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Abstract: Data volumes collected in many scientific fields have long exceeded the capacity of
human comprehension. This is especially true in biomedical research where multiple replicates and
techniques are required to conduct reliable studies. Ever-increasing data rates from new instruments
compound our dependence on statistics to make sense of the numbers. The currently available
data analysis tools lack user-friendliness, various capabilities or ease of access. Problem-specific
software or scripts freely available in supplementary materials or research lab websites are often
highly specialized, no longer functional, or simply too hard to use. Commercial software limits access
and reproducibility, and is often unable to follow quickly changing, cutting-edge research demands.
Finally, as machine learning techniques penetrate data analysis pipelines of the natural sciences,
we see the growing demand for user-friendly and flexible tools to fuse machine learning with
spectroscopy datasets. In our opinion, open-source software with strong community engagement is
the way forward. To counter these problems, we develop Quasar, an open-source and user-friendly
software, as a solution to these challenges. Here, we present case studies to highlight some Quasar
features analyzing infrared spectroscopy data using various machine learning techniques.

Keywords: open source; machine learning; visual programming; data exploration; data analysis

1. Introduction

Spectroscopy offers insight into the chemical and physical properties of materials.
Modern equipment can collect data at rates that make direct interpretation impossible for
humans. For example, a single Fourier-transform infrared spectroscopy (FTIR) imaging
microscope slide scan can generate more than a terabyte of data [1]. Such data volumes are
reasonable and necessary in fields such as biomedical research where sufficient replicates
are required. As a result, data analysis has become the bottleneck of scientific progress in
many fields.

We approach data processing in various ways. Scientists specializing in data analysis
often prefer to code, while non-programmers use various open-source and commercial
software. Each approach has shortcomings, such as the difficulty of using and modifying
lab-specific scripts, adapting to command-line tools, or the cost and inflexibility of closed-
source environments. The use of multiple measurement techniques, common in biomedical
research, results in different output data formats. If each format requires specialized
software, it may be difficult to interpret the combined data.

Experiments require some degree of interactivity. Instrument manufacturers usually
implement practical basic processing and visualization tools for this reason. They are
especially useful for multidimensional data as inspecting a projection along a few variables
(images, volumes or movies) during an experiment to help fine-tune parameters boosts
data quality. However, interactivity is also crucial for data exploration, analysis, and
producing final visualizations.
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Complex, large volumes of data produced by the types of experiments discussed
above requires a statistical approach for real understanding. Baker et al. [2] described a pro-
tocol widely used for the investigation of biological materials with infrared spectroscopy
that is generalizable to most experiments. They divide data analysis into preprocessing,
which addresses common issues with spectral data acquisition, and the application of
multivariate statistical methods, such as clustering or supervised prediction. Some multi-
variate techniques, such as PCA or k-means clustering, are quite commonly used in the
natural sciences, but the recent machine learning and deep learning boom of the tech
industry has also found its way to the natural sciences resulting in new approaches for
data analysis [3–6]. Tools that allow the application of recent machine learning methods
usually require strong programming skills and until very recently user-friendly software
for such studies was lacking.

In view of these issues, we see the highest potential in extendable, well-designed,
user-friendly open-source software and the communities built around developing them
into robust, and widely functional packages. We develop Quasar [7–9] as a solution to
these challenges and present here applications in biospectroscopy data analysis.

2. Methods

Quasar is based on Orange [10–13], a user-friendly, open-source tool for machine
learning and data visualization. Orange provides an accessible and interactive environment
that offers a high degree of functionality while remaining adaptable to specific needs [14].
Orange offers:

• Visual programming: Orange does not impose a preset order of operations. Instead,
it offers components—widgets—that either process, visualize or model inputs. Users
can connect them as they see fit as long as they share connection types. This approach
allows the creation of flexible workflows;

• Immediate feedback: Orange follows the general principle that being able to observe
the effects of actions, and adapt immediately, improves efficiency. The option to
inspect the results at every step of the analysis helps users gain confidence in results
and familiarity with the analysis procedures [14];

• Interactive visualizations: Orange allows interaction with visualized elements, which
can influence further analysis—for example, selecting a point on a scatter plot sends
the associated data to the output. This principle empowers users to further explore
interesting elements identified in the visualization;

• Machine learning: Orange includes components for unsupervised and supervised
modeling and their evaluation. Mainly, it wraps established machine learning libraries
for Python, such as scikit-learn or XGBoost, into user-friendly GUI components. Meth-
ods in Orange include various clustering methods, t-SNE, random forests, support
vector machines, gradient boosting, and neural networks;

• Extendability and modularity: Orange is mainly written in Python, with computa-
tionally intensive parts in C [13]. It builds on Python data science libraries, such as
NumPy, SciPy, Pandas, and scikit-learn. If predefined components do not suffice, the
Python Script widget allows adding custom Python code into the workflow. Addi-
tionally, Orange provides a well-documented programming interface for adding new
components and modules. More than a dozen specialized modules currently exist,
including text processing, gene expression data analysis [15], image analytics [14],
and time series analysis.

Quasar is a packaged distribution of Orange, extended with specific, preselected add-
ons, that we provide as a single installer. Currently, it extends Orange with components
specific to spectral data analysis. The spectroscopy add-on, Orange Spectroscopy, evolved
from the Infrared Orange add-on [16] and shares the same basic features with a plethora of
improvements and new functionality. Compared to Infrared Orange, Orange Spectroscopy
adds new spectral preprocessing methods along with many user interface and general
stability improvements. Since our first report in 2017 [16], we added more than 30,000 lines
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of code into the orange-spectroscopy GitHub repository alone. Quasar’s new components
for spectral data were designed for maximum interoperability with the rest of Orange.
Therefore, all machine learning capabilities of Orange are available to the spectroscopist:
techniques such as clustering or classification can be directly applied to spectral data. We
achieve this by embracing Orange’s Table data structure and conforming to its ways of
data processing.

To extend the data analytics capabilities provided by Orange, Quasar currently adds
tools specialized for spectroscopy in several categories (Figure 1):

• Data input: Quasar supports native data reading from major instrument manufactur-
ers, commonly used exchange data formats and some specialized instruments;

• Spectral preprocessing: Commonly used preprocessing methods for smoothing,
derivatives, baseline removal, normalization, EMSC, ME-EMSC, integration, peak
fitting, etc.;

• Visualization: Plotting widgets for individual spectra, hyperspectral maps with
visible image overlays, and maps of spectral series are available.

We develop Quasar as an open-source project available on GitHub under the GPL 3.0
license. Installation packages are available for major operating systems (Windows, macOS,
and Linux).

Figure 1. The main Quasar window. The left part of the window contains available analysis
components (widgets) organized into categories with the Spectroscopy category open. The right part
of the widow is the workflow editor; the displayed workflow performs basic data inspection.

3. Results and Discussion

This section highlights the capabilities and benefits of visual programming using
Quasar through three case studies. Note that data and experiment types are not restricted
to biospectroscopy; practically any type of data could be analyzed. The workflows we
present include all crucial analysis steps recommended by Baker et al. [2].
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3.1. Case Study 1: Identification and Localization of the Medullas in Human Hair Sections

To showcase unsupervised learning on spectral data with Quasar, we will use an FTIR
hyperspectral dataset of multiple hair sections measured in transmission mode as described
in detail in the study of Sandt and Borondics [17]. The dataset contains absorbance values
in the 4000–800 cm−1 range. Figure 2 shows how Quasar allows identification of interesting
groups of spectra: in this case, detecting the hair medulla. In the workflow, we used
unsupervised learning—clustering—twice: first to remove physical variations such as the
background or scattered edges, and then, to detect variations in the chemical composition
inside the hair sections. Typically, we would use thresholds according to the intensity
(the Select Rows widget in Quasar) to remove the background. On this dataset, k-Means
clustering provided the separation we required.

Figure 2. An unsupervised analysis on a dataset of multiple hair sections. The HyperSpectra (box a, left) displays integrals
of the spectral content. The first k-Means clustering outputs three groups of spectra based on their spectral similarity.
As these groups correspond to sample morphology well (HyperSpectra, box a, right), selecting (Select Rows) only the
innermost removes both the background and the edges (where scattering occurs). After preprocessing (a wavenumber
region selection and second derivatives; Preprocess Spectra, box b), k-Means clustering discovers a cluster at the center of
the largest cross-section (HyperSpectra, box c, left). A selected spectrum from the cluster in non-derivative space, shown in
the Spectra widget (box c, right), contains a lipid signature characterized by peaks between 3000–2800 cm−1.

To achieve a useful identification of groups of similar spectra, we clustered second
derivatives of original spectra. Therefore, the output—spectral graph in the last Hyper-
Spectra widget in the Figure 2c—is shown in the derivative space. Spectra in the derivative
space are often harder to interpret. Thus, to investigate the selected spectrum of the medulla
in the space of original data, we used a Spectra with the selected spectrum as its subset
input; there, we were able to observe the selected spectrum before any processing. The
spectrum reveals a characteristic lipid signature. Even though spectra in the dataset are
saturated in the Amide I and II regions, the methods we employed were robust enough to
identify a known biological structure, i.e., the medulla.
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The case study showcases how immediate feedback influences the analysis. If we did
not preprocess the data before the second k-Means clustering, the clusters obtained are not
meaningful. On these data, seeing clustered display (in Hyperspectra) while searching for
appropriate preprocessing proved invaluable: an interesting clustering result steered the
analysis in a particular direction.

We used k-means clustering to find groups of similar spectra. Straightforward al-
ternatives for grouping, such as hierarchical clustering or DBSCAN, would likely yield
similar results, but k-means was computationally the most efficient. Furthermore, dimen-
sionality reduction techniques such as principal component analysis, multidimensional
scaling (MDS), or t-distributed stochastic neighbor embedding (t-SNE) applied before
grouping could help better understand the structure within groups. Quasar offers all
listed techniques.

One of the design principles of Quasar is that anything displayed can be analyzed
further. In the workflow shown in Figure 3, we applied the principal component analysis
(PCA) to clusters obtained in Figure 2. We needed to apply PCA to the original spectra, not
the derivatives used for clustering, to understand the cluster’s spectral characteristics. We
thus merged the resulting clusters with the original data and, after preprocessing, applied
PCA. In Figure 3c, a Scatter Plot shows that the first principal component easily identifies
the cluster, and the Spectra shows the corresponding loadings with the lipid signature.

Figure 3. An unsupervised analysis on a section of multiple hair samples, continued from Figure 2. Here, a Merge Data (box
a, left) widget merges the clusters obtained with the previous data for further analysis. The clusters merged with original
spectra may be seen in the Hyperspectra widget (box a, right). Here, Preprocess Spectra baseline-corrects and normalizes
the data (box b). We then investigate results of the PCA : in the Scatter Plot (box c, left), the red cluster has high PC1 scores,
whose loadings, shown in the Spectra (box c, right), contain a characteristic lipid signature between 3000–2800 cm−1.
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3.2. Case Study 2: Building a Drug Resistance Prediction Model

Here, we apply supervised learning on FTIR spectra obtained from three different cell
types, aiming to develop a statistical model for predicting resistance to all tyrosine kinase
inhibitors (drugs aimed for treating chronic myeloid leukemia) conferred by the T315I
mutation in the BCR-ABL gene [18]. The spectra in the dataset correspond to individual
cells measured with synchrotron radiation FTIR microspectroscopy in transflection mode,
each described by absorbance values in the 1800–900 cm−1 range. Figure 4 shows the
workflow and its most important components. After preprocessing, we evaluated two
supervised prediction methods, logistic regression and random forests, using five-fold
cross-validation. Looking at the Test and Score widget, it is clear that random forests
performed better for all calculated metrics.

Next, we closely investigated the prediction by random forests. The Confusion Matrix
widget shows that random forests perfectly predicts the “Resistant” class, but sometimes
mixes the “Wild-type” and “Bcr-abl” classes. Here, further analysis could show why
these two classes are similar; if we selected mispredicted classes in the Confusion Matrix,
they would be sent to the output, where we could analyze them further. To interpret
the random forest model, we ranked wavenumbers according to their importance and
displayed these ranks as Spectra. We can conclude that the region from 1600–1500 cm−1

is the most important for prediction. This region partially represents the protein spectral
signatures. Interestingly, the wavenumber regions at the edges have high importance,
which might be due an artifact.

Figure 4. A workflow for supervised analysis of three cell lines. The first Spectra (box a, left) displays the original
data, colored by the cell line. The second Spectra (box a, right) shows data after preprocessing: Preprocess Spectra
applies rubber band baseline and vector normalization. The Test and Score (box b, left) widget shows cross-validated
prediction quality of two methods: Logistic Regression and Random Forest. The Confusion Matrix (box b, right) widget
highlights errors from Random Forests : for the “Resistant” class, there were no errors. Finally, the Rank (box c, left) shows
wavenumber importance for the random forest classifier; these are also shown in the Spectra (box c, right) widget: the
region 1600–1500 cm−1 is the most important for classification.
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Now that we have established the Quasar workflow, we could modify its settings
and see the downstream effects. For example, changing preprocessing would influence
the evaluation results, mispredictions, and the importance of features. Such exploratory
modifications and observing their results can help gain valuable insight into the data.

Quasar implements current general-purpose supervised learning techniques, such
as support vector machines, neural networks, and gradient boosting, which could have
been used in this case study. Other modifications to the workflow, such as dimensionality
reduction before model induction, could also benefit the analysis. Additionally, we could
have inspected the obtained random forests further by looking into individual trees. The
chosen models could also be saved and reused later to classify new measurements.

3.3. Case Study 3: Protein Secondary Structure Peak Fitting

Next, we highlight how peak fitting capabilities [19] are integrated into a larger work-
flow in Quasar using spectra from a study on human cirrhotic liver tissue [20] measured
with FTIR and annotated according to the majority presence of a chemical compound (col-
lagen, glycogen, lipids, or DNA) in that part of the cell. In a recent paper, Stani et al. [21]
established a correlation between two distinct protein spectral regions (Amide I and Amide
III) for collagen during thermal degradation. In their analysis, they use spectral prepro-
cessing and peak fitting to extract secondary structure characteristics. Figure 5 shows the
workflow which implements their described peak fitting method in Quasar.

Figure 5. A workflow for protein secondary structure peak fitting. The Preprocess Spectra cuts the data to the Amide I or
Amide III region, applies rubber band baseline and min-max normalization. The Average Spectra computes the average
spectrum. The first Peak Fit (initial fits the average spectrum with constraints and default initial values. The second Peak Fit
(box a) computes the fit for each spectrum, using initial amplitude and sigma values from the average fit. The Edit Domain
labels the peak area features by center wavenumber. The Merge Data combines the Amide I and Amide III peak fit datasets.
Finally, the Scatter Plot widgets (box b) show the relationship between selected peak areas for the entire dataset.
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After filtering the dataset to select rows labelled as “collagen”, we split the spectra into
two sub-regions, Amide I (1750–1580 cm−1) and Amide III (1310–1175 cm−1), and identi-
cally preprocessed them with rubber band baseline correction and min-max normalization.
We configured peak fitting, bands, components, and fitting constraints as described in [21],
and obtained starting parameters from an initial fit performed on the average spectrum for
the final full-dataset fit. The Peak Fit widget (Figure 5a; Amide III) shows the resulting fits
for some example spectra, while fit result parameters, total fits, and residuals are output
for the entire dataset.

Next, we can analyze the resulting fit parameters as any other feature in Quasar.
Stani et al. [21] found a positive correlation between the Amide I 1690 cm−1 and the Amide
III 1284 cm−1 components, assigning both to the carbonyls which comprise an intra-strand
hydrogen bond network stabilizing the triple-helix fibrils. Despite the lack of perturbation
in the dataset used here, we also observe a positive correlation between these component
areas (Figure 5b) within the natural variation of the protein. We also find a correlation
between the 1660 and 1240 cm−1 components, assigned to the well-known inter-strand
hydrogen bonding in the triple-helix.

As the fit results are integrated into the Quasar workflow they can be further explored
using approaches similar to the previous case studies.

3.4. Limitations and Further Development

Quasar, similarly to most general-purpose scientific software such as R, Matlab, or
SciPy, requires the complete dataset in memory. Big data require specialized libraries that,
instead of loading the entire dataset into memory, analyze the data while passing through
it directly on a disk. The authors of the memory-efficient SIproc library [1] report that the
rate of reading through the data is commonly their libraries’ speed-limiting factor. Still,
their library only provides a programmatic interface excluding non-experts. Following the
same philosophy, we are currently changing Orange and Quasar extensions to support
out-of-memory data handling.

3.5. Current Project Reach

Currently, we know of 35 published scientific publications that successfully used
Quasar or the Orange Spectroscopy add-on for data analysis (an up-to-date list is available
at https://quasar.codes/publications/, accessed on 1 September 2021). Workshops about
spectral data analysis with Quasar took place in Italy, Slovenia, Norway, France, Belarus,
Canada, Australia, and, since COVID-19, online with participants from the UK, Sweden,
Germany, and Egypt.

4. Conclusions

Here, we introduced Quasar, a software based on Orange, to reform data analysis in the
natural sciences. Currently, Quasar provides tools and functionality aimed at spectroscopy
data analysis and combines them with powerful machine learning methods. Thanks to the
visual programming approach of Orange, scientists without any coding background can
build flexible data processing workflows and explore various analysis ideas interactively.
With the expansion of the Quasar community, and contributions from expert developers to
the open-source code, functionality can be extended towards new fields, measurement and
data analysis techniques. The free availability of Quasar addresses bottlenecks in adoption.
In conclusion, we strongly believe that this approach will empower scientists to better and
easier understanding of experimental data.

Author Contributions: Software development: M.T., S.T.R. and F.B.; data acquisition and analysis:
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Democratized image analytics by visual programming through integration of deep models and small-scale machine learning.
Nat. Commun. 2019, 10, 1–7. [CrossRef] [PubMed]

https://github.com/Quasars/supp-cells-2021
http://doi.org/10.1039/C6AN02082H
http://www.ncbi.nlm.nih.gov/pubmed/27924319
http://dx.doi.org/10.1038/nprot.2014.110
http://www.ncbi.nlm.nih.gov/pubmed/24992094
http://dx.doi.org/10.1039/C8AN01495G
http://www.ncbi.nlm.nih.gov/pubmed/30644947
http://dx.doi.org/10.1002/jbio.202000204
http://www.ncbi.nlm.nih.gov/pubmed/32844585
http://dx.doi.org/10.1016/j.agwat.2020.106303
http://dx.doi.org/10.1016/j.chemolab.2021.104390
https://quasar.codes
https://github.com/Quasars/orange-spectroscopy
http://dx.doi.org/10.5281/zenodo.5137807
https://orangedatamining.com/
https://github.com/biolab/orange3
http://dx.doi.org/10.1093/bioinformatics/bth474
http://www.ncbi.nlm.nih.gov/pubmed/15308546
http://dx.doi.org/10.1038/s41467-019-12397-x
http://www.ncbi.nlm.nih.gov/pubmed/31591416


Cells 2021, 10, 2300 10 of 10

15. Stražar, M.; Žagar, L.; Kokošar, J.; Tanko, V.; Erjavec, A.; Poličar, P.G.; Starič, A.; Demšar, J.; Shaulsky, G.; Menon, V.; et al.
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