsic factors such as AMPS and themaintenance of an
intact epithelial barrier and a balanced vaginal microbiota (44).
Overall, studies regarding the role of IL-17 during VVC are
inconclusive, and further research is required to determine if the
function of IL-17 is protective, as observed at other sites of
candida infection.
BACTERIAL INFECTIONS

Gonorrhoeae
Gonorrhea is an acute purulent genital tract infection caused by the
Gram-negative bacterium, Neisseria gonorrhoeae (N. gonorrhoeae)
April 2022 | Volume 13 | Article 861444
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(45). It is estimated that there are 78 million new cases of gonorrhea
which occur globally each year (46), and due to the lack of a viable
vaccine and the emergence of multi-drug resistant strains, N.
gonorrhoeae is considered a serious infectious threat (46, 47).
Rates of infection are higher in women compared to men, and
gonorrhea infection can lead to further negative health outcomes in
women including pelvic inflammatory disease (PID), infertility and
ectopic pregnancy (48). Furthermore, if left untreated, infection with
N. gonorrhoeae can enhance the transmission and acquisition of
HIV by up to 5-fold (49).

N. gonorrhoeae is primarily an extracellular bacterium that
induces a pro-inflammatory response consisting of the cytokines
IL-6, IL-1b and tumor necrosis factor-alpha (TNF-a), as well as an
influx of neutrophils (47). Interestingly, these cytokines are also
linked to Th17 differentiation. As such, IL-17 levels have been
reported to be elevated in individuals infected withN. gonorrhoeae
(50, 51). Themousemodel of gonorrhea, which requiresmice to be
treated with E2 prior to infection (52, 53), also demonstrates a
strong Th17 response following infection. In this model, infection
persists in rodents for about 10-20 days, after which the bacteria are
cleared. Over the past several years, M.W. Russell and colleagues
have extensively used themousemodel tobetterunderstand the role
of IL-17 during gonorrheal infection. In initial studies, Feinen et al.
(45) showed that IL-17 was critical for controlling early gonorrheal
infection in vivo, asblocking IL-17orpreventing IL-17RAsignalling
in mice resulted in prolonged infection, along with significantly
diminished neutrophil recruitment. Further, Russell and Feinen
(54) reported that unlike IL-17, IL-22 does not appear to impactN.
gonorrhoeae infection in vivo, suggesting IL-17 specifically, but not
other Th17-related cytokines, is critical for bacterial clearance.

Interestingly, N. gonorrhoeae infection does not elicit a strong
Th1 or Th2 response in mice (45) and although N. gonorrhoeae
induces local inflammation, there is no acquired immunity or
immunological memory established (53, 55). These findings show
that primary infection does not lead to substantial or sustained
antibody responses, and mice can be re-infected with the same
strain of bacteria without displaying enhanced resistance such as
elevated antibodies or enhanced CD4+ T cell responses (53). These
observations closely reflect known features of the human immune
response to uncomplicatedN. gonorrhoeae infection, where there is
limited humoral andT cell immunity, evenwith recurrent infection
(56, 57). This led to the theory thatN. gonorrhoeae selectively elicits
Th17-dependent innate responses that it can overcome, including
neutrophil recruitment andupregulationofAMPproduction,while
suppressingTh1/Th2-drivenadaptive immunity thatmaybeable to
protect against subsequent infection (45, 58–60). This would imply
that Th17 immunity is manipulated byN. gonorrhoeae and used to
evade host mechanisms of protection. In this regard, further work
by Liu et al. has shown that the absence of protective Th1 responses
can be attributed to the production of TGF-b, which occurs
following N. gonorrhoeae infection and skews immune responses
towards Th17-mediated immunity (59, 60). Together, these studies
suggest thatN. gonorrhoeae actually suppresses adaptive immunity
by upregulating the production of immunosuppressive cytokines,
TGF-b and IL-10. Liu et al. demonstrated that by blocking TGF-b,
it is possible to reverse this host immune response and enable the
Frontiers in Immunology | www.frontiersin.org 4
development of protective anti-gonococcal immunity consisting of
Th1-driven responses, the presence of anti-gonococcal IgG and IgA
antibodies, establishment of immunologicalmemory and enhanced
clearance of bacteria (59, 60). Additional work is needed to
understand how to better direct immunity during infection with
N. gonorrhoeae to maximize protection, as well as to better
understand how to leverage IL-17 immunity in this effort.

Chlamydia
Chlamydia trachomatis (C. trachomatis) is an intracellular human
bacterium that causes the most common bacterial sexually
transmitted disease worldwide, with over 250 000 new infections
contracted daily (61). Like many other STIs, women have
disproportionately higher rates of chlamydia infection prevalence
globally (62). Although antibiotics can be used to treat chlamydial
infection, more than 70% of women show no signs or symptoms of
active infection (63). As a result, untreated infections can cause
significant reproductive tract pathology in women leading to the
development of conditions such as PID, chronic pelvic pain and
infertility. C. trachomatis is also the cause of preventable blindness
(trachoma) in developing countries (64, 65).

Although IL-17 has been shown to be protective against
extracellular pathogens, the role of IL-17 in protection against
intracellular bacterial pathogens, including chlamydia, is less
clear. Multiple mouse models for chlamydia have been developed
over the past two decades and studies have provided extensive
information regarding chlamydia pathogenesis, immune response
and vaccine design. As with most animal models of infectious
disease, there are differences between human and murine
chlamydia infections which should be considered when
extrapolating findings (66). For instance, similar to other models
involving genital pathogens, the hormonal microenvironment of
the murine FRT has to be manipulated in order for infection to
occur. In the chlamydia models, mice require pre-treatment with
progesterone to enhance susceptibility to infection. It is well known
that changing the hormonalmicroenvironment alters the structural
physiology of the FRT epithelium and may also influence the
function of the immune cells present (67). Another difference is
that in mice, disease develops after a single exposure to bacteria,
after which infection is often cleared. This contrasts what occurs in
humans, where secondary infections are often required to drive
significant pathology and long-term chronic infections are
common. Furthermore, different species of chlamydia display
tropism for specific hosts (68). While human urogenital
C. trachomatis strains can be used to infect mice, the most
common murine model of genital chlamydia infection uses the
mouse-adapted C. muridarum pathogen. Intravaginal infection
with C. muridarum evades murine cell-autonomous immune
mechanisms and establishes a self-resolving genital infection,
whereas infection with human C. trachomatis is rapidly cleared
from the murine FRT and fails to establish productive infection or
induce pathogenic immune responses. As such, the C. muridarum
genital infection model is more amenable to the study of immune
mechanisms and appears to replicate many aspects of human
infection. Studies have shown that C. muridarum first infects the
vaginal and cervical epithelial cells, after which it ascends the
April 2022 | Volume 13 | Article 861444
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reproductive tract and causes upper reproductive tract pathology,
similar to chlamydia-associated disease sequelae observed in
women infected with C. trachomatis (69, 70). The infection in
mice is resolved after approximately 4-6 weeks and results in long-
lived adaptive immunity that protects against re-infection (71). It
has been shown that Th1 cells and interferon gamma (IFN-g) are
critical for protection against primary genital C. muridarum
infection (72), while CD8+ T cell responses and antibody
responses are important for protectionagainst re-infection (73–78).

The role of IL-17 during chlamydial infection has been
extensively studied in the lungs, where it has been shown that
in the absence of IL-17, there is greater replication of bacteria
and decreased survival of infected mice (79). Further
mechanistic studies have demonstrated that IL-17 appears to
be necessary for DC priming of Th1 immunity in the lungs,
without which there is compromised bacterial clearance (80).
However, in the context of genital tract infection with C.
muridarum, the role of IL-17 is less clear. For instance, some
studies have shown that the importance of IL-17 in mediating
protection against chlamydia is negligible. A study by Scurlock
et al. (81) showed that although IL-17RA deficient (IL-17RA-/-)
mice demonstrated reduced IFN-g production in the lymph
nodes and decreased neutrophil influx into the FRT, mice were
still able to resolve primary C. muridarum infection normally
and showed no differences in pathology compared to WT mice.
Instead, both macrophage influx and TNF-a production was
increased in the absence of IL-17, suggesting a compensatory
mechanism to control infection. Likewise, Frazer et al. (82)
showed that in the absence of IL-23, where chlamydia-specific
Th17 responses were absent, mice exhibited normal
susceptibility to genital infection and regular development of
oviduct pathology.

In contrast, other findings suggest that IL-17 plays a pathogenic
role during genital chlamydial infection. In a study by Andrew et al.
(64), they found that the duration and magnitude of C. muridarum
infection was significantly lower in IL-17 deficient (IL-17A-/-) mice
compared to WT mice. In the absence of IL-17, they also noted
decreased inflammatory pathology,whichwas related to significantly
reduced recruitment of neutrophils and macrophages into the
oviduct tissues. Interestingly, others have also shown that oviduct
pathology observed following infection is associated with the
infiltration of neutrophils into the FRT, as well as the production of
inflammatory mediators and factors involved in tissue-remodeling
such as matrix metalloproteases; all of which are mediated by IL-17
(83–86). Human studies have similarly associated greater neutrophil
activationwith increased disease progression inwomen infectedwith
genital C. trachomatis (87) and suggested a role for IL-17 during
infection, as cervical washes from infected women had 5-fold higher
levels of IL-17 compared to uninfected controls (88). Altogether,
studies regarding the importance of IL-17 during chlamydial
infection are conflicting. This may be due to the fact that the
strains of mice used in different studies vary, and it is well known
that the mouse strain used for chlamydia infection may impact
outcomes, including duration of infection, degree of upper genital
tract infection, severity of infection-induced pathology and immune
responses generated (71). As such, further work is required to
Frontiers in Immunology | www.frontiersin.org 5
better elucidate the role of IL-17 in the context of genital
chlamydia infection.
VIRAL INFECTIONS

HIV
HIV (human immunodeficiency virus) infection in the FRT leads
to the rapid depletion of local CD4+ T cells, as well as viral
dissemination throughout the body (89). It is a deadly virus if left
untreated and can lead to the development of acquired
immunodeficiency syndrome (AIDS). There are currently close
to 38 million individuals living with HIV, with approximately 1.7
million new infections occurring each year (90). Women account
for more than 50% of infections, and young women between the
ages of 15–24 are particularly susceptible to infection (90).
Although the risk of vaginal transmission is considered low,
estimates indicate that 40% of HIV infections are initiated in the
FRT (91). Additionally, infection with HIV is often associated
with increased susceptibility to other sexually transmitted
infections (STIs).

The role of IL-17 during HIV infection has not been
comprehensively described, however, Th17 cells are important
for HIV pathogenesis. HIV preferentially replicates in activated
T cells, specifically CD4+ T cells (92), and the expression of the
mucosal integrin a4b7 and HIV co-receptor CCR5 by activated
T cells also increases susceptibility (93, 94). As such, Th17 cells,
which are activated and terminally differentiated cells that
express high levels of a4b7 and CCR5, are considered
preferential target cells for HIV infection (95–100). In vitro
and ex vivo studies using human cells and in vivo studies using
a macaque model with the simian variant of the virus (SIV), have
all shown that Th17 cells are target cells for HIV infection in
mucosal tissues. For instance, Rodriguez-Garcia et al. (101)
examined the phenotype and susceptibility of primary CD4+ T
cells isolated from endometrium, endocervix, and ectocervix, to
HIV infection ex vivo. They found that Th17 cells were the
primary CD4+ T cell population which expressed HIV receptors
CCR5 and CD90, and that these cells were the most susceptible
to HIV infection in vitro. Likewise, several studies using samples
collected from HIV-infected Kenyan women have also shown
that Th17 cells are preferentially targeted by HIV, as Th17 cells
were significantly depleted in infected individuals (93, 100, 102).
Additionally, Boily-Larouche et al. (102) described a highly
activated subset of CD4+ T cells in the FRT of HIV-infected
female sex workers (FSWs) from Kenya, which expressed CD161
and differentiated into Th17 cells. These cells were found to
express multiple HIV susceptibility markers and were severely
depleted in HIV-infected FSWs, compared to uninfected FSWs.
Similarly, McKinnon et al. (99) collected cervical cytobrush
specimens from FSWs in Kenya and found that cervical IL-17+
CD4+ T cells preferentially co-expressed HIV receptors a4b7
and CCR5. Furthermore, these cervical Th17 cells were
significantly depleted following HIV infection, suggesting they
may serve as key target cells during HIV infection. Finally, in the
macaque model of SIV infection, Stieh et al. (103) found that
April 2022 | Volume 13 | Article 861444

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bagri et al. IL-17 Role During FRT Infections
Th17 cells (CCR6+ CD4+) were also preferentially infected by
SIV, and they showed that most SIV-infected cells expressed the
master Th17 transcriptional regulator, ROR-gt.

Interestingly, Th17 and Th22 cells that make IL-17 and IL-122
play an important role in the renewal and maintenance of the
mucosal epithelial barrier, which is known to be critical in
protecting against HIV infection in both the gut and FRT (98,
104, 105). Several components of the mucosal epithelial barrier
help mediate protection against HIV infection, including the
physical composition of the barrier, the presence of immune
cells, cytokines and antimicrobial factors, and the interactions
between the barrier and the local microenvironment, including
mucus and host microbiota (106). As such, the loss of Th17 cells
may have a direct impact on the integrity of mucosal barrier and
consequently impact further viral transmission and/or
pathogenesis (107). This has been shown in the gut, where the
depletion of Th17 and IL-22 producing T cells during chronic HIV
infection has been associated with damage to the epithelial barrier
and subsequent microbial translocation (108, 109). It is possible
Th17 cells may be playing a similar protective role in the FRT
during HIV infection, however more work is needed to elucidate
this potential mechanism.

HSV-2
Herpes simplex virus type 2 (HSV-2), the primary virus causing
genital herpes, is one of the most common STIs worldwide, with
over 400million individuals infected globally and approximately 17
million new infections occurring each year (110). Rates of infection
are especially alarming in sub-Saharan Africa, where prevalence is
as high as 80% amongst women between the ages of 15-49 (110).
HSV-2 first infects genital epithelial cells, and then travels via
retrograde transport along nerve axons to the dorsal root ganglia,
where it establishes life-long latency (111). The neuronal cells act as
a reservoir for the latent virus, which can be reactivated due to
factors including stress and hormonal changes. Reactivation results
in anterograde transport of the virus, resulting in productive
replication in the FRT (112). Along with the development of
painful genital ulcers, HSV-2 infection is associated with a 2- to
3-fold increased risk of HIV-1 acquisition and up to a 5-fold
increase in transmission of HIV-1 (113, 114).

Unlike the role of IL-17 during bacterial and fungal infections at
mucosal sites, very limited studies have examined the importance of
IL-17 in viral infections, especially in the context of the FRT and
HSV-2. As such, this has been an area of interest in our lab and we
have focused extensively on the role of both innate and adaptive
production of IL-17 in the FRT, along with the role it plays during
viral infection with HSV-2. Additionally, we have examined how
factors in the FRTmicroenvironment, such as female sex hormones
and the vaginal microbiota, effect IL-17 production in the
genital mucosa.

Ourworkover the past fewyears has provided significant insight
regardinghow IL-17modulates critical anti-viral T cell responses in
the FRT. While it is well established that anti-viral protection
against HSV-2 in the mouse model of infection is largely
mediated by Th1 responses (115–117), our findings are the first
to show that Th17 responses are also important in the anti-viral
Frontiers in Immunology | www.frontiersin.org 6
immune response to HSV-2 infection (118–120). We directly
examined the role of IL-17 in anti-viral protection against HSV-2
and found that compared to WT controls, IL-17A-/- mice
immunized intravaginally or intranasally were more susceptible
to HSV-2 challenge (119). IL-17A-/- mice had decreased survival,
greater viral shedding, and more severe genital pathology post-
challenge. Interestingly, we found that IL-17 played an important
role in enhancing anti-viral Th1 responses in the FRT, as IL-17A-/-
mice had impaired Th1 cells responses post-challenge (119) and
mechanistically, this was associated with impaired Th1 priming by
vaginalDCs (118).Taken together, these studieshavedemonstrated
that IL-17 is critical for inducing an efficient Th1 immune response
following HSV-2 immunization, resulting in effective protection
against HSV-2.

While the presence of innate IL-17 has been implicated in the
amplification of Th17 responses in other mucosal tissues
(121–123), the significance of IL-17 produced by innate or
innate-like sources in the FRT and its influence on Th17
immunity in the vaginal mucosa is less understood. Thus, we
also investigated the how innate IL-17 in the FRT might induce
adaptive Th17 responses (124). Our findings support results seen
in other mucosa and demonstrate that innate IL-17 produced in
the FRT is also important for inducing Th17 responses.
Furthermore, our observation that vaginal DCs from IL-17A-/-
mice produced lower amounts of IL-1b compared to WT DCs,
suggested a mechanism in which innate IL-17 induces vaginal DCs
to prime Th17 responses via IL-1b (124). Additionally, consistent
with previous findings by Kim et al. (125), we showed that gd+
cells are the primary source of innate IL-17 in the FRT under
homeostatic conditions (124). We extended these findings to show
that multiple factors found within the vaginal microenvironment,
influence innate IL-17 production by gd+ cells. We found that E2
treatment resulted in significantly greater proportions of IL-17-
producing gd+ T cells and that germ-free mice had significantly
lower proportions (124). These results provide insight on how
innate IL-17 can influence immune responses against infections in
the FRT, as well as ways in which its production can bemodulated.

Asmentioned previously, the hormonal microenvironment can
influence immune responses and disease outcomes in the FRT. For
the past decadewehave investigated the influence of E2 on immune
responses in the FRTand found that E2 increases protection against
HSV-2 infection, although the underlying immunological
mechanisms remained unclear. Recently, we showed that better
protection in E2-treated mice coincided with earlier recruitment
and higher proportions of Th1 and Th17 cells in the FRT following
either HSV-2 immunization (intravaginally or intranasally) (120)
and/or challenge (118). This included greater establishment of
tissue-resident memory CD4+ T cells in the FRT, which play a
critical role against re-exposure to pathogens (120). Together with
the reduced protection shown against HSV-2 challenge in E2-
treated IL-17A-/- mice, these findings suggested that E2-mediated
protection against HSV-2 is driven by the induction of Th17
responses, likely mediated by increased IL-1b production by
vaginal CD11c+ DCs in the presence of E2. Thus, a novel and
critical anti-viral role for IL-17 in the FRT has emerged through
our work.
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CONCLUSION

The understanding of IL-17 and its role in immune processes has
advanced considerably over recent years. While IL-17 has been
shown to play a key role in the maintenance of tissue integrity and
the generation of protective immunity against extracellular
pathogens such as bacteria and fungi, the pro-inflammatory
nature of IL-17 has also been associated with excessive
inflammation and immunopathology. Within the context of the
FRT, findings from several research groups have demonstrated the
importance of IL-17 function which goes beyond merely acting as
an inflammatory cytokine. The relevance of IL-17 has been
demonstrated in bacterial, fungal and viral infections within the
FRT, where innate and adaptive production of IL-17 is involved in
a variety of immunomodulatory processes including neutrophil
recruitment, DC regulation and Th1 modulation (Figure 2).
However, it has become increasingly clear that the overall
function of IL-17 is highly contextual, depending on both the
pathogen involved and the site of infection. For instance, studies
examining C. albicans infection in the FRT have demonstrated
that unlike the clear protective effects of IL-17 observed in chronic
mucocutaneous and oropharyngeal candidiasis, the function of IL-
17 during vulvovaginal candidiasis remains inconclusive.
Similarly, while IL-17 has shown to be protective against
chlamydial infection in the lungs, the role of IL-17 is less clear
Frontiers in Immunology | www.frontiersin.org 7
in the FRT. Some findings suggest IL-17 does not impact disease
outcomes following genital chlamydial infection, while other
studies have demonstrated a pathogenic role. This highlights the
tissue-specific function of IL-17, as well as the necessity to further
study the extent to which IL-17 is required in facilitating immunity
during these infections. Additionally, some genital tract pathogens
such as HIV and N. gonorrhoeae appear to leverage IL-17-
mediated responses to their advantage by either targeting Th17
cells to promote infection or by using these responses to suppress
the generation of protective adaptive immunity, respectively. Yet,
our work has shown that IL-17 seems to have a broader protective
role in the context of HSV-2 infection in the FRT. We have
recently demonstrated that IL-17 modulates vaginal DCs to induce
greater Th1 and Th17 immunity in the FRT and is also involved in
increased establishment of memory T cells post-immunization,
which results in greater protection against genital HSV-2 infection
(Figure 3). Our studies have also emphasized the critical role of
hormones in regulating levels of IL-17 within the reproductive
mucosa. Altogether, these studies point to the need to better
understand the dual role and balance between IL-17-mediated
protection and pathology before considering therapeutically
modulating the IL-17 pathway. Further research is needed to
gain a better understanding of the underlying factors including the
tissue microenvironment that regulate IL-17 and Th17 immune
responses. Consequently, incentives directed towards developing
FIGURE 2 | Summary of the role of IL-17 in the female reproductive tract. The role of IL-17A (IL-17) in the female reproductive tract (FRT) is disease-specific and is not yet
completely understood. Studies have reported the following regarding the role of IL-17 during genital infection with Candida albicans (C. albicans), Neisseria gonorrhoea
(N. gonorrhoeae), Chlamydia trachomatis (C. trachomatis), and human immunodeficiency virus (A) IL-17 is involved in recruiting neutrophils and inducing the production of anti-
microbial peptides (AMPs) during C albicans infection. While AMPs have shown to be protective against C albicans infection in the FRT, neutrophils may be causing more
damage than protection. (B) N. gonorrhoeae infection in the FRT selectively induces a robust Th17 response but reduced protective Th1 immunity, allowing evasion of host
mechanisms of protection. However, the elevated IL-17 production has been shown to be important for controlling early gonococcal infection, as well as for recruiting AMPs
and neutrophils. (C) During C trachomatis infection in the FRT, the recruitment of neutrophils and the production of matrix metalloproteases (MMPs) by IL-17 has been
associated with greater oviduct pathology. (D) HIV preferentially infects activated Th17 cells which express CD4 and high levels of HIV co-receptors. Created with BioRender.
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vaccines or therapies for these pathogens must consider whether
supporting or inhibiting IL-17 responses in the FRT will help
shape the immune response towards a more robust protective
phenotype that can help resist these pathogens.
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FIGURE 3 | Summary of IL-17 mediated anti-HSV-2 immunity in the FRT. (A) (1) During periods of homeostasis, IL-17 is constitutively produced by innate
lymphocyte populations, primarily gamma delta (gd+) T cells, and regulated by estradiol (E2) and commensal microbiota. This innate IL-17 is important for the
induction of Th17 responses primed by vaginal dendritic cells (DCs). (2) Following intranasal HSV-2 immunization under the influence of E2, IL-17 is important for the
establishment of Th1 tissue-resident memory (TRM) cells in the female reproductive tract (FRT). (3) These Th17 and Th1 TRM cells are then able to protect against
subsequent HSV-2 challenge. Additionally, IL-17 is critical for inducing IFN-g+ CD4+ T cell recall responses in the FRT post-challenge. (B) In the absence of IL-17,
there is reduced Th17 immunity generated (1), and overall anti-viral Th1 responses are significantly lowered both post-immunization (2) and post-challenge (3), even
in the presence of E2. As a result, there is less protection generated against HSV-2 infection in the FRT. Created with BioRender.
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