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Abstract

Naturally occurring adeno-associated virus (AAV) serotypes that bind to ligands such as AVB 

sepharose or heparin can be purified by affinity chromatography, which is a more efficient and 

scalable method than gradient ultracentrifugation. Wild type AAV8 does not bind effectively to 

either of these molecules, which constitutes a barrier to using this vector when a high throughput 

design is required. Previously, AAV8 was engineered to contain a SPAKFA amino acid sequence 

to facilitate purification using AVB sepharose resin; however, in vivo studies were not conducted 

to examine whether these capsid mutations altered the transduction profile. To address this gap in 

knowledge, a mutant AAV8 capsid was engineered to bind to AVB sepharose and heparan sulfate 

(AAV8-AVB-HS), which efficiently bound to both affinity columns, resulting in elution yields of 

>80% of the total vector loaded compared to <5% for wild type AAV8. However, in vivo 
comparison by intramuscular, intravenous, and intraperitoneal vector administration demonstrated 

a significant decrease in AAV8-AVB-HS transduction efficiency without alteration of the 

transduction profile. Therefore, although it is possible to engineer AAV capsids to bind various 
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affinity ligands, the consequences associated with mutating surface exposed residues have the 

potential to negatively impact other vector characteristics including in vivo potency and production 

yield. This study demonstrates the importance of evaluating all aspects of vector performance 

when engineering AAV capsids.

Introduction

Adeno-associated virus (AAV) vectors offer an efficient means of in vivo gene transfer and 

have established a strong record of clinical safety over the past two decades (1–3). AAV 

based gene therapies for dozens of genetic disorders have made significant progress in 

clinical trials recently (4–6), exhibited by the United States Food and Drug Administration’s 

approval of Luxturna to treat inherited retinal disease (7) and Zolgensma to treat spinal 

muscular atrophy in paediatric patients (8). One of the major drawbacks of AAV based 

therapies is the cost associated with manufacturing large quantities of vector under good 

manufacturing practices (GMP) conditions, in part due to a production bottleneck caused by 

the lack of scalable purification methods. Indeed, Glybera was considered the most 

expensive drug in the world (9) and has been removed from the market over cost drawbacks, 

despite its demonstrated effectiveness at curing lipoprotein lipase deficiency. More cost-

effective production methods are required for promising gene therapies to be translated from 

bench to bedside to treat a wide range of monogenic diseases. Ultracentrifugation using 

cesium chloride or iodixanol gradients is the standard purification method for research grade 

AAV; however, this approach does not scale efficiently for large crude lysate volumes. 

Affinity chromatography is more suited to purifying AAV from large volumes (10). 

However, while some AAV serotypes naturally bind affinity epitopes, others including 

AAV8 require alteration of surface exposed residues to facilitate binding.

AAV2, AAV6, and AAV-DJ capsids contain a heparan sulfate-binding motif (11–13), which 

serves as a cellular attachment factor during infection, and can therefore be purified using a 

heparin affinity column chromatography. Alternatively, AAV3B and AAV5 have a strong 

affinity to AVB sepharose, an affinity resin developed from single chain antibodies derived 

from llamas with pre-existing immunity to AAV (14). The epitope responsible for conferring 

AVB binding in AAV3B was demonstrated to be the SPAKFA amino acid sequence located 

at residues 665–670 (14). Substitution of corresponding regions of other capsids with a 

SPAKFA sequence conferred drastic AVB binding ability to originally poor binders such as 

AAV8, increasing the vector recovery in the elution fraction from 30% to 93% (14). 

Additionally, mutation of one residue, K333T, located in an ancillary AVB binding epitope 

at residues 328–333 was hypothesized to strengthen AVB binding (WO2017100704A1). 

However, in vivo experiments were not conducted in these studies, so it remained unclear if 

engineered AAV-SPAKFA vectors have altered transduction profiles.

AAV6 uniquely encodes a lysine at position 531 which is known to be a heparin binder (15). 

The AAV6-K531E mutant is almost completely devoid of heparin binding activity (16), 

suggesting this single residue is responsible for this interaction. The wild type AAV8 capsid 

contains a negatively charged glutamic acid at residue 533 (12), which when exchanged for 

a positively charged lysine, confers heparan sulfate binding activity (15). AAV8-E533K was 
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reported to increase retinal transduction compared to AAV8 following intravitreal injection, 

which was attributed to an uptake in vector accumulation within the retina (17, 18).

AAV8 is becoming more popular in the clinic because there is less pre-existing immunity to 

this serotype compared to other capsids such as AAV2 (19). However, AAV8 does not bind 

to either AVB sepharose or heparan sulfate, reducing the potential affinity ligands that can 

be selected for purification. The introduction of affinity binding motifs to devoid AAV 

capsids facilitates purification by more efficient and scalable methods, which in turn reduces 

the cost to manufacture these vectors. As such, we sought to engineer an AAV8 mutant 

capable of binding to both AVB sepharose and heparin ligands (AAV8-AVB-HS) to 

determine whether efficient purification could be achieved in this manner. Moreover, AAV8 

and AAV8-AVB-HS transduction profiles were evaluated in vivo by four routes of 

administration to elucidate alterations in vector efficiency due to the mutated residues.

Materials & Methods

Ethics.

All animal experiments were approved by the institutional Animal Care Committees at the 

University of Guelph, the Cincinnati Children’s Hospital Medical Center, and the National 

Microbiology Laboratory, in accordance with the Canadian Council on Animal Care 

guidelines (AUPP 3827). Six to eight-week-old female BALB/c mice were purchased from 

Charles River Laboratories (St. Constant, Quebec, Canada) and allowed to acclimatize one 

week prior to experimentation. All mice were healthy and criteria was established prior to 

ordering mice. Mice were of the same age, sex, and shipment. Thus, no further 

randomization was conducted aside from randomly selecting one cage per experimental 

group. The investigator was not blinded during the experiment as this study was analyzing 

expression as quantified objectively by a machine, and not subjective parameters such as 

survival endpoint in a disease model.

AAV vector production for in vivo studies.

AAV8-AVB-HS was constructed by engineering the following mutations (AAV8 VP1 

numbering): E533K to confer heparin sulfate binding, substitution of residues 665–670 from 

NQSKLN to SPAFKA to confer AVB sepharose binding, and K333T to stabilize and 

enhance AVB binding. An AAV vector genome expressing firefly luciferase under the 

control of a CASI promoter (20, 21) and the posttranscriptional regulatory element WPRE to 

improve transgene expression was packaged with AAV8 and AAV8-AVB-HS capsids. Both 

vectors were produced by the University of Pennsylvania Vector Core (22) and were purified 

using gradient ultracentrifugation.

AAV Vector Genome Titration—Vector samples were treated with RQ1 DNase 

(Promega, −20°C storage, Cat no. PR-M6101) at 37°C for 30 minutes to remove non-

encapsidated DNA followed by a 75°C incubation to deactivate the enzyme. Samples were 

then treated with proteinase K (Invitrogen, 20mg/mL, Cat no. 17916) at 55°C for 30 minutes 

to degrade the capsid followed by a 10-minute incubation at 95°C to deactivate the enzyme. 

van Lieshout et al. Page 3

Gene Ther. Author manuscript; available in PMC 2022 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Viral genomic DNA was extracted using phenol chloroform and the titers of both vectors 

were quantified using a Taqman qPCR assay with a linearized plasmid standard curve (23).

AAV transduction luciferase assay.

Human embryonic kidney 293T (HEK293T; CRL-3216) and HeLa cells (CCL-2) were 

maintained in Dulbecco’s modified Eagle’s medium (DMEM; Hyclone Laboratories Inc., 

Utah, USA) supplemented with 7% fetal bovine serum, 2 mM L-glutamine, 100 μg/ml 

streptomycin, and 100 units/ml penicillin in a humidified 37°C 5% CO2 incubator. 1×105 

cells per well were plated in 24 well dishes (Greiner Cellstar, Kremsmünster, Austria) and 

allowed to adhere overnight. The next day, cells were transduced at a multiplicity of 

infection (MOI) of 2 000 or 10 000 vg/ cell. 72 hours post transduction, monolayers were 

gently washed twice with cold PBS and lysed in passive lysis buffer (Promega, Wisconsin, 

USA) for 15 minutes. Cell lysate was used in a luciferase assay according to manufacture 

instructions (Promega Dual Luciferase Assay System). All cell lines were tested for 

mycoplasma contamination and were uncontaminated at the time of each experiment. The 

cell lines were not authenticated by STR profiling immediately prior to each experiment, 

however they were propagated from a freshly thawed vial of low passage cells from ATCC 

and exhibited expected morphology.

AAV administration in vivo.

A standardized dose of 1×1011 vg was delivered to each mouse using four routes of 

administration: intravenous (IV), intramuscular (IM), intraperitoneal (IP), or intranasal (IN). 

Mice were warmed under a heat lamp and restrained in a tail vein injection device to 

administer IV injections. Vectors were diluted in PBS to 100 μl and injected with a 29-gauge 

needle (BD Biosciences, California, USA). To administer IM injections, mice were 

restrained in a 50 mL tube with the end removed. Fur was shaved around the gastrocnemius 

muscle and vectors were injected in a 40 μl volume using a 27-gauge tuberculin syringe. 

Mice were restrained by the scruff and injected IP with a 100 μl dose in the intraperitoneal 

cavity using a 27-gague tuberculin syringe. Mice were lightly anesthetized with isoflurane 

for IN administration and restrained as previously described (24). The vector was diluted in 

PBS to 80 μl and delivered in two rounds of administration (40 μl each) separated by a 

recovery period of 20 minutes.

Luciferase in vivo imaging.

D-luciferin was administered IP regardless of AAV administration route 20 minutes prior to 

imaging using an IVIS Spectrum CT instrument (Perkin Elmer, Waltham, MA). 

Bioluminesence data was analyzed using Living Image software (Perkin Elmer, Waltham, 

MA). Luciferase expression was quantified at 7, 14, and 28 days post vector delivery.

AVB sepharose and heparin binding.

Vector AVB sepharose binding profiles were investigated using a previously described 

protocol (14). Briefly, 35 mL of 0.22 μm filtered crude AAV8 or AAV8-AVB-HS lysate was 

loaded onto a 5 mL HiTrap AVB Sepharose HP, pre-equilibrated with basal DMEM using a 

peristaltic pump at a flow rate of 1 mL/ minute. The column was washed first with 20 mL of 
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PBS, followed by 10 mL AVB.C buffer (Tris pH 7.5, 1M NaCl) and eluted with 10 mL of 

AVB.B buffer (20 mmol/l sodium citrate, pH 2.5, 0.4 mol/l NaCl) into 1 mL of 1 M tris pH 

10 to neutralize the acidity of the elution buffer. The heparin binding profile was evaluated 

as previously described with minor modifications (25). Briefly, 10 mL crude AAV8 or 

AAV8-AVB-HS lysate was loaded onto a 1 mL HiTrap Heparin HP column (GE) that had 

been pre-equilibrated with basal DMEM. The column was washed with 10 mL of HBSS 

with Mg2+Ca2+ (HyClone) and eluted with 5 mL of HBSS with Mg2+Ca2+ supplemented 

with 400 mM NaCl. Samples (40 μl) from all fractions were collected for viral DNA 

extraction and quantification by qPCR as described above.

Small scale AAV production.

4×106 HEK293 cells were seeded on 10 cm plates (Corning Life Sciences, New York, USA) 

and allowed to adhere overnight. Four independent production replicates were completed. 

For each replicate, the supernatant and cell lysate were pooled from two plates at 72 hours 

post transfection. Supernatant was harvested directly into 15 mL tubes and cell lysate was 

harvested in 5 mL of cell lysis buffer (150 mM NaCl, 50 mM Tris-HCl pH 8.5). Both 

fractions were subjected to three freeze thaw cycles and clarified by centrifugation. 40 μl 

samples were collected from each fraction and viral DNA was extracted and quantified by 

qPCR as described above.

Capsid Structural Modelling—The Protein Data Bank file 6V12 was used to generate a 

model of AAV8 capsid surface. Images were generated using the Pymol program (https://

pymol.org).

Statistical Analysis—Four mice were used per experimental group, and graphs contain 

the individual data points for each mouse. Four independent production replicates were used 

for all experiments analyzing affinity binding profiles. Each experiment with 4 biological 

replicates per group was conducted once. Sample size was selected based on a single cage 

housing 4 mice.

GraphPad Prism v.7 software (GraphPad, California, USA) was used to generate all graphs 

and for statistical analyses. Error bars in all graphs represent standard deviation of the mean. 

Two-way ANOVA tests were used to determine statistical significance between each AAV 

vector construct and at each time point. Adjustments were not made for multiple 

comparisons. Graphs contain the following p value annotations: *p<0.05, **p<0.01, 

***p<0.001, ns = not significant. Centre values reported throughout the manuscript are the 

mean. The data meet the assumption of the test. As estimate of variation as not provided 

within each group of data. No data was excluded as an outlier.

Results

AAV8-AVB-HS can be successfully purified using AVB sepharose and heparin affinity 
chromatography

The heparin binding mutation (E533K) and the AVB binding mutations (NQSKLN to 

SPAKFA substitution at residues 665–670, K333T) introduced in the AAV8 capsid to 
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generate AAV8-AVB-HS allowed the vector to be successfully purified from both heparin 

and AVB sepharose resins. After purification using a heparin column, 90.4% of the total 

AAV8-AVB-HS loaded was detected in the elution step (Table 1; Fig. 1A, 1B), in 

comparison to AAV8, which did not efficiently bind to the heparin column with 59.9% of 

the vector contained within the flow through and only 13.4% in the elution. Additionally, 

AAV8-AVB-HS was also able to be purified on an AVB sepharose column, as evidenced by 

81.2% of the vector observed in the elution fraction compared to a negligible 0.2% of 

wildtype AAV8. Evidently, engineering the AAV8 capsid to bind AVB sepharose and 

heparin resulted in vector that could be efficiently purified by two methods of affinity 

chromatography.

Production yield and in vitro transduction efficiency of AAV8-AVB-HS is reduced

AAV8 is naturally a poor transducer of cells in vitro; however, AAV8-AVB-HS transduced 

HeLa and HEK 293T cells 13- and 3-fold less efficiently, respectively, than the wild type 

vector at a MOI of 10 000 (Fig. 1C, 1D). At a MOI of 2 000, a non-significant 2-fold 

decrease in luciferase expression was observed for both cell lines. In contrast, Wang et al. 
observed AAV8-SPAKFA marginally outperforming wild type AAV8 transduction in Huh7 

cells (14), suggesting the SPAKFA domain impacts in vitro transduction in a cell dependant 

manner or that the heparin binding domain of AAV8-SPAKFA-HS is reducing transduction 

efficiency. However, AAV2 and AAV6 are some of the best in vitro transducers and both 

bind to heparin (11, 15, 26).

Small scale vector production assays demonstrated a significant decrease in vector yield 

using the AAV8-AVB-HS capsid compared to AAV8 in the total crude lysate (Fig. 1E). 

Further analysis quantifying the vector present in the cell pellet and the supernatant 

confirmed a decrease in AAV8-AVB-HS production yield in both fractions by 3.1-fold and 

2.1-fold respectively (Fig. 1F). The distribution of the vector present in the cell lysate and 

the supernatant remained consistent but less vector was generated for AAV8-AVB-HS 

potentially indicating the capsid is less stable than AAV8 and therefore less efficiently able 

to assemble intact vectors. As such, although affinity chromatography can be used to purify 

AAV8-AVB-HS, the resulting decrease in both transduction efficiency and production yield 

constitute a barrier to large scale economical manufacturing processes.

AAV8 retains more potent transduction efficiency than AAV-AVB-HS across four routes of 
vector administration in mice

AAV8-AVB-HS was compared to wild type AAV8 firefly luciferase vector using an in vivo 
imaging system (IVIS) to quantify transgene expression following intranasal (IN), 

intramuscular (IM), intravenous (IV), and intraperitoneal (IP) injection. Groups of BALB/c 

mice (n=4/ group) received 1×1011 vg of either AAV8-luciferase or AAV8-AVB-HS-

luciferase by one of four administration routes and were evaluated for 28 days post 

administration.

AAV8-mediated 80-, and 16-fold greater luciferase expression in the lung than AAV8-AVB-

HS at 14 and 28 days post IN administration, respectively (Fig. 2A). AAV8-AVB-HS lung 

specific expression was just slightly above background levels. Although all AAV8 treated 
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mice displayed much stronger transgene expression there were two high expressers and two 

low expressers, indicating some variations in administration. Conversely, expression in the 

nose was comparable between both vectors at 28 days (Fig. 2B, 2C).

Following IM injection, both AAV8 and AAV8-AVB-HS demonstrated strong luciferase 

expression localized in the muscle, however the wild type vector generated 13-, 18-, and 62-

fold greater transgene expression in the muscle than AAV8-AVB-HS (Fig. 3A). Our group 

and others have previously reported AAV8-mediated liver expression following IM injection 

(27–29); however, interestingly this liver expression phenotype was not observed when 

AAV8-AVB-HS was administered (Fig. 3B).

IV administration resulted in the greatest discrepancy between the wild type and engineered 

AAV8 vectors. AAV8 mediated 396- and 371-fold increased luciferase expression than 

AAV8-AVB-HS on days 14 and 28 post administration respectively (Fig. 4A). Despite the 

difference in magnitude, the transduction profile remained similar between vectors, with 

expression localized primary to the liver (Fig. 4B).

Similar to the IV route, IP administration resulted in similar distribution profiles between 

vectors, indicating the systemic tropism of AAV8-AVB-HS is not altered (Fig. 4C). 

However, the magnitude of AAV8-AVB-HS expression was significantly impaired compared 

to AAV8, with 84- and 29-fold reduced luciferase expression on days 14 and 28 post vector 

administration respectively (Fig. 4D).

Discussion

Advances in AAV-mediated gene therapies are generating effective treatments for a wide 

range of human diseases (3, 4). Clinical trials require much higher quantities of vector than 

preclinical research using murine models due to a more than three magnitude increase in 

subject weight. Therefore, methods to improve large scale vector production provide 

valuable research advancements to manufacturing commercially viable therapeutics. 

Purifying AAV8 via affinity chromatography would address pressing production issues 

because this method is more efficient and scalable than gradient ultracentrifugation. 

Previously, a SPAKFA sequence was added to AAV8 to expand its binding capabilities (14); 

however, in vivo studies were not conducted to determine the effect these mutations had on 

tissue tropism or transduction efficiency. These are crucial aspects of vector engineering that 

must be examined before vectors with mutated binding capabilities can be widely adopted. 

Here, we demonstrate that successful mutation of AAV8 to bind heparin and AVB sepharose 

resins also results in a decrease in transduction efficiency and in vivo gene product 

expression.

Overall, generating AAV8-AVB-HS expanded the binding capabilities of AAV8 but reduced 

in vivo transduction efficiency through four routes of administration. All mice that were 

administered AAV8-AVB-HS displayed decreased luciferase expression compared to AAV8 

controls with the exception of comparable transgene expression in the nose following IN 

delivery. This indicates that AAV8-AVB-HS may be well suited for therapies that are 

administered via IN and are designed to target the nasal cavity. For example, intranasal 
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administration was used to deliver the therapeutic lysosomal enzyme α-L-iduronidase 

(IDUA) using AAV8 as the vector (30). In contrast, our findings demonstrate that the IM, IV, 

and IP routes of administration resulted in significant decreases in luciferase expression 

indicating the mutations that successfully conferred binding to AVB sepharose and heparin 

also had a deleterious effect on transduction. AAV8-AVB-HS was less efficient at 

transducing a variety of cell types than AAV8, and while vector yields were also lower than 

the wild type capsid the titers were high enough to facilitate in vitro and in vivo transduction 

assays. Additionally, administering AAV8-AVB-HS i.v. resulted in new expression within 

the bladder of the mice. A previous study using AAV8 to correct for Wilson’s disease and its 

associated dysregulation of copper storage measured excretion in the urine of mice (31). 

Researchers determined that different variants of AAV8 led to differential copper excretion 

in the urine. Although capsid excretion was not measured in our study, it is feasible that 

higher transduction within the bladder could contribute to a higher turnover rate of 

transduced cells and excretion of the capsid, and thus a lower overall quantified total flux.

Although the concept of AAV capsid engineering to introduce an epitope binding domain is 

attractive for both research and clinical grade purification, the SPAKFA sequence in AAV8 

resulted in lower production yields and in vivo transgene expression. It is possible that the 

SPAKFA plus the heparin binding mutation acted in negative synergism to reduce in vivo 
transduction efficiency. However, due to the fact that the location of the SPAKFA residues 

and the E533K mutation are on the 5-fold axis of symmetry or pore region of the capsid, it is 

likely these mutations had a greater influence on packaging and transduction than the 

heparin binding mutation located at the base on the 3-fold axis or spike region (Fig. 5). 

Previous studies have demonstrated that capsid mutations can alter the tropism (32) or 

efficiency of AAV receptor binding and thus diminishing transduction efficiency (33). 

Capsid mutations have also influenced the degree to which a mutant is resistant to 

neutralization from antibodies (34).

POROS™ CaptureSelect™ AAVX is a relatively new universal affinity binding epitope that 

is worth noting (35). This resin shows a very high affinity for every serotype tested so far 

suggesting the existence of a highly conserved epitope on AAV capsids. However, protocols 

are still being refined to optimize the needs of vector production and reduce the relatively 

high costs of these resins. While universal resins still require significant effort in 

downstream process development across different capsids while a specific affinity ligand 

interaction is more consistent across engineered capsids enabling less serotype specific 

development, the development of superior binding columns or resins may very well replace 

all other affinity chromatography methods in the future. Such an advancement in the field 

would allow capsid engineering to focus on other design aspects such as mitigating or 

evading the immune response and optimizing cell-specific transduction. Indeed, altering the 

column to match the viral biology instead of engineering the virus to match the column 

would minimize the unwanted trade-offs that were observed in this study.

Our research sets the foundation for future studies to further explore how mutating the 

AAV8 capsid changes transduction profiles. Neonatal mice are a key area of interest to 

develop gene therapies for pediatric diseases. It has been previously shown that AAV8 is 

superior at delivering genes to the murine brains of neonates compared to AAV-1 or −2 (36). 
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Indeed, administering AAV8 to neonates results in widespread distribution in the brain (37) 

including the dorsal root ganglion (38), albeit no microglial transduction (37). We expect 

that administering AAV8-AVB-HS to neonates would have a similar reduction in 

transduction as was observed in adult mice, although future studies are warranted to explore 

this area in depth. Another area of research worth exploring is the effect of mutating only 

AVB or HS alone to create AAV8-AVB and AAV8-HS. Within this study we included both 

mutations to create a vector with wide purification column tropism to be useful for a wide 

range of pre-existing lab workflows. It may be possible that a single mutation will have less 

effect on the vector tropism.

Here we have established that AAV8 can be engineered to bind both AVB sepharose and 

heparin allowing the AAV8-AVB-HS vector to be efficiently purified by both these affinity 

ligand resins. However, these combined mutations result in lower production yield as well as 

impaired in vitro and in vivo transduction. This study clearly demonstrates that when 

engineering one aspect of an AAV capsid to fit an ideal profile there can be unanticipated 

consequences and a comprehensive approach is required to properly evaluate engineered 

capsids for further development.
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Figure 1. Affinity column binding profiles and in vitro characterization of AAV8 and AAV8-AVB-
HS vectors.
Proportion of crude vector lysate observed in each fraction following loading onto (A) AVB 

sepharose or (B) heparin affinity columns (n=4). FT- flow through, W- wash, E- elution. 

Vector mediated luciferase expression in vitro in (C) HeLa and (D) HEK293T cells. 

Transgene expression was quantified after 72 hours and the results are shown as the 

background subtracted relative light units (RLU) per 1×106 cells (n=3). (E) Vector yield 

from total crude lysates 72 hours post transfection for small scale AAV production assay 

(n=4). (F) Vector yields in the cell lysate and supernatant fractions were quantified 
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separately (n=4). Error bars represent standard deviation. Statistical significance was 

determined with 2-way ANOVA. *p<0.05, **p<0.01, ***p<0.001, ns = not significant.
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Figure 2. AAV8 and AAV8-AVB-HS transduction profile following intranasal administration.
(A) Luciferase expression generated from the lungs of mice was quantified at 7, 14 or 28-

days post intranasal (IN) vector delivery and (B) expression in the nose was quantified on 

day 28 post vector delivery. (C) Representative images of mice that received AAV8 or 

AAV8-AVB-HS 14 days post vector delivery by IN administration demonstrate the 

distribution of transgene expression. 2-way ANOVA were used to determine statistical 

significance between the vectors at each time point; ns- not significant.
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Figure 3. AAV8 and AAV8-AVB-HS transduction profile following intramuscular administration.
(A) Intramuscular luciferase expression was quantified at the site of injection at 7, 14 or 28-

days post intramuscular (IM) injection excluding the abdominal signal. (B) Representative 

images of mice that received AAV8 or AAV8-AVB-HS 14 days post vector delivery by IM 

administration demonstrate the distribution of transgene expression. 2-way ANOVA were 

used to determine statistical significance between the vectors at each time point. *p<0.05, 

**p<0.01, ns-not significant.
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Figure 4. AAV8 and AAV8-AVB-HS transduction profile following two routes of systemic 
administration.
Luciferase expression generated from the abdomen was quantified at 7, 14 or 28-days post 

(A) intravenous (IV) and (C) intraperitoneal (IP) vector delivery. Representative images of 

mice that received AAV8 or AAV8-AVB-HS on day 14 post vector delivery demonstrate the 

distribution of transgene expression following (B) IV or (D) IP injection. 2-way ANOVA 

was used to determine statistical significance between the vectors at each time point. 

*p<0.05, **p<0.01.
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Figure 5. Structural Model of AAV8 Capsid Highlighting Mutated Binding Domains.
(A) AAV8 capsid demonstrating the location of the heparin binding mutation at residue 533 

in pink, the AVB sepharose binding mutation at residues 665–670 in blue and the AVB 

stabilizing mutation at residue 333 in cyan. (B) View of capsid 3-fold axis of symmetry and 

(C) view of capsid 5-fold axis of symmetry.
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Table 1:

Proportion of total crude lysate vector observed in each fraction following loading onto heparin or AVB 

sepharose purification columns for AAV8 and AAV8-AVB vectors

Flow Through Wash 1 Wash 2 Elution

Heparin

AAV8 59.9% 26.6% n/a 13.4%

AAV8-AVB-HS 2.8% 6.7% n/a 90.4%

AVB Sepharose

AAV8 87.8% 11.3% 0.5% 0.2%

AAV8-AVB-HS 3.5% 14.2% 0.9% 81.2%

n/a: not applicable
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