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Abstract

Machine learning algorithms, including recent advances in deep learning, are promising for

tools for detection and classification of broadband high frequency signals in passive acoustic

recordings. However, these methods are generally data-hungry and progress has been lim-

ited by challenges related to the lack of labeled datasets adequate for training and testing.

Large quantities of known and as yet unidentified broadband signal types mingle in marine

recordings, with variability introduced by acoustic propagation, source depths and orienta-

tions, and interacting signals. Manual classification of these datasets is unmanageable with-

out an in-depth knowledge of the acoustic context of each recording location. A signal

classification pipeline is presented which combines unsupervised and supervised learning

phases with opportunities for expert oversight to label signals of interest. The method is illus-

trated with a case study using unsupervised clustering to identify five toothed whale echolo-

cation click types and two anthropogenic signal categories. These categories are used to

train a deep network to classify detected signals in either averaged time bins or as individual

detections, in two independent datasets. Bin-level classification achieved higher overall pre-

cision (>99%) than click-level classification. However, click-level classification had the

advantage of providing a label for every signal, and achieved higher overall recall, with over-

all precision from 92 to 94%. The results suggest that unsupervised learning is a viable solu-

tion for efficiently generating the large, representative training sets needed for applications

of deep learning in passive acoustics.

Author summary

Machine learning algorithms have proven to be effective for tools for detection and classi-

fication tasks in many fields, however, these processes are generally data-hungry and their

use in marine acoustics has been limited by a lack of large labeled datasets for algorithms

to learn from. In underwater acoustic recordings, many signals generated by animals,

human activities and physical processes mingle together, and their sounds can change

depending on ocean temperatures, locations, and behavior. Manual classification of these

datasets is unmanageable without an in-depth knowledge of the acoustic context of each
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recording location. This paper presents a process which combines unsupervised and

supervised learning phases and expert oversight to generate and use large datasets for

acoustic classification of marine mammal and human-generated signals. Unsupervised

learning is used to automatically generate the large training datasets needed to teach a

supervised learning algorithm to correctly classify seven different signal types commonly

recorded in the Southern California Bight. Using this process, researchers with large unla-

beled acoustic datasets can begin to take advantage of widespread advances in machine

learning.

This is a PLOS Computational Biology Methods paper.

Introduction

Many high frequency, broadband, impulsive sounds are present in marine environments.

Common sources include echolocating cetaceans, vessels, and echosounders. Passively record-

ing these underwater sounds is an effective strategy for quantitative autonomous monitoring

[1,2], however the recordings are acoustically complex and unlabeled. Moreover, advances in

the longevity, sampling rates and storage capacity of passive acoustic recording technologies

now facilitate the collection of extremely large datasets across widening frequency bands with

high signal density, diversity and event overlap [3]. There is a growing need for detection and

classification strategies capable of efficiently analyzing large, varied, unlabeled recording data-

sets for known and novel signals (e.g. [4]).

Evolution of passive acoustic data analysis

Expert analysts have been relied upon to detect and classify events of interest in large acoustic

datasets since the 1970s [5], typically by visually scanning through spectrograms and noting

times of individual signals of interest or sets of co-occurring detections (often termed events,

acoustic encounters, or bouts). Manual analysis is flexible, effective, and remains a key aspect

of many recent passive acoustic monitoring studies [6–10]. Analysts are trained to recognize

one or more signal categories of interest, and over time they gain an understanding of the

within type variability of these signals, recognize related variants, and learn to minimize confu-

sion related to environmental sounds and non-target signals [11]. For example, an analyst may

become an expert in identifying and distinguishing regional beaked whale species, accounting

for differences in noise, received level and orientation, and assigning any non-beaked whale

signals to a generic “false” category [12–14]. This work requires careful attention to detail, and

repeat scans through a dataset may be required if multiple signal categories are to be detected

in this way. It is common to mark acoustic encounters or presence/absence of calls within a

standard time interval rather than annotating individual signals [15], both for efficiency and

broad statistical analyses, which may not require signal-level detail. However, these methods

may limit more detailed interpretations of the data such efforts to infer species-specific densi-

ties, behavioral states, group sizes, or document mixed-species events. These types of analyses

would benefit from more information on the quantity, rate of occurrence, acoustic characteris-

tics and variability of detected signals. Manual labels vary in identifications and sensitivity ana-

lysts [11,16], and although analysts are highly-trained, the true acoustic sources are rarely
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known, and the best approximation of a ground-truth is taken to be consensus between multi-

ple expert analysts (e.g. [17]).

Individually labeling echolocation clicks quickly becomes intractable in most monitoring

applications, due to the large quantities of events. Automatic detectors have been developed to

identify acoustic events that meet certain heuristics [18]. Classification steps often follow,

designed to discard false detections associated with non-target sources and to further identify

subcategories such as distinct species, signal variants, behaviors or orientation with respect to

the recorder. These detectors and classifiers are typically tuned by expert analysts to detect par-

ticular species or signals of interest, based on their knowledge of the typical features of their

target signal and the range of variability expected. Multiple detectors may be run, each tuned

for a different signal type, and each attempting to reject different non-target signals.

Machine learning: Promise with challenges

Machine learning methods have emerged as effective tools for classification in otherwise-

intractable large passive acoustic datasets [19–21]. However, challenges related to production

of labeled training data have limited advances hindered the adoption of promising deep learn-

ing methods, particularly for classification of high frequency broadband signals. Most marine

mammals cannot be placed in a controlled environment for recording purposes, and even if

they were, the complex, variable behaviors and ocean conditions that profoundly influence

recorded signal characteristics would not be replicated. Major obstacles in labeled dataset

development include poor understanding of the full range of possible classes, and an inability

to develop ground truth label sets large enough for training and evaluating these often data

hungry algorithms [22,23].

The classification task requires a priori knowledge of the expected classes, specific features

associated with each signal class of interest, and the allowable variability of those features [24].

These classes must be defined, typically by an expert human analyst. As the quantity of detec-

tions, variability of datasets, and number of possible classes increase, the task of delineating

classes and allowable ranges of within-type variability becomes more challenging. Acoustic

datasets often include a mixture of well-defined and poorly-defined signal types. For example,

sperm whales and some beaked whales produce well-characterized echolocation signals

[25,26], while many delphinid species’ echolocation signals are only weakly parameterized,

due to factors such as limited or overlapping spatial distributions, high signal variability, simi-

larity between species, and limited signal information density. In addition, variation from

canonical descriptions may occur across habitats, and the range of expected species and

sources in a dataset may shift over time. Class definitions are further complicated by novel

recording environments, noise, and transmission loss effects, as well as recording system dif-

ferences [27].

The use of passive acoustic data for quantitative monitoring (e.g. densities, abundances, or

any other unit intended to be comparable over time and between locations) requires estima-

tion of classification accuracy for each target signal, which would typically be accomplished by

comparing a representative subset of the classifications with a manually-verified ground truth

[18,28]. However, with millions or more detectable impulsive signals across a large number of

possible classes in a typical long-term acoustic recording, development of a manual ground

truth becomes extremely difficult, time consuming, and potentially subjective. Recent

advances toward density and abundance estimates using passive acoustic data using cue-

counting methods rely on greater levels of label detail, either at the detection, short time win-

dow, or dive-start level [13,29–31], as well as the ability to tease apart overlapping events, such

as a beaked whale encounter obscured by delphinids, or sperm whale echolocation mixed with
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ship noise. However, due to the short duration and minimal information contained in each

detection, it is nearly impossible for analysts to make consistent detection-level determinations

as to whether or not a signal has been correctly labeled. Contextual information, such cue rate

and proximity of similar signals, is typically relied upon to make manual classification deci-

sions [6], but context is lost when data are reduced to a set of independent automated detec-

tions. Conversely, too much reliance on context when designing automated classifiers can

cause rarer signal types to be overlooked in cases where multiple signal types occur simulta-

neously. Recent studies have successfully used context to improve signal detection and reduce

false positives, typically by increasing detector sensitivity during time periods with detections

[32,33]. However, effective use of context in automated multi-species classification presents

additional challenges related to defining probabilities of species and signal co-occurrence, par-

ticularly in high diversity settings.

Unsupervised learning used in combination with deep learning, and “human in the loop”

review, may provide an approach for training and validating the next generation of acoustic

signal classifiers. Rather than relying on analysts to define expected classes, unsupervised clus-

tering algorithms can learn classes directly from one or more datasets of interest, disentangling

within-type from between-type variability and determining the allowable distributions of sig-

nal features in each category. Prior work has demonstrated the use of unsupervised clustering

to learn echolocation click classes across multiple acoustic monitoring sites [21]. In the present

study, a workflow is described which integrates the unsupervised learning process with subse-

quent deep learning steps to train a classifier without the use of a manually developed training

sets. This process can be used to automatically identify the major classes of impulsive biological

and anthropogenic signals detected within one or more datasets, learn the characteristics of

each class, and use learned characteristics to classify detections in a novel dataset.

Methods

Workflow description

A description of machine-learning supported, human-in-the-loop detection and classification

workflow follows (outlined in Fig 1). This workflow consists of 4 main steps: (1) generic

impulse detection, (2) unsupervised clustering, (3) deep network training, and (4) classifica-

tion of novel signals. The general design and intuition is described for each step, followed by

the specific parameterization used in this case study. A detailed description of the study dataset

concludes this section. All steps are implemented with user-interfaces within the publicly avail-

able acoustic data processing software package Triton [34] (github.com/

MarineBioAcousticsRC/Triton), written in MATLAB [35], with the Signal Processing and

Machine Learning Toolboxes. It can be run as described on a desktop personal computer with

32 GB of RAM with a 4-core CPU. An earlier version of this pipeline implemented in Python

2.7 using Keras [36] with Tensorflow [37] achieved similar results and performance.

Generic impulse detection

In the first step of the workflow, a permissive, generic impulse detector is run. In this study, an

energy detector implemented in Triton was configured to band-pass the data with a five-pole

Butterworth filter from 5 to 100 kHz, and return signals with a received level�120 dB peak-

to-peak re 1μPa2 and durations between 30 and 1200μs. Detections occurring within 100μs of

one another were merged. (More information on detector specifics and implementation can

be found in [21], and with implementation, source code and wiki available at github.com/

MarineBioAcousticsRC/Triton).
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The goal of this detector is to return all acoustic transients that exceed a static received level

threshold and fall within very broad peak frequency and duration ranges. The rationale for

this approach is that estimating false negative rates is more difficult than estimating false posi-

tive or misclassification rates [29]. False positive and misclassification rates can be estimated

by manually reviewing a representative subset of detections. False negative rate estimation

requires review of raw acoustic data to identify true events which met the intent of the imposed

criteria but were missed. By erring on the side of detecting “everything” and then relying on

algorithms to recognize the classes of signals, the detection and classification processes are less

intertwined, and error rates may be more easily quantified. Additionally, this approach

Fig 1. Flowchart describing the machine learning-supported workflow. White boxes indicate data inputs and

produces, black boxes represent processing steps applied to the data. Gray circles indicate steps involving analyst

review.

https://doi.org/10.1371/journal.pcbi.1009613.g001
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decreases processing times by reducing the need for multiple passes through the data with dif-

ferently-tuned detectors.

The assumption that all target signals exceeding the minimum received level are detected

can be checked by plotting the number of detected events as a function of received level (Fig

2), and verifying that the number of detections increases exponentially as the minimum

received level threshold is approached [38]. Minor deviations from this relating to frequency

dependent attenuation of different signals types, non-ideal bathymetry, or non-uniform source

distributions may arise, particularly at higher received levels where sample sizes decrease.

However, flattening or declining detection counts at the low end of the received level distribu-

tion is a clear indication that qualified events above the minimum received level threshold are

being missed by the detector, typically due to masking. In these cases, if detector predictability

is a priority in later steps, a simple solution may be to raise the minimum threshold to a level

where signals are consistently detected.

Unsupervised identification of signal classes. The generic detector applied to a large pas-

sive acoustic dataset may return thousands to hundreds of thousands of qualifying detections

per day, depending on the recording environment. Unsupervised clustering is used to identify

consistent categories of signals within this set of events. The goal of this step is to develop a

training set from which to train a classifier. A detailed treatment of this protocol can be found

in Frasier et al. [21].

Calculation of distances. To automatically identify the dominant signal types in a dataset,

features of interest must be compared across a subset of detected events by computing a metric

of similarity or “distance” calculated between each pair of events in the detection subset

Fig 2. Modeled delphinid echolocation click received level distributions (solid black line) predict an exponential

increase in the number of clicks detected (approximately linear in log space shown here) as received levels decline,

assuming animals are uniformly distributed on average around a stationary sensor [38,39]. This shape is driven by an

inverse relationship between range and received level (although signal directionality and other factors can introduce

additional variation) and by the area monitored, which increases with the square of the monitoring radius, leading to

greater numbers of animals at large ranges. Circles illustrate a typical “real-world” received level distribution from a

click detector, in which detections approaching the intended threshold (115 dBPP re 1μPa in this case) begin to be

systematically missed. Enforcing a higher minimum amplitude threshold at which detection counts are still increasing

(e.g. dashed line at 120 dBPP re 1μPa) greatly simplifies subsequent analyses such as species-specific missed-rates and

density estimates. More information on the model used in this illustration is available in [38].

https://doi.org/10.1371/journal.pcbi.1009613.g002
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(Fig 3). The result can be imagined as a network in which each detection represents a “node”,

and the distance between each pair of nodes is dictated by their degree of similarity. Highly-

similar nodes cluster together, while highly dissimilar nodes are pushed far apart. For a fully

connected set of N events in which a distance score is computed for every possible pair of

events, the number of distances to compute is N2/2 (assuming a non-directional metric, i.e.

that the distance between A and B is equivalent to that between B and A). This exponential

relationship quickly makes subsequent computational analyses expensive and intractable for

more than a few thousand detections. Furthermore, individual detections are short and highly

variable, with limited information content. Rather than comparing millions of individual

detections across an entire dataset, a two-pass approach is used to reduce the size and com-

plexity of the dataset to be clustered, while amplifying and learning from the common features

of similar detections which are proximal in time.

To generate distance metrics, signals are most easily compared in the frequency domain,

avoiding the need to temporally align detected waveforms. If time domain comparison is

desired, comparison can be performed using a signal envelope such as that estimated by a Hil-

bert transform, to minimize challenges related to phase alignment. Pairwise correlation dis-

tance [40] provides a computationally cheap metric for comparing shapes, and is less sensitive

Fig 3. A similarity score based on correlation in time and frequency is used to associate similar signals and

distinguish dissimilar signals. In this illustration, similarity between 100 detections is displayed as a symmetric

similarity matrix (A). The similarity between detection X and detection Y is given by the color of grid cell (X,Y) on a

scale between 0 (low similarity) and 1 (high similarity). Black squares along the diagonal represent comparisons of

each detection to itself, and are ignored. The 90th detection (a delphinid echolocation click) indicated by the black

arrow in (A) is compared to two other detections: The blue triangle denotes a highly-similar detection, while the red

square denotes a dissimilar detection. In (B) the same dataset is visualized as a network in which similar detections are

attracted to each other and dissimilar detections repelled. The black node represents the 90th detection. Waveforms

(C), waveform envelopes (D) and spectra (E) are shown for the three detections, with the original detection in black,

the similar detection in blue, and the dissimilar detection in red. Waveforms and waveform envelopes have been offset

by a constant value for readability. Plots C-E indicate that the detections with high similarity scores are alike in the

time and frequency domains, while detection with a low similarity score is quite different from the other two.

https://doi.org/10.1371/journal.pcbi.1009613.g003
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to amplitude differences and transmission loss effects than simpler metrics such as Euclidean

distance.

Throughout the unsupervised learning process, the correct number of signal types is not

known a priori, therefore clustering algorithms which do not require the number of categories

to be specified are preferable. These algorithms, generally termed “agglomerative,” begin by

assuming that each node belongs to its own cluster [41]. Nodes are then successively merged

into common clusters following various strategies. The Chinese Whispers (CW) algorithm

[42] is used in the described workflow. This approach iteratively assigns each node to the cate-

gory to which it is most strongly connected, until reassignments cease or a maximum number

of iterations is reached.

Unsupervised clustering phase 1. It is assumed that in a short time interval (bin), detections

will fall into a smaller number of classes than are present in the entire dataset, because the like-

lihood of observing multiple distinct signal classes decreases with the duration of the bin.

Nonetheless, it is not uncommon to observe multiple signal types simultaneously. Unsuper-

vised clustering is initially applied to sets of events detected in successive time bins to identify

and summarize the signal type(s) in each bin.

Once similarities have been calculated between all nodes in a bin, edge pruning is used to

reduce the size of the distance matrix input into the clustering algorithm. Only the highest 2 to

10% of similarity scores are retained for clustering purposes, with all weaker similarities

remaining unspecified. This approach improves cluster formation but can result in exclusion

of highly dissimilar events from any identified clusters [21]. Additional strategies for reducing

network size include merging detections with extremely high similarity and selecting a ran-

dom subset of detections when counts exceed a maximum threshold (104 in this study).

Mean spectra, waveform envelopes and inter-detection interval (IDI) distributions are cal-

culated for each bin-level cluster formed. A time bin may contain multiple clusters, which may

represent different signal types, or variants of the same signal type. In some cases, disimilar

and poor quality detections in sparsely-occupied time steps may fail to form a cluster.

Unsupervised clustering phase 2. Bin-level averages are input into a second round of unsu-

pervised clustering which operates on binned averages across the full range of the input data-

set. On a desktop computer, 20 to 30 thousand bins approach an upper limit for simultaneous

clustering in this phase. When inputs exceed this number of bins, a random subset may be

selected. The set of binned clusters in this second round is generally limited to bins with a min-

imum number of events feeding into the average. A minimum threshold between 50 and 200

clicks per five minute time bin is used (an actively echolocating dolphin might produce one

click every 0.06 ms, or 5000 clicks per 5-minute bin). Poor quality bins can be pruned from the

final phase 2 clusters by removing a percentage of the most weakly-connected nodes from

each cluster.

Expert review. Upon completion of the second stage of clustering, time-binned averages

have been partitioned into a set of signal types representative of the major categories observed

in the input dataset. At this stage an experienced analyst can look at the signal types and assign

them where possible to known sources (e.g. ship, Cuvier’s beaked whale, Risso’s dolphin) or

otherwise label them (e.g. ‘unknown delphinid’). These labels can be propagated down to all of

the individual signals contained in each reviewed cluster for detection-level learning.

Deep learning from identified signal categories. Once detections have been partitioned

into categories by the unsupervised clustering workflow, the partitioned data can be used to

train a conventional supervised classifier of the user’s choice, operating either on individual

detections or binned averages. Deep neural networks lend themselves to classification based

on entire signals and multiple inputs, minimizing the need for feature selection. For accurate

PLOS COMPUTATIONAL BIOLOGY A machine learning pipeline for classification of echolocation clicks in large datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009613 December 3, 2021 8 / 26

https://doi.org/10.1371/journal.pcbi.1009613


classification, it is essential to retain both target and non-target classes in the training set [43].

Training, validation and test sets are formed from the input dataset.

Individual detections. In the case of individual detections, the waveforms and spectra of

individual clicks contributing to each of the mean spectra are extracted from each binned clus-

ter. The entire time series snippet of a detection (1 ms duration) can be concatenated with the

spectra to form the network training input (using 500 Hz frequency bins in this study; Fig 4).

Alternatively, the input could be limited to either the time series or the spectra, or might

include the time series envelope. Input spectra are standardized by subtracting a typical mini-

mum value, and dividing by a maximum. Input waveforms are standardized by dividing by a

typical maximum value. This approach retains some information about relative amplitude

amongst detections, which can be useful features for classification, while reducing the range of

observed values to a range better suited for network training (most values within the -1 to 1

range).

One advantage of classifying individual detections is that once the network is trained, it

allows any novel input signal to be classified without a clustering step. In this case, clustering is

only used for network training, and once trained, the network can simply classify new, simi-

larly-standardized detections.

Binned averages. In the case of time binned cluster averages, the network inputs consist of

concatenated mean spectra, mean waveform envelopes, and IDI distributions (Fig 5). By oper-

ating on clusters formed from multiple similar events co-occurring within short time intervals,

this method includes some contextual information and the inclusion of IDI distribution as an

input brings in temporal information not available on the scale of individual events. This addi-

tional information typically leads to higher classification accuracy; however, the resulting

labels apply only to averages. The labels can be propagated to individual detections included in

each average, however any detections which were not assigned to a phase 1 cluster cannot be

classified with this method. These detections may include low quality detections dissimilar

from other events in a time interval, events that were part of small, discarded clusters, and

events that were excluded by subsampling in the case of too many events in a single time inter-

val. This approach also requires novel input datasets to be processed through unsupervised

clustering phase 1, to produce bin level averages, prior to classification.

Fig 4. Input vectors for detection-level neural network training, consisting of concatenated spectra and

waveforms of 140,000 detections (20,000 per class). Inputs are normalized as shown prior to being fed into the

neural network.

https://doi.org/10.1371/journal.pcbi.1009613.g004
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Network architecture. The underlying deep neural network structure is fundamentally the

same for both individual detection and binned average options. Target labels are encoded as

numbers, from 0 to N-1, where N is the number of target classes. Relatively simple deep net-

work architectures are used, consisting of four 512-node fully-connected deep layers with 50%

dropout between layers, leaky ReLU activations [44] and a softmax output layer [45]. Some sig-

nal types are far more common than others, therefore data may be subsampled and re-sampled

as needed to create balanced training and testing sets (see discussion for implications of

resampling).

Case study. High frequency transient signals from sources including echolocation clicks

from passing cetaceans as well as non-biological sources including boats and sonar were

detected in two continuous passive acoustic recordings, collected at two distinct sites (E and

H) in the southern California Bight in two different years (Fig 6 and Table 1; Data deposited in

the Dryad repository: https://doi.org/10.6076/D1G01N; [46]) using High-frequency Acoustic

Recording Package (HARPs; [47]). The unsupervised learning workflow was used to find the

common signal types in the site H dataset, which were then used to train a deep network to

classify the identified types. The classifier performance (precision, recall and confusion) was

evaluated on the dataset collected at site E, by comparing the neural network labels to manual

labels both at the five-minute bin level, and at the level of individual detections. Time bin-level

labeling is a detection batching mechanism. Bin-level labels are applied to a cluster of similar

detections, represented by one set of mean features or a distribution of feature values, occur-

ring within some time window. Mean features tend to be more stable with lower noise than

features of individual detections (Figs 4 vs. 5). Each bin-level label corresponds to a variable

number of detections included in the mean or distribution. An alternative approach is to batch

signals based on order, such as classifying the mean of 100 successive signals. A nice property

of time-based binning over sequential batches is that it does not require an implementation of

rules about how to handle gaps between encounters, and the bins can be related to density esti-

mation problems in later steps. Detection-level labels are more intuitive, with a one-to-one

match between labels and events.

The generic energy detector was used to detect signals with received levels�120 dB re 1μPa

peak-to-peak. In Phase 1 of the unsupervised clustering step, detections were compared based

Fig 5. Input vectors for bin-level neural network training, consisting of concatenated mean spectra, IDI

distributions, and mean waveforms of 14,000 bins (2,000 per class). Inputs are normalized as shown prior to being

fed into the neural network.

https://doi.org/10.1371/journal.pcbi.1009613.g005
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on spectra. Phase 1 clusters were only retained if they contained at least 50 detections. In unsu-

pervised clustering, bins were compared on mean spectra and waveform envelopes. Phase 2

clusters were only retained if they contained at least 50 nodes. An edge-pruning threshold of

90% was used in both phases 1 and 2. Phase 2 clustering was repeated 5 times and the best par-

tition was selected as that which minimized the normalized mutual information criterion

[21,48] and the most weakly connected 10% of nodes were removed to form the final set of

clusters.

For each signal class in this study, events were split into encounters separated by a mini-

mum of 15 minutes without detections of that class, and these encounters were randomly

assigned to training, test or validation datasets, with 60% of the dataset used for network train-

ing, 10% for validation and 30% retained for testing. Two separate networks were trained, one

on individual detections, the other on binned averages, to compare the strengths and limita-

tions of the two approaches. To form the bin-level and detection-level training sets, 2,000 bins

or 50,000 detections respectively were randomly selected from across the training encounters

for each signal class. The evaluation sets were composed of 1000 bins, and 25,000 detections

respectively for each signal class, randomly selected from the evaluation encounters. For clas-

ses with few examples, resampling was allowed to reach the required number of examples.

Fig 6. Map of HARP monitoring sites E and H, located in the Southern California Bight. Site depths are 1,300 m

and 1,000 m respectively. Base map provided by [49] (https://www.bodc.ac.uk/data/open_download/gebco/gebco_

2021_sub_ice_topo/zip/).

https://doi.org/10.1371/journal.pcbi.1009613.g006

Table 1. Deployment and detection information.

Site Location (lat/

lon)

Depth

(meters)

Recording date range (mm/dd/yyyy) Days of

data

% Time bins containing > = 50

detections

Number of

detections

H 32˚ 50.7’ N

119˚ 10.5’ W

1000 02/22/2017–06/06/2017 105 60.28 38,031,195

E 32˚ 50.5’ N

119˚ 10.2’ W

1300 11/28/2018–12/29/2018–01/25/2019–04/06/

2019

122 55.68 38,127,204

https://doi.org/10.1371/journal.pcbi.1009613.t001
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Networks were implemented in MATLAB using the Deep Learning Toolbox. In both the

bin and detection-level cases, the deep networks consisted of an input layer, four 512-node

fully-connected layers with 50% dropout between layers, and ending with a softmax output

layer. Leaky Rectified Linear Unit activations were used [44] and the networks were trained

with a constant learning rate of 0.0003 using a root mean square propagation optimizer. This

simple design was used because it is extremely common and straightforward to implement in

most neural network frameworks. A width of 512 was selected because it was the first power of

two larger than the length of the input vectors.

Binned averages were normalized on a scale of 0–1 for network training purposes, while

detections were standardized by subtracting a static low range value (70 dB re 1 μPa2/Hz) and

dividing by a high range value (130 dB re 1 μPa2/Hz). Deep networks were trained with a

batch size of 100 for bins, and 2000 for detections, with a patience of three training epochs,

after which if performance on the validation set was not improving, training ceased. A maxi-

mum of 15 epochs were allowed.

Results

Detection

Recording durations were 105 days at site H and 122 days at site E respectively (Table 1), with

total approximately 38 million detections exceeding the minimum received level threshold at

each site. Detection received levels were plotted to check for violation of the assumption that

every detection which exceeds the minimum RL threshold was identified (Fig 7). Detection

counts increased exponentially as the minimum detection threshold was approached, indicat-

ing that detections were not systematically missed near the detection threshold. The distribu-

tions of received levels differed between the two datasets, with larger numbers of higher

received level detections occurring at site H.

Fig 7. Received level distributions of detected signals above the minimum received level threshold of 120 dBpp re 1 μPa. (Blue:

Site E, Red: Site H).

https://doi.org/10.1371/journal.pcbi.1009613.g007
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Unsupervised clustering

The unsupervised clustering process was run on the site H detections. In the first phase, 19,301

bin-level clusters were identified, which formed seven signal type clusters in phase 2. Manual

review of the clusters associated them with two anthropogenic sources (boats and sonar), and

with five odontocete echolocation click types including: Risso’s dolpin (Grampus griseus),
Pacific white-sided (Lagenorhynchus obliquidens; PWS) type A and B, Cuvier’s beaked whale

(Ziphius cavirostris) and unidentified delphinids (UD) [28,50] (Fig 8; Table 2). Three distinct

clusters were found in the expert review step to represent Cuvier’s beaked whale echolocation

clicks, with the variations attributed to differences in transmission loss, and these were merged

into one class. A large UD echolocation click category had considerable variability and may

contain multiple, similar signal types associated with different dolphin species. Short-beaked

common dolphins are the most abundant delphinid in the region and likely account for the

majority of these detections, however long-beaked common dolphins, bottlenose dolphins,

and occasional northern right whale dolphins are also present [51,52]. The majority of

Fig 8. Signal classes formed from the training dataset using unsupervised clustering on spectra and waveform

envelope. Seven signal classes were identified, including five odontocete echolocation types, ships and sonar. Color

map represents normalized amplitudes on a scale of 0 (dark blue) to 1 (dark red).

https://doi.org/10.1371/journal.pcbi.1009613.g008
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detections in the UD category are consistent with existing echolocation click descriptions for

all of these species [28,53,54].

Classifier performance

Detection-level classification. Unique training examples ranged from 13,988 for sonar

and 21,078 for boats to the maximum of 50,000 examples for the UD class. The detection level

classifier completed 15 training epochs. The network achieved 92% classification overall accu-

racy on the balanced evaluation set from site E. Confusion was lowest on the more unique ship

and sonar signals with near 100% correct classification (Table 3), and highest on the delphi-

nids. Approximately 31% of examples labeled UD in the evaluation set were classified as other

signal types by the network. Some confusion was observed between the two Pacific white-

sided dolphin signals.

Examination of the misclassified events revealed a mixture of signals which were misclassi-

fied by the network, and signals which were incorrectly labeled by the unsupervised clustering

process used to generate the evaluation set (Fig 9). Classification probability was strongly

related to signal amplitude, with higher label probability associated with higher amplitude sig-

nals. The majority of “misclassified” Risso’s dolphin, PWS Type A, UD and Cuvier’s beaked

whale clicks appeared to be incorrectly labeled examples from the evaluation set which were

assigned to their true category by the network. The high probability (> 0.9) PWS Type B detec-

tions also appeared to be accurately classified, but approximately 500 Risso’s dolphin detec-

tions were truly misclassified as PWS Type B. At lower received levels, detections of Cuvier’s

beaked whale and Risso’s dolphin were sometimes confused, with lower confidence labels

applied.

When applied to the unbalanced, manually labeled independent dataset from Site E, overall

classification accuracy was slightly higher, at 94.2% (Table 4). In the Site E data, which

Table 2. Number of encounters from site H used for training (60% of available encounters), evaluation (30%) and validation (10%) of the neural network.

Signal categories Training Encounters Evaluation Encounters Validation Encounters

Boat 16 8 2

Risso’s dolphin 182 92 30

PWS A 30 15 5

PWS B 49 24 8

Sonar 8 5 1

UD 491 247 81

Zc 111 56 18

https://doi.org/10.1371/journal.pcbi.1009613.t002

Table 3. Confusion matrix for click-level classifier on the balanced evaluation dataset from Site H, consisting of 25,000 examples per category. Values indicate per-

centages of the total number of detections classified.

True Class

Predicted Class Boat Risso’s PWS A PWS B Sonar UD Cuvier’s BW Predicted class precision

Boat 14.3 0.0 0.0 0.0 0.0 0.0 0.0 100.0

Risso’s 0.0 11.8 0.1 0.0 0.0 0.7 0.1 92.2

PWS A 0.0 0.0 12.9 0.3 0.0 0.2 0.0 98.3

PWS B 0.0 0.1 0.2 12.2 0.0 0.0 0.0 96.6

Sonar 0.0 0.0 0.0 0.2 14.3 0.1 0.0 100.0

UD 0.1 2.0 1.1 2.0 0.0 13.3 0.8 69.0

Cuvier’s BW 0.0 0.3 0.0 0.0 0.0 0.0 13.4 97.2

True class precision 100.0 82.5 90.0 85.1 100.0 93.1 93.5 92.0

https://doi.org/10.1371/journal.pcbi.1009613.t003
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represents typical class ratios for the Southern California region, 89.9% of the 38 million detec-

tions were manually labeled as UD, and 99.6% of those were correctly labeled by the classifier.

However, due to the large numbers of delphinid detections, low misclassification rates still

translated into fairly high numbers of misclassified signals.

Fig 9. Spectra of detections counted as network misclassifications in the balanced Site H evaluation dataset.

Spectra are sorted by classification probability scores shown along the upper edge of each subplot. A positive

relationship between signal amplitude and probability scores is apparent, with higher amplitude signals being assigned

higher probability labels by the network. Many of the signals counted as misclassifications appear to have been

correctly classified by the network, but were likely incorrectly labeled in the unsupervised step used to create the

training and evaluation datasets. For instance, the majority of spectra misclassified as Risso’s dolphin or PWS type A

appear to have been correctly assigned to those species respectively.

https://doi.org/10.1371/journal.pcbi.1009613.g009
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The distributions of classification prediction probability scores differed between classes

(Fig 10). These probabilities do not represent a true, unbiased confidence metric, but are a

metric of the network’s “confidence” on a scale of [0,1]. The boat, sonar, and Cuvier’s beaked

whale categories included a large number of low probability labels, and a subset of very high

probability labels. When the lower probability labels were discarded, precision increased con-

siderably without severely affecting recall (Fig 11), suggesting that removing lower probability

labels in these categories could further reduce confusion. The delphinid categories lacked this

peak of very high probability labels, likely due to confusion created by imperfections in the

training set and uncertainty associated with low amplitude detections. Very few PWS type B

detections were present in the Site E dataset, and this contributed to low precision and recall

for this class in the Site H data. Discarding low probability detections improved classifier preci-

sion for the delphinid classes, but the highest probability thresholds resulted in very low recall

Table 4. Detection level confusion on the independent, manually-labeled, unbalanced evaluation dataset from Site E. A total of 38,099,453 detections were classified.

Detections are given in counts rather than percentages due to the large disparities between class sizes in this unbalanced dataset.

True Class

Boat Risso’s PWS A PWS B Sonar UD Cuvier’s BW Predicted class precision (%)

Predicted Class Boat 42,811 220 2 1 35 149 213 98.57

Risso’s 647 647,902 1,347 5,475 47 50,521 6,574 90.93

PWS A 1,248 8,381 708,005 110,323 154 78,188 1,023 78.03

PWS B 17 1,274 348 4,562 1 1,671 14 57.84

Sonar 1,002 115 22 25 72,924 101 603 97.50

UD 63,588 1,574,014 71,264 95,451 2,905 34,079,189 95,739 94.71

Cuvier’s BW 695 17,200 152 211 352 3,492 349,256 94.05

True class precision (%) 38.92 28.81 90.63 2.11 95.43 99.61 77.03 94.24

https://doi.org/10.1371/journal.pcbi.1009613.t004

Fig 10. Distributions of detection-level label probability scores for each class for the Site E evaluation dataset. In this case, classes are

taken to be those assigned by the network.

https://doi.org/10.1371/journal.pcbi.1009613.g010
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scores, suggesting that mid-range thresholds would more appropriate for these classes in this

case.

Bin-level classification. Unique training examples ranged from 51 bins for boats and 24

bins for sonar to a maximum of 1,587 examples for the UD class. Network training ceased

after 10 epochs as performance on the validation set ceased to increase. The network achieved

99.5% classification overall accuracy on the balanced evaluation set from Site E (Table 5). The

largest number of misclassified bins appeared to be a subset of cases misclassified as UD which

were likely Risso’s dolphin encounters (Fig 12). Some confusion was observed between the two

pacific white-sided dolphin signals.

Classifier performance was lower on the unbalanced, manually labeled independent dataset

from Site E. In this case, the network applied labels to one or more clusters identified within

5-minute time windows, while the ground-truth labels were applied at the detection level. For

cases in which only one cluster was formed and labeled within the time window, but the man-

ual labels identified multiple classes, a label of “none” was applied to account for the missing

bin. Similarly, if no cluster formed, this was counted as a “none” label by the classifier for the

Fig 11. Detection level precision and recall curves for each class in the Site E evaluation dataset. Numbers within

each plot represent thresholds applied in the classification probability scores assigned by the network, with points

representing the precision and recall achieved by retaining only those labels with probabilities greater or equal to the

associated threshold.

https://doi.org/10.1371/journal.pcbi.1009613.g011

Table 5. Confusion matrix for bin-level classifier on the evaluation dataset, consisting of 1,000 examples per category. Values indicate percentages.

True Class

Predicted Class Boat Risso’s PWS A PWS B Sonar UD Cuvier’s BW Predicted class precision

Boat 14.3 0.0 0.0 0.0 0.0 0.0 0.0 100.0

Risso’s 0.0 14.0 0.0 0.0 0.0 0.0 0.1 98.9

PWS A 0.0 0.0 14.3 0.0 0.0 0.1 0.0 99.1

PWS B 0.0 0.0 0.2 14.3 0.0 0.0 0.0 100.0

Sonar 0.0 0.0 0.0 0.0 14.3 0.0 0.0 100.0

UD 0.0 0.2 0.0 0.0 0.0 14.1 0.0 98.3

Cuvier’s BW 0.0 0.0 0.0 0.0 0.0 0.0 14.1 100.0

True class precision 100.0 98.3 100.0 100.0 100.0 99.0 99.0 99.5

https://doi.org/10.1371/journal.pcbi.1009613.t005
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purposes of computing accuracy metrics. These cases, which were not directly available to the

classifier during the labeling stage due to clustering choices in prior steps, represented the

majority of “misclassifications” in the bin-level labels (Table 6). True class precision was 81.2%

including the “none” class, and 99.1% without it.

The distributions of classification prediction probability scores were similar between classes

in the bin-level case (Fig 13). Probabilities were heavily skewed toward high values, represent-

ing possible over-confidence by the network. Imposition of increasingly high probability

thresholds did not result in large changes in precision and recall with the exception of the

PWS type B class, which was rare in the Site E dataset (Fig 14). The weak relationship between

probability scores and improved accuracy suggests that this metric may not be particularly use-

ful in the bin-level case.

A comparison of automatic labels applied by the detection-level and bin-level labels is

shown in Fig 15. The detection level classifier applied labels to every detection, but low levels

of probable misclassifications as a mix of colors overlayed on the UD category. In this example,

the detection level approach is more effective at identifying temporally overlapping encounters

with different species, such as Risso’s dolphin and the UD category. In contrast, the bin-level

network reduces the occurrence of spurious, low probability mixed species labels. Using this

approach low quality echolocation clicks are often left unlabeled.

Fig 12. Spectra of bins counted as network misclassifications in the balanced Site H evaluation dataset. All detections had a probability

greater than 0.9. Only classes which contained misclassifications are shown, a majority of the misclassified UD bins appear to be Risso’s dolphin

bins. Some of the PWS Type A events are consistent with the class and may represent cases that were mislabeled in the cluster-derived Site H

evaluation dataset.

https://doi.org/10.1371/journal.pcbi.1009613.g012

Table 6. Bin-level confusion on the independent, manually-labeled, unbalanced evaluation dataset from Site E. A total of 11,867 bin-level averages were classified.

Bins are given in counts rather than percentages due to the large disparities between class sizes in this unbalanced dataset.

True Class

Boat Risso’s PWS A PWS B Sonar UD Cuvier’s BW None Predicted class precision (%)

Predicted Class Boat 69 0 0 0 1 6 0 0 90.8

Risso’s 0 485 0 0 0 16 0 0 96.8

PWS A 0 0 911 0 0 44 0 0 95.4

PWS B 0 0 4 10 0 0 0 0 71.4

Sonar 0 0 0 0 55 0 0 0 100

UD 0 14 12 0 0 8,598 0 0 99.7

Cuvier’s BW 0 1 0 0 0 4 1,637 0 99.7

None 33 598 688 67 4 588 651 0 0

True class precision (%) including “None” 67.6 44.2 56.4 13.0 91.7 92.9 71.5 0 81.2

True class precision (%) without “None” 100 97.0 98.3 100 98.2 99.2 100 NA 99.1

https://doi.org/10.1371/journal.pcbi.1009613.t006
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Discussion

As passive acoustic datasets increase in bandwidth and duration, manual review becomes less

practical. However, without manual review, we risk finding and quantifying only the signal

categories that we know to look for, with distributions dictated by past observations, thereby

limiting novel discoveries. These limitations are problematic in the rapidly developing field of

Fig 13. Distributions of bin-level label probability scores for each class for the Site E evaluation dataset. In this case, classes are taken to

be those assigned by the network.

https://doi.org/10.1371/journal.pcbi.1009613.g013

Fig 14. Bin level precision and recall curves for each class in the Site E evaluation dataset. Numbers within each

plot represent thresholds applied in the classification probability scores assigned by the network, with points

representing the precision and recall achieved by retaining only those labels with probabilities greater or equal to the

associated threshold. “None” labels are included in these metrics.

https://doi.org/10.1371/journal.pcbi.1009613.g014
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passive acoustic monitoring. The described workflow facilitates discovery and learning of both

known and unknown signals within large recording datasets, without requiring a priori knowl-

edge of the data, or expert parameterization of target signals of interest. Unlike most existing

detection strategies which are tuned for specific target signals, this method is flexible and

broad, with the potential to reduce time spent running different detectors for different target

signals (audio file I/O is a critical bottleneck in long term acoustic data processing). The unsu-

pervised portion of the algorithm is able to adapt to site, region, or season-specific variation in

signal frequency content and production rate.

The unsupervised clustering process does require basic decisions regarding which features

to compare and eventually train classifiers on. Options include waveforms or rectified wave-

form envelopes, spectra, and IDI distributions. During testing, waveform and spectra

Fig 15. Comparison of detection and bin level classification results on a six-hour data segment from Site E, displayed as long term

spectral average (LTSA) (A). Classes assigned by the bin-level network are shown in (B) as a time series of detection received levels, and

in (C) as a time series of inter-detection intervals. Each point represents one detection, and color indicates class assigned by the bin-

based classifier. Blue points represent detections which were not assigned a class. Classes assigned by the click-level network are shown

in (D) and (E). Note that every click is labeled in the click-level case.

https://doi.org/10.1371/journal.pcbi.1009613.g015
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produced the best output clusters, with fewest duplicate clusters and minimal mingling of sim-

ilar types. IDI was often a characteristic feature, however its use in the unsupervised clustering

phase tended to produce duplicate clusters with similar spectra but slightly different timing. In

this case study, although IDI was not used for clustering, clear modal IDI patterns emerged in

the Phase 2 clusters nonetheless, emphasizing that IDI is a useful feature for classification. For

that reason, it was used as an input when training bin-level neural network classifier. Timing

has proven less useful for classification at the level of individual detections. Time to the next

detection was tested with minimal success, presumably because it is highly variable and easily

modified by group size or overlap during mixed species events.

The dataset used here is collected in deep water with near-seafloor sensors, therefore, shal-

low diving species (e.g. dolphins) are likely to be further from the sensor than they would be in

shallow environments. Directional echolocation clicks are less likely to be received off-axis in

this case because their received levels with respect to the sensor are much lower than those of

on- or nearly on-axis signals. This reduces overlap between recorded click trains at deeper

recording locations relative to near-surface or shallow water recordings, and allows modal IDI

patterns to appear more readily (although when groups are large or nearby, modal IDIs typi-

cally disappear). IDIs may be less diagnostic in shallow water (including towed array data) due

to overlapping click trains, reflections, as well as the introduction of unexpected signals like

snapping shrimp or rain. Additionally, background noise, signal amplitudes, and signal to

noise ratios vary across recording environments and can affect classifier performance. For

these reasons, it is important to select a training set that is representative of the data intended

for classification.

The unsupervised clustering approach does not ensure the creation of perfect training and

evaluation sets, particularly in the detection level case. This is illustrated in this case study by

the numerous “misclassified” detections which appeared to actually correctly categorized by

the classifier, but mislabeled in the ground truth. In the detection-level case, these misclassifi-

cations arise when multiple signal types are detected simultaneously, such as when multiple

acoustically active species are within range of the recorder, or ship or echosounder signals are

mixed with a marine mammal echolocation, and are not well separated in the Phase 1 cluster-

ing step, leading to bin-level averages which contain multiple click types. Additional cleanup

steps could be implemented to improve the purity of the training and evaluation sets generated

with this process, which would likely improve performance further by reducing confusion.

One weakness of the unsupervised approach is a somewhat limited ability to recognize rare

signal types as distinct categories. A number of species occasionally present in the Southern

California Bight such as sperm whales, Baird’s beaked whale and Kogia spp. would not be rec-

ognized by the classifier presented here because they were not detected in large enough num-

bers in the recording used for training. In practice, the simplest solution for this is to augment

the training dataset with classes from datasets collected during other seasons or at other loca-

tions. Clusters could be brought together from across a range of sites of interest to form the

neural network training set, expanding the number of learned signals, and improving handling

of different recording conditions, background noise, or other sources of variability across sites,

seasons and sensors. Care is required to ensure that combined training sets are structured such

that instrument self -noise or background noise features are not being learned rather than the

target signals. Small classes in the training could also be augmented set by resampling and add-

ing noise, or by re-combining observations to produce slight variations. However, these

approaches negatively affected performance on real data in testing, and more development is

required to implement these methods effectively. Random resampling of observations was

allowed in this study to achieve balanced training and evaluation sets, however heavy resam-

pling can result in brittle class definitions, and a weaker ability of the network to recognize
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variants of rare signals when applied to a novel dataset. This may explain the high confusion

associated with the relatively sparse PWS type B class using both detection and bin-level meth-

ods. Performance on that class would likely be improved by augmenting the training set with

additional examples from other deployments. Misclassification of rare species is an important

issue, as it can lead to significant errors in later steps such as density estimation [55]. Manual

review and editing of the labels using a batch review tool such as PAMGuard [56] or DetEdit
[6] remains particularly important in these cases.

In addition to adequate representation of target classes, it is important to ensure that the

major non-target categories are also represented in the neural network training set as out

groups. Including a non-target class in the training set generally reduces spurious assignment

of unrepresented non-target signals to target categories.

It is worth noting that waveforms contain the information provided in the spectra, there-

fore for classification purposes, the two could be considered redundant. However, when oper-

ating on waveforms alone, the classifier was more sensitive to differences in amplitude and

background noise, resulting in notable increases in confusion between high amplitude delphi-

nid and low amplitude beaked whale signals. Furthermore, for bin level labeling, waveforms

have to be averaged, which requires accurate time alignment. Precise time alignment is com-

putationally expensive for this number of detections, therefore it was preferable to compute an

average waveform envelope, which is less sensitive to phase, and to include mean spectra as the

classifier feature set.

Future work

Expert review is still required after the unsupervised clustering phase to identify duplicate clus-

ters and verify that closely-related signal types such as distinct dolphin species are separating

correctly. There is ample opportunity to investigate alternative unsupervised clustering meth-

ods which may better distinguish between closely-related signals (e.g. different types of dol-

phins), without splitting up variations of the same signal into multiple clusters (e.g. beaked

whale signals under different transmission loss). To date, we have tested a few clustering meth-

ods including modularity [57], decision trees, Louvain [58], DBSCAN [59] and a range of dis-

tance metrics, with less desirable results, however other algorithms or combinations are likely

possible.

These results clearly show potential of click-level labeling, however classification accuracy

of individual signals with low classification certainty could likely be improved by considering

neighboring signals to provide additional context. For instance, if many neighboring signals

are classified as Cuvier’s beaked whale then the odds that a poor quality in their midst is also

Cuvier’s beaked whale is probably higher. Although this approach could reduce low level ran-

dom misclassifications, this type of decision making must be applied carefully to avoid missing

small events such as a brief beaked whale encounter embedded within a multi-hour dolphin

encounter. A possible approach may be to add a second classification network capable of

adjusting labels based on neighbors, or to merge bin-level and detection level classifications.

Multiple networks trained on different subsets detections could be ensembled to obtain esti-

mates of label uncertainty.

Conclusion

The proposed signal classification pipeline combines unsupervised and supervised learning

phases with opportunities for expert oversight to label signals of interest, some of which are

fairly well known, such as certain beaked whale species, and others which are not yet well char-

acterized or matched to a known source. The method is flexible to facilitate learning signals

PLOS COMPUTATIONAL BIOLOGY A machine learning pipeline for classification of echolocation clicks in large datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009613 December 3, 2021 22 / 26

https://doi.org/10.1371/journal.pcbi.1009613


from novel recordings and can be adapted according to the level of signal specificity desired by

the user. Bin-level classification was found to achieve higher overall precision than click-level

classification due to additional IDI information and clearer signal features achieved by averag-

ing many signals. However, click-level classification had the advantage of providing a label for

every signal, and achieved higher overall recall. The results suggest that unsupervised learning

may be a viable solution for efficiently generating the large, representative training sets needed

for applications of deep learning in passive acoustics.
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