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Abstract

Identifying the abnormally high-risk regions in a spatiotemporal space that contains an unex-

pected disease count is helpful to conduct surveillance and implement control strategies.

The EigenSpot algorithm has been recently proposed for detecting space-time disease clus-

ters of arbitrary shapes with no restriction on the distribution and quality of the data, and has

shown some promising advantages over the state-of-the-art methods. However, the main

problem with the EigenSpot method is that it cannot be adapted to detect more than one

spatiotemporal hotspot. This is an important limitation, since, in reality, we may have multi-

ple hotspots, sometimes at the same level of importance. We propose an extension of the

EigenSpot algorithm, called Multi-EigenSpot that is able to handle multiple hotspots by itera-

tively removing previously detected hotspots and re-running the algorithm until no more hot-

spots are found. In addition, a visualization tool (heatmap) has been linked to the proposed

algorithm to visualize multiple clusters with different colors. We evaluated the proposed

method using the monthly data on measles cases in Khyber-Pakhtunkhwa, Pakistan (Jan

2016- Dec 2016), and the efficiency was compared with the state-of-the-art methods: Eigen-

Spot and Space-time scan statistic (SaTScan). The results showed the effectiveness of the

proposed method for detecting multiple clusters in a spatiotemporal space.

Introduction

Detection of spatiotemporal disease clusters plays a fundamental role in epidemiology and

public health. Health organizations collect data on the reported disease cases and the popula-

tion at risk for different sub-regions over a range of time-points (years or months) to conduct

surveillance. Using this spatiotemporal data, detecting the abnormally high-risk regions in the

spatiotemporal space assists the health officials to identify their target of interest for possible

interventions. In this situation, a disease cluster is defined to be a sub-region or a group of

sub-regions in a spatiotemporal space where the observed case counts are unusually higher
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than what is to be expected if no cluster exists [1,2]. The detection of such space-time clusters

guides the epidemiologic research to find the environmental factors that possibly affect the

spread of disease in an area.

A number of statistical methods have been developed for detecting regularly shaped (cir-

cular, square or rectangular) space-time clusters [3–8]. In certain situations, where the dis-

ease cases tend to bunch up in the irregularly shaped areas due to some irregular features in

the terrain, these methods are not practically feasible to detect clusters with real shapes. This

study has mainly focused on detecting space-time clusters with arbitrary shapes and sizes. A

few algorithms have been developed to detect space-time clusters with irregular shapes. A

flexible space-time scan statistic [9], a grid-based method [10,11], and a space-time permuta-

tion scan statistic [12] were proposed to detect space-time clusters with irregular shapes.

All of the algorithms for disease cluster detection discussed above, are associated with the

strong parametric model assumptions (e.g. Poisson or Gaussian counts) [13], which limit

their applicability for some nontraditional data sources where these assumptions are not

met. Addressing this problem, an Eigenspace-based algorithm called EigenSpot was recently

proposed [14] to detect space-time clusters with no restriction on the distribution and qual-

ity of the data or the shape of the cluster. However, this method can detect single hotspot

only and is unable to detect multiple clusters. In the disease surveillance when one cluster is

detected, it is of interest to know if there are additional clusters of high-risk regions present

in the spatiotemporal space.

This research has aimed to propose an extension of the EigenSpot algorithm called the

Multi-EigenSpot to allow for detecting multiple clusters in a spatiotemporal space. Our pro-

posed algorithm uses the spatiotemporal matrix of expected disease cases as the baseline infor-

mation instead of the population matrix in the EigenSpot. Using the expected case matrix as

the baseline information, we can replace the observed cases by the respective expected cases

for the previously detected regions in the spatiotemporal space and re-run the algorithm to

detect additional clusters, if exist.

For visualizing the clusters, the most widely used visualization tool called heatmap was

linked to the proposed method through an additional matrix of Relative Risk (RR). Heatmap is

a graphical representation of a data matrix, which uses colors to communicate relationships

between data values that would be much harder to understand if presented numerically in a

spreadsheet. It has important applications in the spatiotemporal data analysis. For example, in

[15], the heatmap was used for spatiotemporal pattern recognition in the average daily temper-

ature data, and in [16], for visualization of the space-time clusters in the malaria case data.

Heatmap visualization of the high-risk clusters can be helpful to conduct the real-time and

online surveillance.

The Eigenspace-based methods are inherently different from the scan statistic-based meth-

ods and, subsequently, have different applications. The Eigenspace-based algorithms identify

space-time disease hot spots by tracking the changes in the space-time occurrence structure

instead of an exhaustive search over the space like the scan statistic-based methods. Scan statis-

tics-based methods are more useful for sensitive applications when the assumptions about the

distribution of the data and nature of the cluster are satisfied. However, for some nontradi-

tional data sources, where these assuumptions are not met, the Eigenspace-based method is an

ideal solution for detecting the potential clusters in a spatiotemporal space with no restriction

on the distribution and quality of the data, or shape of the cluster. The Eigenspace-based meth-

ods detect the clusters of homogeneous regions in terms of a disease occurrence structure and

do not restrict the regions in a cluster to be the spatial neighbors. Since our proposed algo-

rithm is based on the EigenSpot method, before presenting the proposed algorithm, a brief

review of the EigenSpot method is given in the following section.

Multi-EigenSpot algorithm for detecting disease clusters
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EigenSpot algorithm

The inputs of the EigenSpot algorithm are two spatiotemporal m × n matrices, C, the reported

disease cases and, B, the baseline information (population at risk) where m represents the

number of regions and n represents the number of temporal instants. Each cell in each matrix

represents a count corresponding to a specific region and time. Given these matrices, the

EigenSpot algorithm aims to identify a subgroup of regions in the spatiotemporal space where

the reported cases are unexpected with respect to the baseline information. Each matrix is

decomposed using a one-rank SVD to obtain the principal left and principal right singular vec-

tors. The elements of the principal left singular vectors are associated to the spatial dimension

and the principal right-singular vectors to the temporal dimension. In the next step, the dis-

tances between the corresponding elements of the pair singular vectors are calculated. If the

spatial singular vector for the population matrix is represented with (sb1, sb2, . . ., sbn) and for

the case matrix with (sc1, sc2, . . ., scn), then the subtract vector is calculated as:

ds ¼ ½ds1 ¼ sc1 � sb1 ds2 ¼ sc2 � sb2 . . . dsn ¼ scn � sbn�

Similarly, for the temporal dimension, the subtract vector is given by:

dt ¼ ½dt1 ¼ tc1 � tb1 dt2 ¼ tc2 � tb2 . . . dtm ¼ tcm � tbm�

A z-score control chart is applied to vectors ds and dt with a significance level α, to identify

the out of control spatial and temporal components. The locations of hotspot regions in the

spatiotemporal space are approximated by the joint combination of the out of control spatial

and temporal components.

Methods

For our proposed algorithm, we consider the situation in which the data on the observed dis-

ease cases and the population at risk are aggregated for different sub-regions over a range of

discrete time-points (month, or year). In our proposed algorithm, the data on the disease

counts and the population at risk are arranged in the form of identical m × n spatiotemporal

matrices, C and P, respectively, where m denotes the number of components in the spatial

dimension (sub-regions) and n the number of components in the temporal dimension (time-

points). Given the spatiotemporal matrices, C, (observed cases) and, P, (population at risk),

two spatiotemporal matrices, E (expected cases) and, R (relative risks) are calculated. For the

expected disease cases, if no cluster exists in the spatiotemporal space, we use the formula pro-

posed in [17], which assumes the reported cases to be distributed over the spatiotemporal

space proportional to the respective population count. The risk measure, RR, is the most

widely used measure of disease incidence, which is calculated as the proportion of the observed

cases to the expected cases [18]. The Singular Value Decomposition (SVD) is applied on each

matrix, C and E, and the left and right singular vectors are calculated. The singular value

decomposition of a spatiotemporal m × n matrix, M is of the form M = UDVt, where the col-

umns of U are the left singular vectors corresponding to the spatial dimension, and the col-

umns of V are the right singular vectors corresponding to the temporal dimension. D is a

diagonal matrix whose diagonal entries are the Eigenvalues of matrix, M. For the purpose of

comparison, only the singular vectors corresponding to the largest Eigenvalue were considered

because these principal vectors explain or extract the largest part of the inertia of the data table

[19]. If we assume C and E are identical, then their principal left and right singular vectors are

identical as well, i.e. the corresponding elements in the pair singular vectors stay in a zero

distance. If some change occurs in C, this change can be detected from the changes in the

Multi-EigenSpot algorithm for detecting disease clusters
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principal singular vector’S elements. In such cases, some distances between the corresponding

elements of the pair singular vectors become abnormal for the components corresponding to

the affected areas in both the spatial and temporal dimensions. Our approach uses the z-con-

trol chart for monitoring the distances between the corresponding elements of the pair singu-

lar vectors. The corresponding elements of the pair left singular vectors showing abnormal

difference are associated to the spatial components of a cluster, and of the pair right singular

vectors to the temporal components. If the abnormal components are found in both dimen-

sions, matrix C is upgraded by replacing the elements (observed cases) corresponding to the

out of control spatial and temporal components by the respective expected cases. In addition,

matrix, R is upgraded by replacing the elements corresponding to the out of control compo-

nents by their average value to further visualize these elements on the heatmap with the same

color as a hotspot. The process is repeated with the upgraded matrix C and the original matrix

of the expected cases, E. The matrices, C and R, are upgraded iteratively until no out of control

component is found in either spatial or temporal dimension. Since the upgraded elements in

matrix R are used to approximate the hotspots, the elements in the upgraded matrix R, other

than the average values, are replaced by 1 to differentiate the upgraded elements from the

other non-upgraded ones. The resulting matrix R is then visualized on the heatmap showing

the different average relative-risks with different colors. In case no space-time cluster exists,

the resulting heatmap will have all elements equal to 1 showing a dark-blue color only. Differ-

ent colors on the heatmap other than dark-blue approximate different space-time clusters. The

sub-regions in a cluster are homogeneous with respect to the space-time occurrence structure

and represented by a same color on the heatmap.

Fig 1 shows an illustrative example of how our proposed algorithm can detect multiple hot-

spots in a spatiotemporal space. Given the 3×4 spatiotemporal matrices of the observed cases,

C, and the population, P, such that Cij and Pij represents the observed cases and population,

respectively, for the ith region (Si) over the jth time-point (Tj). The two shaded areas in the case

Fig 1. Example demonstrating the proposed algorithm.

https://doi.org/10.1371/journal.pone.0199176.g001

Multi-EigenSpot algorithm for detecting disease clusters
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matrix in Fig 1 are the two different clusters of interest to be detected by the proposed method.

The conjunction of the third row with the first-second columns represents the first likely clus-

ter and the conjunction of the second-third rows with the forth column represents the second

(additional) cluster. Since there are two clusters existing in the data, the proposed algorithm

needs to be iterated two times. The first iteration will result in two similar values equal to

M1 in the upgraded matrix R, approximating the first likely cluster. The first likely cluster is

removed by replacing the observed cases by the corresponding expected cases and the process

is iterated to search for an additional cluster. The second iteration will results in two other sim-

ilar values equal to M2 in matrix R, approximating the additional cluster. The elements in the

last upgraded matrix R, other than M1 and M2, are replaced by 1 and visualized on the heat-

map. The heatmap visualizes these two clusters with different colors.

Multi-EigenSpot algorithm

In this section, our proposed algorithm is presented in more detail. This algorithm requires

three types of tools: 1) SVD for finding the singular vectors of a non-square matrix, 2) a statistical

process control tool for monitoring distances between the corresponding elements of the pair

singular vectors and 3) a visualization tool (heatmap) for visualizing the detected clusters. The

detailed stepwise process and how these techniques are deployed in the algorithm is given below.

Step-1: Calculate the spatiotemporal matrices of the expected disease cases and relative risks.

Given the spatiotemporal data matrices, C (observed disease cases) and, P (population), the

expected number of disease cases for the ith region over the jth time-point, Eij is calculated as:

Eij ¼
C:j
P:j
� Pij ð1Þ

E ¼

E11 . . . E1n

..

. . .
. ..

.

Em1 . . . Emn

2

6
6
4

3

7
7
5

where C.j is the jth column-total of matrix, C representing the total observed cases of a partic-

ular disease in the whole study area over the jth time-point; P.j is the jth column-total of

matrix, P representing the total population of the whole study area over the jth time-point; Pij

is the population of an ith sub-region over the jth time-point.

The RR for the ith sub-region over the jth time-point is calculated as:

Rij ¼
Cij

Eij
ð2Þ

R ¼

R11 . . . R1n

..

. . .
. ..

.

Rm1 . . . Rmn

2

6
6
4

3

7
7
5

Calculating matrix R, our goal is to visualize the clusters on the heatmap.

Step-2: SVD of matrices, C and E.

The one-rank SVD is used to obtain the principal left and right singular vectors for each

matrix, C and E. Our approach requires only the principal singular vector corresponding to

Multi-EigenSpot algorithm for detecting disease clusters
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the highest Eigenvalue. Because the first principal singular vector accounts for the majority

of variance in the data [19]. For matrix, C, let’s denote the principal left singular vector with

SC = (sc1, sc2, . . ., scm) and the principal right singular vector with TC = (tc1, tc2, . . ., tcn).

Similarly, for matrix, E, the principal left singular vector is denoted by SE = (se1, se2, . . ., sem)

and the principal right singular vector by TE = (te1, te2, . . ., ten)

The elements in the principal left singular vectors are associated to the components in the

spatial dimension, and in the principal right singular vectors to the components in the tem-

poral dimension.

Step-3: Calculate the subtract vectors.

Calculate the subtract vector of the pair left singular vectors as:DS = SC − SE, and that of the

pair right singular vectors as: DT = TC − TE.

Step-4: Identify abnormally higher distances in the corresponding elements of the pair singu-

lar vectors.

Calculate the standardized vectors of z-scores from the subtract vectors DS and DT and

apply the z-score control chart on both vectors with the level of significance α. Those ele-

ments of the subtract vectors DS and DT that obtain a left-tailed p-value less than α are

considered out of control. The out of control elements in DS and DT are associated to the

abnormal components in the spatial and temporal dimensions, respectively [14].

Step-5: Upgrade matrices, C and R.

If the abnormal components are found in both vectors DS and DT, upgrade matrix, C by

replacing the elements corresponding to the abnormal spatial and temporal components,

by the respective expected cases. Similarly, matrix R is upgraded by replacing the elements

corresponding to the abnormal spatial and temporal components by their average value.

Step-6: Find additional abnormal components in the spatial and temporal dimension.

Repeat Steps (2–5) until no abnormal component is found in each dimension.

Step-7: The elements in the last upgraded matrix R, corresponding to the components (spatial/

temporal) which were not found to be abnormal, are replaced by 1.

Step-8: Visualize the resulting matrix R on the heat map on which the average RR-values are

represented by different colors.

Hotspots: The colored regions on the heatmap corresponding to different average RR-val-

ues (greater than 1) show multiple space-time hotspots. If no cluster exists, then all the data

values on the heatmap will be equal to 1, showing a dark-blue color only.

The proposed method is explained in the flowchart given in Fig 2. The software solution in

MATLAB is given in the S1 File.

Results and discussion

Measles case study in Khyber-Pakhtunkhwa, Pakistan

Measles is a communicable viral disease characterized by a cough, fever and maculopapular

rashes. The World Health Organization’s (WHO) measles data showed 67,524 confirmed mea-

sles cases all over the world in the year 2015 and 16,846 till 13th June 2016 [20]. In Pakistan

measles is a leading cause of death among young children due to the low vaccination coverage

[56%-88%], which varies over different districts nationwide [21,22]. A case-based surveillance

system is functional in the targeted areas of the country [23], but an improved surveillance

system is still needed to devise the measles control strategies. Detecting space-time measles

Multi-EigenSpot algorithm for detecting disease clusters
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clusters assists identifying the regions of deprivation for the timely interventions of Public

Health organizations.

The total area of Pakistan is divided into five provinces (Sindh, Balochistan, Punjab, Khy-

ber-Pakhtunkhwa, and Gilgit-Baltistan). The proposed method was applied to detect the high-

risk spatiotemporal clusters of measles cases in the Khyber-Pakhtunkhwa province during (Jan

2016-Dec 2016). Khyber-Pakhtunkhwa, the northwestern province of Pakistan, shares a very

long border with the neighboring country of Afghanistan. The total area of this province is

74,521 km2 with a population of 30.52 million according to the census-2017. The total land

area of the province is divided into twenty-five districts. The monthly data on suspected

measles cases for each of the twenty-five districts over the months Jan 2016-Dec 2016 were

collected from the website of the District Health Information System (DHIS), Khyber-Pakh-

tunkhwa [24]. The details to access the data were publically available in the quarterly report-

2016 [25]. All hospitals in a district report the registered measles cases to the respective district

office of DHIS on a monthly basis, and these offices further report the monthly data to the pro-

vincial DHIS office. The district wise population data of Khyber-Pakhtunkhwa for the year

2016 is available publically in [26]. The Population at risk was assumed to be constant during

Jan 2016 to Dec 2016. The collected data on suspected measles cases and the population at risk

are available in the S2 File. Based on these spatiotemporal data sets, the proposed algorithm

with α = 0.10 generated a heatmap showing four space-time clusters with different colors (Fig

3). The threshold alpha was set to 0.10 because in such frequent diseases, where most of the

regions contain the observed cases higher than the expected cases, setting alpha to 0.05 or 0.01

may miss many high risk regions or may detect no hotspot. The observed measles cases and

expected measles cases for each of the twenty-five districts over each month (Jan 2016-Dec

2016) were displayed on the graph in Fig 4A and 4B, respectively, to validate the results.

Fig 2. Methodology flowchart.

https://doi.org/10.1371/journal.pone.0199176.g002
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The resulting heat map in Fig 3 showed that the first likely measles cluster occurred in the

district of Bannu for the months (May, Oct, Dec) with an average RR = 12.26, represented

with a dark-red color, while the second likely cluster occurred in the same district for the

month of Apr-2016 with an average RR = 11.81, represented with a light-red color. The three

districts (Bannu, Kohat and D. I. Khan) appeared as the third likely cluster for the month of

Mar-2016 with the average RR = 5.318, denoted by a yellow color. The forth likely cluster

occurred in two districts (Kohat and D.I. Khan) for the month of Feb-2016 with an average

RR = 4.474, denoted by a light cyan color on the heatmap. The fifth likely cluster occurred

in the districts of Kohat, D. I. Khan and Swat for the month of Jan-2016 with an average

RR = 4.202 represented with a dark-cyan color. These three districts appeared as a sixth likely

cluster for the month of Nov-2016 with an average RR = 2.532. The seventh likely cluster

occurred in the districts of Kohat and D. I. Khan for the months (June, July) with an average

RR = 2.03. The three districts (Kohat, D. I. Khan and swat) appeared as an eighth possible clus-

ter for the month of Aug-2016 with an average RR = 1.758. The data values equal to 1 on the

heatmap, represented by a dark blue color, showing the regions where the burden of measles

cases was not found to be abnormal. The sub-regions belonging to one cluster are homoge-

neous in space-time occurrence structure. The heatmap showed that the measles had highly

affected the four districts (Bannu, Kohat, D. I. Khan and swat) during the year, 2016. These

districts appeared as the likely clusters periodically at various months suggesting them to be

the alarming measles hotspots. It is evident from Fig 4 that all the hotspots regions in the spa-

tiotemporal space exhibited a higher concentration of the observed measles cases than the

expected cases and, hence, validated the results of the proposed method.

Most of the hotspots districts detected by the proposed method are the spatial neighbors

of the Federally Administered Tribble Areas (FATA) (Fig 5B) and hosting a large number of

Internally Displaced People (IDP) from the neighboring FATA regions due to the military

operation against terrorism since 2014. The vaccination rate in the IDP camps in the district

of Bannu was found to be very low [27], which may have caused the measles outbreaks in the

hosting districts because the measles outbreak in the Sindh province during the year 2012 was

also attributed to poor vaccination coverage [21]. The heavy influx and continued presence of

IDP in these districts may also put a measles case burden in these districts.

Performance evaluation

The efficiency of the proposed algorithm was compared with the EigenSpot [14], and space-

time scan statistic [4] on the measles clusters detection in Khyber-Pakhtunkhwa, Pakistan

Fig 3. Heatmap.

https://doi.org/10.1371/journal.pone.0199176.g003
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during the year 2016. These three methods were implemented on the real-world data (S2 File).

For the purpose of comparison, the geographical locations of the clusters detected by Eigen-

Spot, Multi-EigenSpot, and SaTScan were shown with a red color in Fig 5A, 5B and 5C,

respectively. EigenSpot and Multi-EigenSpot were implemented in MATLAB (R2014a) with a

significance level of α = 0.10. The space-time scan statistic was implemented with the Poisson

model for retrospective analysis in SaTScan [28]. The maximum spatial cluster size was set

to 20% of the population at risk, and the maximum temporal cluster size to 20% of the study

period, and the high rate clusters were restricted to have a relative risk greater than 1. The

SaTScan provided a result-file which showed the names of the counties in each cluster along

with the time period for which the cluster persisted. The outputs of each method were summa-

rized in Table 1.

Table 1 showed that EigenSpot detected one likely cluster while our proposed Multi-Eigen-

Spot detected eight likely clusters. The space-time scan statistic detected eight likely clusters

including more districts than our proposed approach. SaTScan detected the district of Bannu

as a most likely cluster for the months (Apr-May). The proposed method detected the same

district (Bannu) in multiple clusters for the months (Mar, Apr, May, Oct and Dec) covering

the time-interval of the SaTScan with the additional months (Mar, Oct and Dec). Similarly,

the (Kohat, Mar-Apr) was detected as a secondary cluster by the SaTScan while the proposed

method detected Kohat in multiple clusters for the months (Jan, Feb, Mar, Jun, Jul and Aug).

Moreover, SaTScan detected the district of swat for two months (Nov-Dec) while the proposed

Fig 4. (A) The observed measles cases, (B) The expected measles cases.

https://doi.org/10.1371/journal.pone.0199176.g004

Multi-EigenSpot algorithm for detecting disease clusters
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approach detected this district in multiple clusters for the months (Jan, Nov and Aug) covering

the one month (Nov) of the SaTScan’s output. It is obvious from the results that the proposed

approach has approximated the important parts of the SaTScan’s outputs (Fig 5), showing its

effectiveness for approximating the significant portion of the ground truth. It is important to

note that the direct comparison of SaTScan with Multi-EigenSpot is not an “apple to apple”

comparison. Because each of them has its own special characteristics as well as applications.

SaTScan is considered as a golden standard method. But it is associated with the strong

parametric model assumptions (e.g. Poisson or Gaussian counts) which limit its applicability

for some nontraditional data sources where these assumptions are not valid. For example,

data from emerging information technology (e.g., internet search engines, social media,

smart wearables and smart environmental devices), remote sensing technology (e.g. satellite

imaging), over the counter drugs sales, and school health surveys are nontraditional data

sources for public health surveillance [29], which may not always follow the assumptions

regarding the parametric model and quality of data. In such scenarios, Multi-EigenSpot serves

Fig 5. The locations of the clusters detected by (A) EigenSpot, (B) Multi-EigenSpot and (C) SaTScan, respectively.

https://doi.org/10.1371/journal.pone.0199176.g005

Table 1. Performance comparison of EigenSpot, Multi-EigenSpot, and SaTScan.

Method The detected clusters

EigenSpot 01

(Bannu, Apr, May)

Multi-EigenSpot 08

(Bannu, May, Oct, Dec), (Bannu-Apr), (Bannu, Kohat, D.I,Khan, March), (Kohat, D.I.khan,

Feb), (Kohat, D.I.Khan, Swat, Jan), (Kohat, D.I.Khan, Swat, Nov), (Kohat, D.I.Khan, Jun,

Jul), (Kohat, D.I.Khan, Swat, Aug).

Space-time Scan

statistic

08

(Bannu, Apr-May), (Kohat, Mar-Apr), (Shangla, Sep), (Swat, Nov-Dec), (Buner, Feb),

(Charsada, Feb), (Sawabi, Dec), (Haripur, May).

https://doi.org/10.1371/journal.pone.0199176.t001
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as a nonparametric solution for hotspots detection in the spatiotemporal space. The results

showed that the proposed approach has detected some districts repeatedly in various clusters.

This is an important advantage of the proposed approach, because identifying such a periodic

homogenity in space-time occurrences is of high significance for the epidemiologist to find the

possible factors affecting the disease spread in an area. In addition, Multi-EigenSpot is a shape-

free approach and does not search for specific shape clusters. Certain diseases are linked to the

rivers, forests or roadways which affect the regions along the river, forest or roadways making

the extremly irregularrly shaped clusters. In such applications, the proposed approach could

be a useful solution for clusters detection regardless of their shapes.

Conclusion

In this study, we extended the existing EigenSpot algorithm to allow for detecting multiple dis-

ease clusters in a spatiotemporal space. The spatiotemporal analysis of the real world data on

measles cases proved that the proposed method has addressed the two main limitations (multi-

ple cluster detection and visualization) of the existing EigenSpot algorithm. It is obvious from

the results that the proposed approach can approximate the significant portion of the SaTS-

can’s outputs, showing it to be a useful nonparametric solution when the assumptions of SaTS-

can regarding the data distribution are not met. In most of the situations, when the data follow

the parametric model assumptions, SaTScan is a more efficient solution to the cluster detection

problem.

In certain situations, especially in rare diseases where most of the cells in the case matrix are

zero, if a space-time region having zero cases is wrongly detected, then it cannot be removed

in the following iteration. This is because, replacing the zero observed cases with non-zero

expected cases makes it an abnormal region and it can possibly be redetected iteratively and,

hence, influences the efficiency of the proposed method. Due to this limitation, the proposed

algorithm is recommended for frequent disease cases; and for rare diseases, its results may not

always be valid. Future work is required to adjust this algorithm for rare diseases and improve

its efficiency for different situations by using a full-rank SVD and different control charts in

the algorithm. Moreover, this algorithm is based on the disease cases aggregated for the sub-

regions over a discrete time-point, which may miss some clusters that overlap either in space

or in time. For example, if an outbreak occurs on the border of a sub-region it may affect a

part of the neighboring region, or if a cluster occurs in January and exists until the mid of

February.
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