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Abstract

Background: The phenomena that emerge from the interaction of the stochastic opening and closing of ion channels
(channel noise) with the non-linear neural dynamics are essential to our understanding of the operation of the nervous
system. The effects that channel noise can have on neural dynamics are generally studied using numerical simulations of
stochastic models. Algorithms based on discrete Markov Chains (MC) seem to be the most reliable and trustworthy, but
even optimized algorithms come with a non-negligible computational cost. Diffusion Approximation (DA) methods use
Stochastic Differential Equations (SDE) to approximate the behavior of a number of MCs, considerably speeding up
simulation times. However, model comparisons have suggested that DA methods did not lead to the same results as in MC
modeling in terms of channel noise statistics and effects on excitability. Recently, it was shown that the difference arose
because MCs were modeled with coupled gating particles, while the DA was modeled using uncoupled gating particles.
Implementations of DA with coupled particles, in the context of a specific kinetic scheme, yielded similar results to MC.
However, it remained unclear how to generalize these implementations to different kinetic schemes, or whether they were
faster than MC algorithms. Additionally, a steady state approximation was used for the stochastic terms, which, as we show
here, can introduce significant inaccuracies.

Main Contributions: We derived the SDE explicitly for any given ion channel kinetic scheme. The resulting generic
equations were surprisingly simple and interpretable – allowing an easy, transparent and efficient DA implementation,
avoiding unnecessary approximations. The algorithm was tested in a voltage clamp simulation and in two different current
clamp simulations, yielding the same results as MC modeling. Also, the simulation efficiency of this DA method
demonstrated considerable superiority over MC methods, except when short time steps or low channel numbers were used.
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Introduction

Noise and variability are present throughout the nervous

system, from sensory systems to the motor output and perhaps

more importantly in the higher brain areas [1]. Far from being

considered as a nuisance, noise is now argued to be one of the key

elements that shape the way the central nervous system (CNS)

codes sensory inputs, builds internal representations and makes

decisions [2]. Phenomena like stochastic resonance [3,4,5,6]

enhance several aspects of sensory coding and signal detection

[7,8]. Also, noise can be beneficial in various computational tasks

[9,10,11,12].

One of the main sources of noise and variability is the stochastic

opening and closing of ion channels, commonly called channel noise

[13,14]. The effects of channel noise on neuronal excitability are

to a large extent studied with the use of mathematical models,

either by constructing and analyzing models with stochastic

channels [15,16,17,18] or by introducing a noisy conductances in

dynamic clamp experiments [19,20]. It is of interest, then, to

develop and analyze numerical models that faithfully reproduce

the stochastic nature of ion channels. It is also of interest to

develop fast algorithms that can be used in large scale simulations

of neural networks or in real time simulation for dynamic clamp

experiments.

Ion channels are commonly modeled using the framework

established by Hodgkin and Huxley [21], see also [22]. In this

framework, ion channels contain one or more gating particles that

can be either in a resting or active state. The transition rates

between states are voltage-dependent, and now we know that this

is because these particles contain a charged domain (the voltage

sensor) that senses the membrane electrical potential [23]. In the

pure Hodgkin and Huxley (HH) framework, the probability of a

channel being open is equal to the probability of all its gating

particles being active. Usually the particles are assumed to be

independent and thus the probability of the open channel is the

product of the probabilities of the active particles. In the limit of
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infinitely many channels (deterministic HH model), probabilities

are equivalent to the fraction of active particles or open channels.

The transition between resting and active states of particles is

described by ordinary differential equations of a deterministic

nature, because the HH model fitted the behavior of a giant squid

axon with such a large number of channels that individual

stochastic contributions were completely neglected.

When the stochastic behavior of ion channels is taken into

account, it is best described by continuous-time, discrete state

Markov jumping processes [24,25]. Several algorithms exist for the

mathematical simulation of simultaneous and independent Mar-

kov Chains (MCs) representing a population of ion channels in a

membrane patch or neuronal soma. Among these, the most

efficient is a channel-number-tracking algorithm proposed by

Gillespie [26] and first applied to ion channels in 1979 [27] (see

[28] for a comparison with other MC algorithms). Nevertheless, all

MC algorithms increase their computational complexity with the

number of channels.

Another approach for simulating stochastic ion channels relies

on the fact that a large number of simultaneous and independent

MCs can be approximated by a stochastic differential equation

that describes the time evolution of the fraction of MCs that are in

each possible state [29,30,31,32,33]. This algorithm, referred as

Diffusion Approximation (DA), is dramatically more efficient in

terms of computational cost [28] and is the choice for dynamic

clamp experiments where real-time simulation is required [19]. In

the general form of DA [29], the time evolution of a variable

vector containing the fraction of channels in each state is obtained

by solving a Langevin equation (see eq. (1)) with both deterministic

and stochastic transition matrices. The method, however, is less

practical, since it requires the numerical calculation of a matrix

square root at each time step, making it a very time-consuming

algorithm (each calculation usually requires about O M3
� �

floating

point operations [34], M being the number of channel states). To

circumvent this, Fox and Lu [29] heuristically proposed to

simulate the two-state gating particles as separate stochastic

processes and then calculate the conductance of each ion channel

species as the product of particle probabilities. This approach of

uncoupled gating particles requires a simple Stochastic Differential

Equation (SDE) per particle species without any matrix operation,

easily constructed by adding simple noise terms to the determin-

istic differential equations of the mean channel kinetics. This, in

addition to its high computational efficiency, made the uncoupled

particles approach the main choice for DA implementations

[18,19].

However, the uncoupled particles form of the DA does not

approach the behavior of explicit MC appropriately. Mino and

colleagues [28] found that this DA algorithm introduces less

variability than MC modeling, evidenced by a steeper action

potential firing probability vs. stimulus intensity relationship.

Later, Bruce [35] found that the DA algorithm, as it was being

implemented, assumes that the stochastic term of the gating

particles is uncorrelated, while the MC modeling introduces

correlated noise into the channel conductance behavior. Also, the

variance of the conductance is higher for MCs than for the

uncoupled particles DA algorithm.

Why was it assumed that gating particle coupling is of minor

importance when modeling stochastic channels? Mainly, because

both approaches – coupled or uncoupled particles – result in a

similar mean time evolution of the conductance [33]. However,

fluctuations introduced by both approaches are dramatically

different, in terms of the variance of the conductances and their

correlations at different times. This difference between approaches

poses a serious problem since the purpose of any quantitative

stochastic model is precisely to determine the effects of these

fluctuations. The uncoupled particles approach also has the

disadvantage of not being applicable to kinetic schemes with non-

independent gating particles – such as channels with cooperative

voltage sensors [36,37]– or when the voltage sensors are not

identical [38,39].

In recent works [33,40], it was further confirmed that

considering coupled gating particles produces more variability in

the conductance and introduces noise with a particular covariance

that cannot be reproduced by two-states models. Both works also

proposed algorithms for the DA that better approached the results

of MC modeling, in the context of the HH model. Goldwyn et al.

[33] tested the general form of DA suggested by Fox [29],

numerically computing the square root of the stochastic diffusion

matrix (an O M3
� �

operation) at each time step, producing a very

time-consuming algorithm. On the other hand, Linaro et al. [40]

developed a set of SDEs that capture the statistical properties of

the variations of conductance, adding it to the ion currents given

by a deterministic model.

Here we present a different approach to derive the DA using

basic probabilistic tools, for any given kinetic diagram of a

channel. This derivations results in practical, general and

intuitive rules allowing for the accurate implementation of DA

as a set of simple SDEs, with comparable simplicity to that of

(inaccurate) uncoupled DA approach, allowing and efficient

implementation (between O Mð Þ and O M2
� �

at each time step,

depending on the number of kinetic transitions). This makes the

computational complexity of the stochastic algorithm compara-

ble to that of the uncoupled DA approach and even the

deterministic implementation that simply ignores the noise terms

in the SDE. We thoroughly tested the proposed DA implemen-

tation, comparing its results to the behavior of explicit MC

modeling in three different simulation tests: one under voltage

clamp and two under current clamp. Notably, the methods

previously suggested [33,40] displayed significant inaccuracies in

two of these tests because they employ a steady-state approx-

imation for the calculation of stochastic coefficients. Our method

does not require such an approximation and therefore does not

incur those errors. We also compare the computational

efficiency and numerical stability of the algorithm for different

numbers of channels and integration time steps, showing that in

most cases DA will be algorithm of choice. Finally, we discuss

how our method relates to other implementations previously

published.

Results

Mathematical Analysis
We examine a specific population of N ion channels with M

states, where the transition rate of a single channel from state j to

state i is given by Aij . We define the rate matrix A to be composed

of these Aij terms for all i=j, and also Aii~{
P
j=i

Aji on the

diagonal. In neuronal models, these transition rates are usually

voltage dependent (and so are also time-dependent). For brevity,

we keep this voltage dependency implicit. We denote by xi the

fraction of channels in each of the state, and by x a vector of xi.

Note that x1z:::zxM~1 and it is common to use this

normalization in order to reduce the number of variables

[29,31,33,40]. However, here this substitution is not employed

until the numerical implementation to make the algebraic

operations easier. The DA proposed by Fox [29,31] for the

stochastic dynamics of x leads to the following SDE.

Diffusion Approximation for Stochastic Channels
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dx

dt
~AxzSj , ð1Þ

where j is a vector of independent Gaussian white noise processes

with zero mean and unit variance, A is the rate matrix, and

S~
ffiffiffiffi
D
p

, a square root of the diffusion matrix D (namely

SS>~D). This matrix square root has been the main hindrance

in the implementation of DA [33]. If solved numerically in

simulation time, it incurs a great computational cost, of order

O M3
� �

at each time step.

Interestingly, it is possible to obtain a direct analytical solution

of S~
ffiffiffiffi
D
p

for certain kinetic schemes, such as the potassium

channel scheme, prior to the simulation (we used Cholesky

decomposition, see eq. (15) and below). However, it is not

immediately clear how to do so for other schemes, such as the

sodium channel scheme. We therefore explored a different

derivation of the matrix S.

Derivation of the diffusion approximation. We

denoteXi~Nxi, the number of channels in state i, and X to be

the corresponding vector. Assume that X tð Þ is known, and we wish

to calculate X tzdtð Þ. Recall that the channels are independent of

each other and that transition rates are memoryless. Therefore, for

all i=j, we define the channel transition step.

Dij(t)~
the number of channels switching

from state j to state i during t,tzdtð Þ

� �
ð2Þ

Dij(t) is a Random Variable (RV) composed of the sum of

n~Xj(t) independent events (‘‘trials’’), in which a channel either

switched states, with probability of p~Aijdt, or did not switch

states, with probability 1{Aijdt (to first order in dt). This entails

that for all i=j, Dij(t) are independent and binomially distributed

with n~Xj(t) and p~Aijdt. Denoting by S:T the expectation (over

the ensemble), we use the properties of the binomial distribution

and find the mean.

SDij(t)T~np~Xj(t)Aijdt ð3Þ

and the variance,

Var Dij(t)
� �

~np 1{pð Þ~Xj(t)Aijdt 1{Aijdt
� �

ð4Þ

Since Dij(t) are independent.

Cov Dij(t),Dmk(t)
� �

~DimDjkVar Dij(t)
� �

, ð5Þ

where Dab~1 if a~b, and 0 otherwise.

In the limit N??,dt?0 we get that n?? and p?0 for the

binomial distribution of each Dij(t). This allows us to approximate

Dij(t) by a normal (Gaussian) distribution with both mean and

variance equal to np~XjAijdt (by the central limit theorem). In

order to derive the SDE (eq. (1)), we need to assume that the

Gaussian approximation is reasonable. Later, we confirm this

numerically, as also did Linaro et al. [40] and Goldwyn et al. [33]

(for example, this was numerically confirmed by [33] for channel

numbers as low as NK~18,NNa~60).

At each dt, Xi changes according to the sum of channels

entering and leaving state i.

dXi tð Þ~Xi tzdtð Þ{Xi tð Þ~
X

j

Dij tð Þ{Dji tð Þ
� �

, ð6Þ

where we defined, for convenience, Dii(t)~0. Assuming Dij(t) are

all normal, then dX tð Þ (the vector of dXi tð Þ) is also normal, as a

linear combination of independent normal RVs. Since the

distribution of normal variables is entirely determined by their

mean and covariance, we calculate them.

We use eq. (3) to find the mean of eq. (6).

mdX ið Þ~SdXi tð ÞT~
X

j

AijXj(t){AjiXi(t)
� �

dt ð7Þ

Next, using eq. (5) we find the covariance.

RdX i,jð Þ~Cov dXi tð Þ,dXj tð Þ
� �

~Cov
X

k

Dik(t){Dki(t)ð Þ,
X

m

Djm(t){Dmj(t)
� � !

~Cov
X

k

Dik(t),
X

m

Djm(t)

 !
zCov

X
k

Dki(t),
X

m

Dmj(t)

 !

{Cov
X

k

Dik(t),
X

m

Dmj(t)

 !
{Cov

X
k

Dki(t),
X

m

Djm(t)

 !

~Dij

X
k

Cov Dik(t),Dik(t)ð ÞzCov Dki(t),Dki(t)ð Þð Þ

{Cov Dji(t),Dji(t)
� �

{Cov Dij(t),Dij(t)
� �

~Dij

X
k

Var Dik(t)ð ÞzVar Dki(t)ð Þð Þ{Var Dji(t)
� �

{Var Dij(t)
� �

Using eq. (4), neglecting dt2 terms and dividing by dt we obtain.

1

dt
RdX i,jð Þ~

P
k=i

AikXk(t)zAkiXi tð Þð Þ, if i~j

{AjiXi(t){AijXj(t) , if i=j

(
: ð8Þ

Since we now know the mean of dX tð Þ (eq. (7)) and the

covariance between all of its components (eq. (8)), we can write.

dX~mdXz
ffiffiffiffiffiffiffiffiffi
RdX

p
Z ð9Þ

where Z is a vector of independent Gaussian RVs with mean zero

and unit variance. To derive an SDE for x~X=Nwe divide eq. (9)

by N and take the limit of dt?0, yielding.

dx

dt
~AxzSj ,

which is indeed eq. (1), with S~
ffiffiffiffi
D
p

, where

Diffusion Approximation for Stochastic Channels
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Dij~
1

N2dt
RdX i,jð Þ

~
1

N

P
k=i

Aikxk(t)zAkixi tð Þð Þ, if i~j

{Ajixi(t){Aijxj(t) , if i=j

8<
: :

ð10Þ

A Simpler Derivation of the Diffusion Approximation
Now that we have the general expression for the diffusion

matrix, and know its origin, we can devise a simple way to

explicitly calculate S, which avoids the use of time consuming

numerical procedures for matrix square root computation. The

key idea behinds this is to use only Dij tð Þ and eqs. (3)-(6) to derive

the SDE, and the Gaussian approximation. For simplicity, we

demonstrate this method step-by-step using a channel with M~3
states.

1 '

A21

A12

2 '

A32

A23

3

Using eq. (6) we write

dX1~D12{D21

dX2~D21{D12zD23{D32

dX3~D32{D23

ð11Þ

Denoting Wij~Dij{Dji we notice that Dij can be combined in

opposing pairs.

dX1~W12

dX2~{W12zW23

dX3~{W23

ð12Þ

We now calculate the means, using SDij(t)T~Xj(t)Aijdt (eq.

(3)), we obtain.

SdX1T~X2A12dt{X1A21dt

SdX2T~{X2A12dtzX1A21dt{X2A32dtzX3A23dt:

SdX3T~X2A32dt{X3A23dt

Denoting Yij tð Þ~Wij tð Þ{SWij tð ÞT, we obtain.

dX1~SdX1TzY12

dX2~SdX2T{Y12zY23,

dX3~SdX3T{Y23

where Y12,Y23 are normal, independent, with zero mean and

Var Y12ð Þ~Var D12ð ÞzVar D21ð Þ~X2A12dtzX1A21dt

Var Y23ð Þ~Var D23ð ÞzVar D32ð Þ~X3A23dtzX2A32dt

,where we used eq. (4), neglecting dt2 terms. Now we can write

dX1~X2A12dt{X1A21dtzZ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2A12dtzX1A21dt

p
dX2~{X2A12dtzX1A21dt{X2A32dtzX3A23dt

{Z1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2A12dtzX1A21dt

p
zZ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2A32dtzX3A23dt

p
dX3~X2A32dt{X3A23dt{Z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2A32dtzX3A23dt

p
with Z1,Z2 are normal, independent, with zero mean and unit

variance.

Dividing by N and taking the limit dt?0, we finally obtain the

SDE.

dx1

dt
~x2A12{x1A21z

1ffiffiffiffiffi
N
p j1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2A12zx1A21

p
dx2

dt
~{x2A12zx1A21{x2A32zx3A23

{
1ffiffiffiffiffi
N
p j1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2A12zx1A21

p
z

1ffiffiffiffiffi
N
p j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2A32zx3A23

p
dx3

dt
~x2A32{x3A23{

1ffiffiffiffiffi
N
p j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2A32zx3A23

p

Note that each component of j is associated with a transition

pair i'j, multiplied by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AijxjzAjixi

� �
=N

q
, and appears in the

equations of dxi=dt and dxj=dt with opposite signs.

Using a similar derivation we can now write S for a general

channel with M states. To do this succinctly we must introduce

several notations. We denote by T the set of all possible transitions

pairs i'jð Þ that exist between states and then give each pair an

index in k~1,:::, Tj j. Note that Tj j, the size of set T , can be any

integer between 0 and M M{1ð Þ=2. Also, we denote T ið Þ to be

the subset of all transitions pairs that connect to state i. Finally, we

denote mik to be the index of the state connected by the k-th

transition pair, excluding state i.

In that case, the matrix S is of size M| Tj j, and.

Sik~
sign i{mikð Þ 1ffiffiffiffiffi

N
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aimik

xmik
zAmikixi

q
,k[T ið Þ

0 ,k=[T ið Þ

8<
: ð13Þ

Test case – potassium and sodium channels. We have

obtained the matrix S analytically, showing that it has a rather

simple structure. It is necessary, however, to compare our result

with previous definitions of the diffusion matrix as given by Fox

[29,31] and used by Goldwyn [33]. For a simple comparison, we

will use the case of the potassium channel:

n0 '
4an

bn

n1 '
3an

2bn

n2 '
2an

3bn

n3 '
an

4bn

n4

Starting from eq. (1) and defining x~ n0 n1 n2 n3 n4½ �>,

the matrix AK is.

Diffusion Approximation for Stochastic Channels
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AK~

{4an bn 0 0 0

4an {3an{bn 2bn 0 0

0 3an {2an{2bn 3bn 0

0 0 2an {an{3bn 4bn

0 0 0 an {4bn

2
6666664

3
7777775

SK is defined such that SK ST
K~D [29], being.

(n sub indices in a and b were omitted for abbreviation). Using

Cholesky decomposition, we can find SK :

Substituting in (1) and performing the matrix operations, the

full system of SDE for the n. variables can be now written as:

dn0

dt
~ {4ann0zbnn1ð Þzj1

1ffiffiffiffiffiffiffi
NK

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ann0zbnn1

p
dn1

dt
~ 4ann0{bnn1{3ann1z2bnn2ð Þ

{j1

1ffiffiffiffiffiffiffi
NK

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ann0zbnn1

p
zj2

1ffiffiffiffiffiffiffi
NK

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ann1z2bnn2

p
dn2

dt
~ 3ann1{2bnn2{2ann2z3bnn3ð Þ

{j2

1ffiffiffiffiffiffiffi
NK

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ann1z2bnn2

p
zj3

1ffiffiffiffiffiffiffi
NK

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ann2z3bnn3

p
dn3

dt
~ 2ann2{3bnn3{ann3z4bnn4ð Þ

{j3

1ffiffiffiffiffiffiffi
NK

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ann2z3bnn3

p
zj4

1ffiffiffiffiffiffiffi
NK

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ann3z4bnn4

p
dn4

dt
~ ann3{4bnn4ð Þ{j4

1ffiffiffiffiffiffiffi
NK

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ann3z4bnn4

p

ð16Þ

where, again, j1, j2, j3and j4 are independent Gaussian white

noise terms with zero mean and unit variance. Note in (16) that

although the length of the noise vector j is equal to the number of

states, the number of noise terms actually employed is equal to the

number of transition pairs i'j. Also, as before, each component of

j is associated with a transition pair i'j; it is multiplied by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AijxjzAjixi

� �
=N

q
, and then added to deterministic differential

equations of dxi=dt and dxj=dt with opposite signs. Thus, the

structure of equations we proposed is also obtained from the

original definition of S.

However, it is easy to see that Cholesky decomposition, which

generates lower triangle matrices, will only work for ‘‘linear’’

kinetic schemes – 1'2':::'M. For a example, since a triangle

matrix must be square the Cholesky decomposition cannot work if

Mv Tj j, as in the case of the sodium channel, where M~8 and

Tj j~10. In that case, the S matrix we derive is different than that

suggested by Fox [29,31] and used by Goldwyn et al. [33] – since in

the latter approach the length of j was always equal to M, the

number of states and not the number of transition pairs, as in our

approach. With our approach, the SDE for sodium channels (see

Information S1) requires the use of 10 random terms instead of 8 (or

7, if the normalization of x is used). The use of more stochastic terms

may appear computationally more expensive, but it comes with the

benefit of simple stochastic equations that avoid complex matrix

operations. Finally, it is noteworthy that the S matrix that we

propose, with size M| Tj j, also fulfills SST~D, even if Mv Tj j.

Numerical Simulations
In this section we will demonstrate that our equations faithfully

reproduce the results that can be obtained in simulations with

explicit MCs, with similar numerical stability and lower compu-

tational cost. To test the proposed DA algorithm, it was compared

to MC modeling in its coupled particles approach. Additionally,

we examined a common ‘‘steady state’’ approximation employed

when using DA methods. In this approximation the variable values

in the expressions multiplying the noise terms are replaced by their

steady state values [29,31,33,40]. Here we will show that the

steady state approximation must be used with great caution

depending on the kinetics of the channels simulated.

The details of the specific models we used and the numerical

implementation are described in Methods. Before we give the

simulations results, we clarify a few important numerical issues.

Numerical implementation issues. An issue that is com-

monly debated in the implementation of DA is whether to

manipulate the state variables to make them increase discretely or

to bound them between 0 and 1. Mino et al. [28] did both, making

D~
1
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the variables to represent an integer number of open channels by

multiplying by the number of channels and then rounding them to

the lowest integer. Later, Bruce [41] found that rounding to the

lowest integer produced a shift of the Firing Efficiency curves to

the left, and that it was more appropriate to make the rounding to

the nearest integer. In both works the state variables were bounded

between 0 and 1 (or between 0 and the number of channels),

something that does not impose any mathematical difficulty when

dealing with two-state gating particles.

However, when working with multi-state channels, bounding the

variables by manually correcting an off-bound value causes the

variable vectors to leave a bounded hyperplane that may cause the

diffusion matrix to be no longer positive semi-definite, making it

impossible to calculate its square root [33]. Therefore, Goldwyn and

colleagues decided not to bind the variables and allowed values

below 0 and above 1 and instead replaced the variable values in the

random terms with their steady state values. We will show here that

in some important cases this steady state approximation can

introduce significant deviations compared to the exact equations.

In the present work, neither the variables were converted to an

integer number of channels nor were they bounded between 0 and 1.

The only manipulation performed to ensure real valued random terms

was to apply the square root to the absolute value of the argument. As

evidenced by the simulations presented here, this did not introduce

any noticeable deviation from the simulations with MCs.

Voltage clamp simulations. The behavior of the simulation

algorithms was first compared in voltage clamp simulations, using

only the potassium channel from the HH model. The initial

condition was the steady state value at –90 mV and a 6 second

simulation of 300 K channels was performed with the kinetic

constants fixed at +70 mV. The number of open channels was

recorded at every time step of the simulation (Figure 1A, top,

shows 8 simulated traces). 200 independent pulses were simulated

and the mean and variance of open channels was calculated for

every time step. Figure 1A, middle, shows mean and variance as a

function of time and Figure 1A, bottom, shows the relationship

between mean and variance of the number of open channels. The

relation of the mean and variance of the total current is [42]:

s2
I ~vIwi{

vIw
2

N
ð17Þ

where s2
I is the variance of the current at any given time, vIw is

the mean of the current at the same time, i is the single channel

current (equal to 1 when counting number of open channels) and

N the number of channels. This relationship stems directly from

the fact that the current in voltage clamp is the sum of

independent binary channel currents. In this case, if p is the

probability of finding a channel open, then vIw~Nip and

s2
I ~Ni2p 1{pð Þ, which jointly give eq. (17).

Comparison of Figures 1A and 1B shows that our DA perfectly

reproduces the behavior of MC simulations. In both simulations

the fit of the data to eq. (17) yields the expected values of N and i.

The steady state approximation requires the kinetic constants to

change slowly compared to the variables. As the kinetic constants

are voltage-dependent, the voltage has to change slower than the

variables. In a voltage clamp simulation, exactly the opposite

happens as the voltage is changed instantaneously at time 0. As

expected, the algorithm that uses the steady state approximation

performed very poorly (Figure 1C). An almost constant variance of

the number of open channels was obtained, and the maximum

Figure 1. Voltage clamp simulation and non-stationary noise analysis. 300 potassium channels from the HH model were simulated at a
constant voltage of 70 mV. At t = 0, they were in a steady state condition calculated at –90 mV. 200 independent simulations were performed with
each simulation algorithm (indicated above each panel) and a non-stationary noise analysis was performed [42]. Top row: 8 sample traces of the
number of open channels against time. Middle: Mean (black) and variance (grey) of number of open channels as a function of time. Bottom: The
variance of the number of open channels is plotted against the mean. The continuous line represents the best fit to equation (17), and the best fit
parameters are indicated 6 standard error. Expected values are N = 300 and i = 1. The corresponding R-square values are A: 0.98, B: 0.99, C: 0.13.
doi:10.1371/journal.pone.0036670.g001
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during the rising phase of the mean was lost. As a result, the model

did not recover the correct parameters in the mean vs. variance fit.

Thus, our proposed DA algorithm produces the same results as

MC modeling and significant differences appear when steady state

approximation is used. We will test it further with current clamp

models also assessing the numerical stability and processor time cost.

Mammalian node of ranvier model. The performance of

the simulation algorithms in the mammalian Node of Ranvier (Rb)

model [43] was tested using a 1 ms simulation in which a single

current pulse of 0.1 ms duration and variable amplitude is given at

the beginning (Figure 2A). 1000 simulations were performed at

each current amplitude level and the measures of action potential

variability (defined in Methods, Rb model) are presented in

Figures 2B –2D. The curves clearly overlap, indicating the

accuracy of our algorithm.

While results in Figure 2 correspond to simulations performed

with 1000 channels, simulations were also performed with 500,

5000 and 10000 channels. To present the data in a more concise

way, the Firing Efficiency vs. Stimulus amplitude curves were

fitted to a cumulative Gaussian distribution (Figure 3A). The mean

of the distribution corresponds to the Threshold, the stimulus

amplitude that has a probability 0.5 of firing an action potential,

while the standard deviation (s) is a measure of the spread or the

input/output relationship. Figure 3B shows the fitting parameters

obtained with different number of channels and the tested

algorithms. The most relevant observation in these figures is that

DA reproduces the same behavior that is obtained with MC

simulation. Also it is interesting to note that the threshold is almost

independent of the number of channels, while s is highly

dependent on it. The latter fact is not surprising as fewer channels

imply a noisier, more variable simulation and thus a flatter

relationship between stimulus amplitude and Firing Efficiency.

When more channels are present, noise is reduced and the curve

gets steeper, becoming a step function in the deterministic limit

(infinite number of channels).

Figures 2 and 3 also show the performance of the DA algorithm

with the steady state approximation (grey symbols). With this

approximation, the model deviates considerably from the exact

algorithm, with less variability as evidenced in the lower spread of

the activation curves (s values). Therefore, it seems that the action

potential in the Rb model is fast enough to make the steady state

approximation not suitable for a model with coupled gating

particles. Finally, we show the inaccurate uncoupled DA in

Figure 2, for comparison purposes. The implementation method

for the uncoupled version appears in Information S2.

To test and compare the numerical stability of the algorithms

presented here, simulations were performed with increased time

steps and the effect of time step on the Firing Efficiency curve was

observed. Figure 4A shows that as the time step is increased the

threshold also increases, indicating a shift to the right of the Firing

Efficiency curve. At dt = 10 ms, there is a sudden drop in threshold,

but this is probably a sign of a major instability occurring in the

numerical integration. An important observation, however, is that

both algorithms show the same behavior, reinforcing the idea that

our DA algorithm reproduces the behavior of MC modeling. The

spread of the Firing Efficiency curve (Figure 4B) remains to a great

Figure 2. Rb model simulations. A. 15 voltage traces (bottom) resulting from independent simulations with the Rb model, in which a 5.8 nA
pulse of 100 ms duration (top) was applied. The simulations presented correspond to the Rb8 model (independent channels approach) using MC
modeling, with 1000 Na channels and dt = 1 ms. B–D. Firing efficiency (fraction of action potentials evoked in 1000 simulations), mean firing time, and
variance of firing time as a function of stimulus amplitude for the different simulation methods. MC: Markov chain modeling, DA: Diffusion
approximation algorithm. DA-s.s.: Diffusion approximation with steady state values of variables in random terms. N = 1000, dt = 0.1 ms. For the data
plotted in C and D, additional simulations were run for amplitudes between 5.4 and 6.0 nA up to complete 1000 action potentials for a better
estimation of mean and variance of firing time. For comparison purposes, dashed lines represent the results of the uncoupled version of the DA
algorithm (For method, see Information S2).
doi:10.1371/journal.pone.0036670.g002
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extent unchanged as dt is increased and once again the simulation

algorithm (MC or DA) does not make any difference. It should be

mentioned that when using DA there was a significant number of

simulations with dt = 5 ms in which an out-of-range voltage value

(NaN, 6Inf) was obtained, and all simulations ended out-of-range

for dt$10 ms. This is to some extent avoided if the variables are

constrained to be between 0 and 1, but it comes with some

computational cost. Normally, this constraint was not imposed in

the simulations presented here (nor in the HH model) and for

dt#1 ms it was not necessary at all. Depending on the kinetics of

model to be implemented a decision has to be made as to whether

Figure 3. Quantification of variability in the Rb model and its dependence on the number of channels simulated. A. Fitting of a firing
efficiency curve to a sigmoid function (see Methods) that is characterized by a threshold (the stimulus amplitude that produces a firing efficiency of
0.5) and s (the standard deviation of the threshold fluctuations). B–C. Dependence of the threshold (B) and slope (C) values on the number of
channels simulated, for each of the simulation methods. dt = 1 ms.
doi:10.1371/journal.pone.0036670.g003

Figure 4. Numerical stability and computational cost of the simulation algorithms with the Rb model. A–B. Dependence of Rb model
variability on the integration time step used in the simulation. Threshold (A) and s (B) values calculated as in Figure 3A, obtained at different values
of integration time step (dt). N = 1000. C. Dependence of computation time on integration time step (dt) with N = 1000 channels. D. Dependence of
computation time on number of channels (N) with dt = 0.5 ms. Computation time is the time, in seconds, needed to perform the 16000 simulations
necessary for a single firing efficiency curve (1000 pulses at 16 current levels). This figure corresponds to simulations performed in the Scilab
numerical computation software. 1000 simulations were performed as 10 batches of 100 simultaneous and independent simulations, in a Core i7
machine. For comparison, the computation time for the uncoupled version of DA is also depicted.
doi:10.1371/journal.pone.0036670.g004
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it is worth to add a couple of lines of code that will check and

correct values out of boundaries.

Figure 4C–D plots the time it takes to run 16000 simulations

(1000 simulations per stimulus amplitude) in the machine

employed for this work, as a function of the integration time step

(4C) or the number of channels simulated (4D). It is clear that MC

modeling is slower than DA, at all conditions tested. We also show

the data for the uncoupled version of DA algorithm, to show that

our equations approximately just double the computational cost.

However, we remind the reader of the inaccuracy incurred by the

uncoupled version (Figure 2 and [28,30,35,40]). Another remark-

able observation from Figure 4 is that MC modeling is highly

affected by the number of channels in the simulation (more

channels imply more transitions to calculate) while the DA method

is only sensitive to the time step and completely unaffected by the

number of channels.

Squid axon model. The original Hodgkin and Huxley (HH)

model for squid giant axon [21] is deterministic and the channel

activation functions are continuous variables. In the absence of a

stimulus, no action potential is elicited and the system relaxes to a

resting voltage very close to –65 mV. However, if discrete

stochastic channels are considered spontaneous action potentials

arise due to sodium channels fluctuations [16]. Here, the stochastic

HH model was simulated with both algorithms and the resulting

spike frequency and intervals were analyzed.

As expected, the frequency of the spontaneous action potentials

increases as the number of channels is decreased (Figure 5).

Importantly, our DA algorithm produces the same firing rates as

the MC modeling. Figure 6A plots the mean action potential

frequency observed in the 500 s simulation, as a function of the

number of sodium channels (NNa) simulated (the number of

potassium channels was always set to NNa60.3). The result

observed with the Rb model is repeated as the simulation

algorithm makes no difference in the results. In order to go

beyond the simple firing rate quantification, the Inter-Spike

Intervals (ISIs) obtained in each case were plotted in histograms

and fitted to an exponential decay function (Figure 6B, also see Eq.

(22) in Methods). For all ISIs obtained, it was observed that the first

two bins (marked with * in the histogram) did not follow the

exponential trend so they were excluded when fitting the

histograms. This was observed in all simulations and thus it is

not caused by a specific simulation algorithm. Indeed, it has been

observed before [18] and is probably due to the resonant

properties of the HH model [21,44,45] that, with a frequency of

peak response of 67 Hz, will increase the probability of ISIs

around 33 ms. Figures 6C and 6D show the fit parameters

obtained as a function of the number of sodium channels, and it is

evident that the simulation algorithm employed does not make any

difference in the ISI distributions.

As with the Rb model, a DA approximation algorithm was

tested in which the variable values of the random term were

replaced by their steady-state values. The results obtained are

plotted in Figure 6 as well (gray triangles). Here the deviations

from the exact DA (and MC) are minor, probably because the

voltage dynamic in this model is slow enough to let the variables

(at least the m variable) to be at its steady state value during almost

all the simulation.

To check for numerical stability of the methods, simulations

were repeated with increasing values of dt, the integration time

step. As shown in Figure 7, increasing dt up to 100 ms has little or

no effect in the mean rate of spikes (7A) or the parameters of the

ISI distribution (7B and 7C). There are some deviations for dt

.10 ms, but they are minor compared to what was observed with

the Rb model. In this case, no out-of-range voltage values were

produced throughout the 500 seconds simulated. Remarkably, the

choice of the algorithm has no effect on the numerical stability

within the dt values tested.

Figure 7D-E plots the time it took to simulate 500 seconds as a

function of the time step (7D) and the number of sodium channels

(7E). As with the Rb model, MC modeling performance is severely

affected by the number of channels while the DA algorithm is

independent of it and only affected by the integration time step.

However, in this case MC modeling turned out to be as efficient

(in some cases more efficient) than DA at the lowest dt values. This

is probably due to the longer time constants of the HH model

(reproducing the behavior of squid axons at 6.3uC) compared to

the Rb model (mammalian node of Ranvier at 37uC). In the HH

model, there are fewer transitions per time step and probably

when dt,1 ms there are many steps in which no transition occurs,

thus leaving all the computational weight to solving the membrane

current equation. However as dt increases more transitions per

step begin to occur and then the computational cost is dominated

by the calculation of transitions rather than by the advancing of

time steps. Again we show the data for the uncoupled version of

DA algorithm, to show that our equations approximately just

double the computational cost.

Figure 5. Spontaneous firing in the Hodgkin and Huxley squid axon model. Sample voltage traces of 2 seconds of simulation of the
stochastic HH model with the simulation algorithms tested.
doi:10.1371/journal.pone.0036670.g005
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Accuracy of alternative DA implementations. Two works

recently proposed DA implementations that take into account

particle coupling [33,40]. Goldwyn and colleagues [33] tested the

DA approach for coupled particle originally developed by Fox

[29], and solved the square root of the stochastic diffusion matrix

numerically at each time step. Besides the computational cost of

this approach, it demands the matrix D(eq. (10)) to be always

positive semi-definite to compute real valued square roots. One

simple solution for this, and the one they took, is to use the steady

state approximation, replacing the values of the variables by their

equilibrium values. On the other hand, Linaro et al. [40] deduced

the covariance of the noise introduced by channel fluctuations and

showed that it can be reproduced by a sum of Ornstein-Uhlenbeck

processes (4 for potassium channels, 7 for sodium channels) with

particular time constant and variance coefficients. This noise is

then added to the sodium or potassium current, respectively, that

are calculated by deterministic Hodgkin-Huxley equations.

Importantly, they calculate the noise coefficients using steady-

state approximation.

As shown before, the use of a steady-state approximation can

result in serious deviations from the explicit MC modeling because

the fluctuations become independent on the actual value of the

variables at the corresponding time. Figure 8 shows that indeed

this is the case, with both algorithms falling short of reproducing

the behavior of Markov Chains in the voltage-clamp simulations

(note the resemblance of Figure 8A with Figure 1C) as well as in

the firing efficiency and firing time variance curves of the Node of

Ranvier model (Figure 8B). Also, we show for comparison the

inaccurate uncoupled DA version. We managed to implement

Fox’s equations without the steady-state approximation, just by

extracting the absolute value of the variable vector prior to the

matrix square root operation. In that case, the simulations give the

same results as MC modeling and our DA implementation (not

shown). Therefore, the matrix equations originally proposed by

Fox and Lu are indeed a good numerical approximation to MC

modeling although with a high computation cost – at least 20 times

slower than our method in cases we examined.

Discussion

Accuracy of the Diffusion Approximation
The original description of the Diffusion Approximation (DA),

in its general form for a multiple (more than 2) state Markov Chain

(MC), implies the calculation of the square root of a matrix

[29,31]. As this is too time consuming to be performed in real

time, the uncoupled particles approximation, consisting a

stochastic form of the original Hodgkin and Huxley’s equations,

seemed to be the right choice. Very recently is was described [35]

and mathematically proven [32,33,40] that when the gating

particles are considered to be coupled or ‘tied’ in groups (as they

really are in ion channels), the resulting conductance fluctuations

have statistics that cannot be adequately reproduced with an

uncoupled DA algorithm. As suggested analytically by previous

works [33,40], the uncoupled DA actually approximates a MC

with independent and uncoupled gating particles, where the

fraction of open channels calculated as the product of the fraction

of active particles (see Information S2). We demonstrate this

numerically in Information S2, thus showing that DA indeed

works well provided it is implemented in the correct way. This

implies that the main source of error in the past was the uncoupled

approximation, and not DA itself.

It is thus of interest to develop and test numerical DA methods

that efficiently and accurately approximate the dynamics of

stochastic ion channels. Here we propose and test a DA

implementation that gives the same results as MC modeling with

Figure 6. Firing rate and ISI distributions for the stochastic HH models. A. Mean firing rate of the stochastic HH models in a 500 seconds
simulation with different number of channels. Note that the symbols for DA and MC superimpose perfectly. B. An inter-spike interval (ISI) was built
for each simulation and the data was fitted to an exponential decay function with a refractory period (see Methods and ref. [16]). The histograms for
only two simulations are shown here for illustration purposes. The first two points (marked with asterisks) were omitted in the fitting procedure (see
text). The fit lines for the two histograms showed here overlap almost perfectly. C–D. Fit parameters of the ISI distributions at different number of
channels. In all the simulations, NK = 0.36NNa. Data in this figure correspond to dt = 0.1 ms.
doi:10.1371/journal.pone.0036670.g006
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two different models of neuronal excitability; to our knowledge the

most thorough testing that any DA algorithm has been subjected

to.

Relation to Other Algorithms
Goldwyn et al. [33] tested the DA approach for coupled particles

originally developed by Fox [29] and showed that a properly

implemented DA can approach better the results of MC modeling,

in the context of the HH model. However, they computed the

square root of the diffusion matrix during execution, resulting in a

slow computation speed. Another recent work by Linaro et al. [40]

suggested an alternative DA implementation for the HH model,

that uses similar equations to the uncoupled particles approach but

with a noise term that is time-correlated in the way it should be

when the particles are considered to be coupled. The correlation

of the noise terms requires solving 7 (Na) or 4 (K) additional

differential equations, of a complexity comparable to those

presented here. Importantly, both works, as well as many others,

employed a steady-state approximation for the calculation of the

stochastic term matrix introduced. As we showed here, this

approximation caused significant deviations in voltage clamp

(Figure 1C) and the Rb model under current clamp (Figure 3), but

not in the HH model under current clamp (Figure 6). Similarly,

both previous methods (that use this approximation) also displayed

deviations in voltage clamp and the current-clamped Rb (Figure 8),

but not in the current-clamped HH (not shown). Note that both

methods were previously tested in the HH setting ([33,40]) – which

may suggest why it was believed they were accurate. However,

when the HH model was simulated using a fixed AP voltage

trajectory (as in Figure 1 of [30]), we found that the steady-state

approximation again introduces significant inaccuracies (see

Information S3). Interestingly, this can be already spotted in

[30], Figure 1– where the ‘V. clamp’ method (which employs the

steady-state approximation) deviates from the exact results.

Therefore, the steady-state approximation introduces inaccuracies

in all the models we tested – albeit more strongly in the Rb model

than in the HH model. It is important to note that among the

channels that work on the time scale of action potentials, the

sodium channel of the Rb model has fast kinetics (resembling

channels from mammalian nodes of Ranvier), while the HH

model possesses channels that are rather slow (giant squid axon at

6.3uC). Most likely, this is the reason why the Rb model is more

affected by the steady-state approximation than the HH model. As

the time scale relevant for models based in the mammalian

nervous system is precisely that of the Rb model, our conclusions

about the steady-state approximation are of importance for such

models.

Both previous works [33,40], as well as the original derivation

by Fox [31], give specific instructions on how to construct the SDE

for sodium and potassium channels, in the context of the HH

Figure 7. Numerical stability and computational cost of the simulation algorithms with the HH model. A-C. Firing parameters of the
stochastic HH models at different integration time steps. Mean firing rate (A) and fitting parameters of the ISI distributions (B–C) for the stochastic
HH models tested as a function of the integration time step (dt). NNa = 3000 and NK = 900. D. Time to perform a 500 seconds simulation with
NNa = 6000 and NK = 1800 as a function of dt. E. Time to perform a 500 seconds simulation with dt = 5 ms as a function of NNa, the number of Na
channels. NK = 0.3*NNa. The segmented line indicates the 500 seconds limit; any simulation below this line runs faster than real time. For comparison,
the computation time for the uncoupled version of DA is also depicted.
doi:10.1371/journal.pone.0036670.g007
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model. However, generalizing these instructions to other kinetic

schemes is not an easy task, even in the case where general

expressions are given [40]. In contrast, our alternative derivation

gave explicit, simple and general expressions for the both the

diffusion matrix D (eq. (10)) and its matrix square root S (eq. (13)).

Interestingly, these results can be elegantly and succinctly

described using the graph theory concepts – the graph here being

the channel’s kinetic diagram, with each vertex corresponding to a

channel state and each edge corresponding to a kinetic transition

pair between two states. Then, D and S are straightforward

generalizations of the Laplacian matrix and the incidence matrix

[46], respectively, for the case of directed graphs with weighted

edges (the weights being wij~ AijxizAjixj

� �
=N). Note that the

relation D~SST is then well known for unweighted directed

graphs [46].

In order to compare with previous DA formulations [31,33], we

analytically found S for the potassium case using Cholesky

decomposition. Surprisingly, but in tune with our proposed

equations, the resulting matrix was simpler (compare eq. (14) with

(15)) and sparse (containing many zero elements). The exact and

Figure 8. Inaccuracies introduced by previous DA algorithms. A. Performance of the of the Fox [29] algorithm for coupled particles
employed by Goldwyn et al. [33] and the Linaro et al. algorithm [40] in the voltage clamp simulation and non-stationary noise analysis. See legend of
Figure 1 for further details. Adjusted R-square values are 0.26 (Fox) and 0.34 (Linaro) B. Performance of the algorithms in the Node of Ranvier model
simulations. Firing Efficiency, Firing Time Variance and Mean Firing Time versus Stimulus Amplitude are presented for simulations with NNa = 1000.
Standard Deviation for Threshold (s) is plotted against number of channels (see Figure 3). dt = 0.5 ms.
doi:10.1371/journal.pone.0036670.g008
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simple expression for S (eq. (13)) allowed us to avoid the use of the

inaccurate steady state approximation and to improve simulation

speed considerably. Specifically, instead of the O M3
� �

computa-

tional complexity of the numerical matrix square root implemen-

tation (as done in [33]) our method has a complexity between

O Mð Þ and O M2
� �

, depending on the number of kinetic

transitions (see eq. (13)). Numerically testing this, we observed

our method run at least 20 times faster, depending on the software

environment employed. Moreover, the equations that govern the

dynamics of stochastic ion channels in our approach can be simply

written as separate equations instead of matrix operations (e.g. eq.

(16) for potassium and Information S1 for sodium). This facilitates

their implementation in non matrix-oriented computation soft-

ware such as Neuron, and may also simplify future analytical

analysis of the behavior of the stochastic neuron.

We note a connection between the DA approach and another

stochastic simulation method - the ‘‘binomial population’’

approach [47,48,49]. This approach employs eq. (11) directly,

where each channel transition step Dij is distributed binomially. So

essentially, the main additional approximation we made was that

Dij was a Gaussian RV. This can greatly reduce simulation speed

since the generation of binomial RVs is much less efficient than

Gaussian RVs, especially for large N[50]. As noted, our

simulations (as well as Goldwyn’s [33] and Linaro’s [40]) indicate

that this approximation is very good, as long as N is not too small.

However, if N is small enough, so that the discrete nature of ion

channel conductance becomes significant, then this approximation

might break down. In that case, one can speculate that it might be

more accurate to approximate Dij as a Poisson RV with parameter

np~XjAijdt (by the law of rare events). Note that also in this

approximation it is possible to pair opposing transition pairs

Wij~Dij{Dji (as in eq. (12)) and generate Wij according to a

Skellam distribution (the distribution of the difference between two

Poisson RV). However, we have not investigated here whether or

not the Poisson\Skellam approximations may actually improve the

speed of binomial population algorithm or have any advantage

over other methods (such as MC).

Finally, we note that a similar approach to ours was previously

introduced in the field of chemical physics. As in our case, this

equation, named ‘‘the Chemical Langevin Equation’’ (CLE) [51,52,53]

sums the stochastic terms along transitions and not along states

(compare our eq. (13) with eq. (23) in [51]). The main

computational difference between that approach and ours is that

we sum together the noise contributions from both directions of

each transition pair (done in the conversion from eq. (11) to eq.

(12)). This approximately halves the computation time, when the

generation of pseudo-RVs is the main computational bottleneck.

Conceptually, a comparison with CLE suggests that the DA

approach might be extended to describe a more general setting

than investigated here. For example, we could introduce a direct

coupling between different channel types, via changes in ionic

concentration-dependent channels (and not just voltage) or

consider how the noisy kinetics of other complex cellular processes

(such as ion channel regularization [30,54]) can affect the neuronal

response. However, in these cases, eq. (1) may not have a simple

linear form.

Numerical Efficiency
Following the practical approach of this work, we numerically

evaluated the computational cost of three different algorithms:

MC, our DA algorithm and the (inaccurate) uncoupled version of

DA. In short, in almost all cases our DA approach significantly

outperforms the MC approach. Also, our method only doubles the

time required to solve the inaccurate, uncoupled version of DA

(Figures 4 and 7). It also only doubles the time for solving the

deterministic equations that ignore the stochastic terms (not

shown).

Specifically, when comparing our DA to MC, in the Rb

simulations (Figure 4C&D) the DA approach for coupled particles

is at least an order of magnitude faster than MC for all values of N
and dt tested. In the HH simulations (Figure 7D&E) this remains

true, except when low values of dt or N are used. Again we note

that the results for Rb model are more significant to the

mammalian nervous system, due to the similar kinetic timescales.

Another issue to consider when comparing Figures 4 and 7 is that

the Rb simulations presented here were performed in the Scilab

numerical computation package while the HH simulations were

implemented in NEURON. The latter will be always faster

because it runs as compiled code; also variations in how each

software implements numerical calculations at the processor level

may cause further differences.

In all cases, however, the speed of simulations performed with

the DA algorithm was only affected by the size of the integration

time step and completely independent of the number of channels

to be simulated, because the number of channels is only a

parameter in the equations. On the contrary, MC modeling was

heavily affected by the number of channels and less affected by the

integration time step. In this case a greater number of channels

imply more transitions per time step, and for each transition two

new calculations have to be made, each requiring a new random

number.

Thus, there will be situations where MC modeling may be

numerically more efficient than DA. With a small number of

channels there will be fewer transitions per time step and thus a

MC simulation may run faster than a DA algorithm. This

difference will be enhanced if the channels have slow kinetics,

because this will reduce the probability of transitions. Also, if a

small integration time step is required the DA algorithm can be as

slow as MC modeling. In both these cases, it might be better to

combine the MC and DA methods [55]: use MC for channel with

slow kinetics, while handle the faster channels using the DA

approach. The waterline between ‘‘slow’’ and ‘‘fast’’ timescales

here would be the time step duration. Also, note that in the

simulations presented here, random numbers were generated in

simulation time. Further speed-up of the DA algorithm can be

achieved by the use of a pre-generated random number list.

Conclusions
This paper further confirms that the use of the Diffusion

Approximation (DA), without any additional approximations,

produce results that are in many ways indistinguishable from those

of Markov Chain modeling (MC). Most importantly, we present

the DA in a very simple, general and computationally efficient

form, which will allow its easy implementation for any given

kinetic scheme of a channel. We show that in the most common

situations, the DA method proposed here has a numerical stability

comparable to that of MC modeling (even with a simple Euler-

Maruyama integration scheme), while being much faster. The fast

simulation speed achieved makes conceivable its use in dynamic

clamp experiments.

Methods

Models
To test the accuracy and efficiency of DA relative to MC

modeling, both in their independent particles and coupled

particles approaches, two models were employed in which

different measures of simulation accuracy were calculated.
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Mammalian node of ranvier – Rb model. The mamma-

lian Node of Ranvier model [43] was the model employed

previously to compare the performance of DA versus MC

modeling [28,41]. This model consists only of a voltage-dependent

sodium channel and a voltage-independent leak current. The

membrane current equation is.

Cm

dV (t)

dt
z

V (t)

R
zgNa(t) V (t){ENað Þ~Iapp(t) ð18Þ

with parameters Cm = 18.9 nF; R = 7.372MV; gNa = 6.808 mS;

ENa = 144 mV. The voltage is shifted so that the leak reversal

potential is 0. The a and b transition rates are given by the

following voltage dependent functions:

am(V )~
1:872 V{25:41ð Þ

1{ exp 25:41{Vð Þ=6:06ð Þ

bm(V )~
3:973 21{Vð Þ

1{ exp v{21ð Þ=9:41ð Þ

ah(V )~{
0:549 27:74zVð Þ

1{ exp Vz27:74ð Þ=9:06ð Þ

bh(V )~
22:57

1z exp 56{Vð Þ=12:5ð Þ

ð19Þ

Simulations of 1 ms were run in which a 100 ms current pulse was

given at the beginning (Figure 2). The pulse amplitude varied

between 5 and 6.5 pA. 1,000 simulations were run and the

following parameters were calculated: Firing efficiency, the fraction

of simulations in which an action potential was evoked; and the

mean and the variance of Firing time, time at which the voltage

reached or surpassed 80 mV. Firing efficiency versus pulse

amplitude curve was fit to the cumulative Gaussian distribution.

FiringEfficiency Iapp

� �
~W

Iapp{Th

s

� �

W(x)~
1ffiffiffiffiffiffi
2p
p

ðx
{?

e
{t2

2 dt~
1

2
1zerf

xffiffiffi
2
p
� �	 


erf(x) represents the error function. Th (threshold) gives the

amplitude for a probability of firing of 0.5, while s quantifies

the spread of the input/output relationship.

Hodgkin and Huxley Model of Squid Giant Axon – HH
Model

The original Hodgkin and Huxley [21] model was simulated

with the equation.

Cm
dV (t)

dt
~{gNa(t) V (t){ENað Þ

{gK (t) V (t){EKð Þ{gl V (t){Elð Þ
ð20Þ

and parameters Cm = 1 mF, ENa = 50 mV, EK = -77 mV, El = -

54.4 mV, gNa = 120 mS, gK = 36 mS, gl = 0.3 mS (Voltages are

shifted with respect to the original model to make the resting

potential equal to -65 mV). The a and b functions employed are.

am(V )~
0:1 Vz40ð Þ

1{ exp {
Vz40

10

� �bm(V )~4 exp {
Vz65

18

� �

ah(V )~0:07 exp {
Vz65

20

� �
bh(V )~

1

1z exp {
Vz35

10

� �

an(V )~
0:01 Vz55ð Þ

1{ exp {
Vz55

10

� �bn(V )~0:125 exp {
Vz65

80

� �
ð21Þ

Simulations of 500 seconds were performed, and action

potentials were recorded as the time at which the voltage reached

or surpassed 0 mV. The time of action potentials during the

simulation were stored, and the Inter-Spike Intervals (ISIs) were

calculated. The normalized ISI distribution was fitted to an

exponential decay function with a refractory period [16]:

P tð Þ~r exp {r t{tref

� �� �
ð22Þ

The first two values of the ISI distribution histogram were not

included in the fitting procedure.

Markov Chain Simulations of Coupled Gating Particles
There are two possible ways of implementing a coupled

particles approach. The first consist of simulating 4 independent

2-state particles per channel, and a channel is considered open if

and only if its four particles are in the open state. Therefore, the

state of each particle (hence of each channel) must be tracked

individually during the simulation [43].

In this paper a second approach is employed, that consists in

building a multi-state MC per channel considering the possible

combinations of active particles. This allows for the faster number-

tracking algorithm employed for simulations [16,26,27]. Given

that particles of a given kind are identical and independent, a

Sodium channel has 8 possible states while a Potassium channel

has 5 states:

m0h0 '
3am

bm

m1h0 '
2am

2bm

m2h0 '
am

3bm

m3h0

ah bh ah bh ah bh ah bh

m0h1 '
3am

bm

m1h1 '
2am

2bm

m2h1 '
am

3bm

m3h1

Na channel

n0 '
4an

bn

n1 '
3an

2bn

n2 '
2an

3bn

n3 '
an

4bn

n4 K channel

In this approach, only one state of each MC represents the

conducting or open channel, which is the state with all particles
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active (m3h1 or n4). Then the conductance is calculated with the

fraction of channels or MCs that are in the open state:

gNa~gNa

Nm3h1

NNa

� �
; gK~gK

Nn4

NK

� �

where Nm3h1 and Nn4 are the number of channels in the state m3h1

and n4, respectively.
Diffusion approximation. The DA for channels with

coupled gating particles is detailed in the Results section.

Numerical Implementations
Software implementation. All models and algorithms were

implemented in Scilab, a matrix-oriented numerical software

(www.scilab.org), and NEURON, a simulation environment

oriented to the modeling neurons and neural networks (www.

neuron.yale.edu). Source files and scripts are available in

ModelDB (http://senselab.med.yale.edu/ModelDB/). Both envi-

ronments produced identical results but simulations in NEURON

run faster because it runs in compiled mode. Results presented

here (most importantly, processing time data) correspond to

simulations in Scilab for the mammalian Node of Ranvier (Rb)

model and simulations in NEURON for the squid giant axon

(HH) model.
Markov chain modeling. Independent MCs were modeled

using a number-tracking algorithm [16,26,27,28]. Thoroughly

described in [28], briefly this algorithm consist in keeping track of

the number of MCs in each state, rather than keeping track of

each MC individually. At any time t, the probability density

function of the lifetime before the next transition (any transition) is.

Pt tð Þ~l(t) exp {l(t)tð Þ

where l(t) is the effective transition rate given by

l(t)~
XS

i

Ni(t)fi(t)

where S is the total number of states in the MC, Ni is the number

of MCs in state i, and f(t) is the sum of transition rates escaping

from state i. If there is more than one type of MC, they are all

summed into l. The time of the next transition tn is calculated by

drawing a random number uniformly distributed within [0,1] and

taking the inverse of the c.d.f. of the lifetime. If tn#t, a transition

has to be calculated before updating the current equation. Among

all possible transitions, the probability of transition j to occur is

Pj(t)~Ni(t)aj(t)

where i is the state originating the transition j and aj its rate. A

cumulative probability for all transitions is calculated and a

transition is chosen by drawing a random number uniformly

distributed within [0,1]. The number of MCs at each state is

updated, and a new time for the next transition is calculated.

When no more transitions are to occur in the current time step,

the current equation is advanced one time step using an Euler

integration scheme.
Diffusion approximation. Stochastic differential equations

for DA were solved by an Euler-Maruyama integration method.

For the coupled particles approach, a better numerical stability is

obtained if the fact that the sum of state variables for a given

channel is 1 is taken into account, also reducing the number of

SDEs to be solved. Thus, for potassium channels the equations

used for advancing one time step are

n1,tzdt~n1zdt 4ann0{bnn1{3ann1z2bnn2ð Þ

{g1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ann0zbnn1

p
zg2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ann1z2bnn2

p
n2,tzdt~n2zdt 3ann1{2bnn2{2ann2z3bnn3ð Þ

{g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ann1z2bnn2

p
zg3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ann2z3bnn3

p
n3,tzdt~n3zdt 2ann2{3bnn3{ann3z4bnn4ð Þ

{g3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ann2z3bnn3

p
zg4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ann3z4bnn4

p
n4,tzdt~n4zdt ann3{4bnn4ð Þ{g4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ann3z4bnn4

p
n0,tzdt~1{n1,tzdt{n2,tzdt{n3,tzdt{n4,tzdt

being g1, g2, g3, and g4 independent Gaussian RVs with zero

mean and standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dt=NK

p
: n0– n4 stand for n0,t – n4,t,

i.e. the value of the variables at time t. A similar set of equations

was used for sodium channels.

No rounding was performed on the variables, nor were they

bound to lie between 0 and 1 (see Numerical implementation issues

section in Results). To ensure real valued random terms, the

square roots were applied to the absolute value of the operand.

For the steady state approximation, the variables ni and mihj

were replaced by their steady state values in all the noise terms:

n?i ~
4

i

� �
ai

nb4{i
n

(anzbn)4
,mih

?
j ~

3

i

� �
ai

mb3{i
m aj

hb1{j
h

(amzbm)3(ahzbh)
ð23Þ
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