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P H Y S I C S

Measurement-based preparation of multimode 
mechanical states
Chao Meng1, George A. Brawley1,2, Soroush Khademi1, Elizabeth M. Bridge1,  
James S. Bennett1, Warwick P. Bowen1*

Nanomechanical resonators are a key tool for future quantum technologies, such as quantum force sensors and 
interfaces, and for studies of macroscopic quantum physics. The ability to prepare room temperature nonclassical 
states is a major outstanding challenge. It has been suggested that this could be achieved using a fast continuous 
measurement to break the usual symmetry between position and momentum. Here, we demonstrate this symmetry 
breaking and use it to prepare a thermally squeezed mechanical state. Our experiments take advantage of collective 
measurements on multiple mechanical modes, which we show can increase the measurement speed and improve 
state preparation. Theoretically, we show that this result extends to the quantum regime, relaxing the require-
ments to generate nonclassical states. We predict that multimode conditioning can enable room temperature 
quantum squeezing with existing technology. Our work paves the way toward room temperature quantum 
nanomechanical devices and toward their application in quantum technology and fundamental science.

INTRODUCTION
Quantum measurement is widely used to prepare nonclassical 
states and has important applications in quantum technologies 
from deterministic quantum computing (1, 2) to quantum sensing 
(3,  4) and fundamental tests of quantum mechanics (5,  6). A 
common scenario is continuous linear measurement of the position 
of a linearly damped harmonic oscillator (7,  8). This results in a 
Gaussian conditional state and, in the usual operating regime, local-
izes the position and momentum equally (9–12). Hence, it allows 
ground-state cooling (10–14) but precludes the generation of 
nonclassical states such as quantum squeezed states, where either 
the position or momentum is localized with better precision than 
the zero-point motion. It has recently been predicted that the 
symmetry between position and momentum can be broken if the 
rate of the measurement is sufficiently fast (15) and that this can 
allow quantum squeezing with greatly relaxed requirements com-
pared to other approaches (16, 17).

Here, we demonstrate this symmetry breaking, using continuous 
measurement to prepare and verify a thermomechanical squeezed 
state. We do this by exploiting collective measurements on multiple 
mechanical modes of a tailor-engineered optomechanical device. 
The presence of multiple mechanical modes has generally been con-
sidered an obstacle to measurement-based mechanical state prepa-
ration, with previous experiments limited to a single mode (18). We 
show experimentally that proper accounting for additional modes 
results in an increased measurement rate and therefore improved 
state preparation. We, further, show that the measurement intro-
duces correlations between subensembles of mechanical modes, a 
precursor to the generation of entanglement between them.

To explore the limits of multimode state preparation, we derive 
theoretical conditions for both quantum squeezing and entangle-
ment, predicting that collective measurements can greatly relax the 

requirements to prepare these nonclassical states. Our mechanical 
resonances exhibit structural damping (19, 20), an important form 
of nonstandard decoherence for which measurement-based state 
preparation has not previously been achieved. We develop the 
theory for state preparation in the presence of such damping and 
find, perhaps unexpectedly, that it also relaxes the requirements to 
prepare nonclassical states. Together, our results predict that quantum 
squeezing is within the reach of existing technology, even at room 
temperature. This provides a path toward the widespread application 
of mechanical resonators in areas ranging from quantum sensing 
(3, 4) to tests of fundamental physics (5, 21, 22).

RESULTS
Optomechanical device
A schematic of our multimode optomechanical experiment is shown 
in Fig. 1A. The optomechanical device is a 70-m-diameter double-
disk resonator, consisting of two vertically stacked silica microdisks, 
that naturally supports mechanical modes of various frequencies 
and provides high optomechanical coupling. Unlike previous 
double disks, the structure is engineered to maximally isolate the 
two lowest-frequency mechanical modes (the fundamental symmetric 
and antisymmetric flapping modes) from higher-frequency modes. 
This allows measurement-based state preparation to be explored on 
two relatively isolated modes before considering a larger ensemble. 
The key features of the design, arrived at via multiparameter finite-
element optimization (see Materials and Methods), are an asymmetric 
opening through the interior of each disk and a centrally offset 
pedestal. Together, they result in a frequency separation that is 
1.8 times larger than previous double-disk designs [e.g., (23)]. Note 
that this choice of a sparse mode structure is not optimal in the 
sense of permitting the best conditional variances, for which the 
optimum choice would be for the mechanical modes to be degen-
erate (see Materials and Methods). Rather, it facilitates unambiguous 
identification of the properties of each mechanical mode in the 
measured power spectrum. In our experiments, this is desirable 
to accurately determine the filter used to condition the mechan-
ical state.
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Our tailor-engineered double disk is fabricated using electron 
beam lithography following the process outlined in (24, 25). An 
optical microscope image is shown in Fig. 1B. The device supports 
hybridized optical whispering gallery modes, resulting in optical 
resonance frequencies that are highly sensitive to the motion of the 
disk edges, especially in the vertical direction (23). We couple an 
optical double-disk resonance with a decay rate of /2 = 2.8 GHz to 
a fiber-based Mach-Zehnder interferometer as shown in Fig. 1C.  
Performing homodyne detection returns a photocurrent that is 
proportional to the phase quadrature of the output optical field. The 
power spectral density of this photocurrent (shown for the two 
lowest-frequency mechanical modes in Fig. 2, A and B) allows us to 
establish the resonance frequency j, decay rate j, and (boosted) 
optomechanical coupling rate ​​g​ j​​ = ​ √ 

_
 ​​ j​​  ​ / 2​ of each mechanical 

mode of the double disk (labeled by the subscript j), where j = Cjj 
is the mode’s optomechanical measurement rate (9), with Cj its 
optomechanical cooperativity. The average thermal occupancy of 
each mode nth, j ≈ kBT/ħj is determined by assuming that the 
system is in thermal equilibrium at room temperature T, while 
finite element simulations provide the effective mass meff, j.

Structural damping
Analysis of the observed power spectral density allows us to identify 
that the mechanical modes of our double-disk device are structurally 
damped. The power spectrum of thermal noise driving a resonator 
is given by ​​S​FF​ th ​() = 2 ​n​ th​​ ​​​ 2​ () / ​, where  is the angular fre-
quency and () is the loss angle (20, 26, 27).

In contrast to viscous damping, where the loss angle is linearly 
dependent on frequency and results in a flat thermal noise spectrum, 
simple models of structural damping have a frequency-independent 
loss angle ( = Q−1, where Q = / is the mechanical quality factor). 
As a consequence, the thermal noise spectrum of structural damp-
ing shows a characteristic inverse-frequency (or “1/f”) dependence 

(20, 27). We observe this 1/f dependence for the fundamental 
antisymmetric flapping mode over a frequency range from 10 to 
200 kHz. As shown in Fig. 2A, the spectrum deviates from that 
expected for a viscously damped oscillator by more than an order of 
magnitude at low frequencies, while other noise sources are more 
than 30 dB below the measured thermal noise level over most of the 
measured frequency range (see the Supplementary Materials). 
Similarly, we find that a structural damping model accurately fits 
interferences observed between higher-frequency modes in the 
power spectral density, while an accurate fit is not possible using a 
viscously damped model (see the Supplementary Materials).

It is known that the simple 1/f noise model of structural damping 
is not physically realistic, violating the fluctuation-dissipation theo-
rem (26) and causing the mechanical position spectrum to diverge 
at low frequencies. This results in both an infinite position variance 
and infinite energy, prohibiting formal estimation of the mechanical 
state. Rather than the frequency independence of usual structural 
damping models, for physically realistic damping mechanisms, the 
loss angle must be an odd function of  to satisfy the fluctuation-
dissipation theorem (26, 28). Hence, it must pass through zero at 
 = 0, causing a low-frequency plateau in the thermomechanical 
noise. To our knowledge, no experimental or theoretical determi-
nation has previously been made of the frequency at which the 
transition to this plateau occurs nor is the exact low-frequency 
functional form of  known.

Without prior knowledge of the functional form of the loss 
angle, to allow state estimation, we choose the simple modification 
​ =   ​Q​​ −1​ / ​√ 

_
 ​​​ 2​ + ​​c​ 

2​ ​​. This is a smooth function of frequency that 
satisfies the fluctuation-dissipation theorem, is approximately 
constant above the roll-off frequency c, as required from observa-
tions of structural damping, and scales linearly with frequency 
beneath c as required to enforce a low-frequency plateau in the 
thermomechanical noise. Enforcing canonical thermal equilibrium ​​
∫−∞​ 

+∞
 ​​ ​S​ qq​​ d = ​ n​ th​​ + 1 / 2​ allows us to constrain c for this postulated 

form of the loss angle. Fitting the power spectrum of the fundamental 
antisymmetric flapping mode, we find that the thermal occupation 
is within 2% of the room temperature thermal occupancy for 
roll-off frequencies between 1 and 10 kHz, so that c/2 most likely 
lies in this range. The state preparation is found to be robust to the 
choice of roll-off frequency within this range (Supplementary 
Materials). For the results reported in Results, and Materials and 
Methods of the paper, we choose c/2 = 10 kHz for all modes.

Collective modes of motion
Our system is far in the unresolved sideband regime for all mechanical 
modes that we consider ( ≫ j ∀ j). In this regime, the homodyne-
detected optical phase quadrature is (9)

	​ Y =  2 ​√ 
_

  ​​​ (N)​ ​ ​q​​ (N)​ + measurement noise​	 (1)

where  is the measurement efficiency and ​​​​ (N)​  = ​ ∑ j​ N ​​ ​​ j​​​ is the col-
lective optomechanical measurement rate. This provides a linear readout 
of the N-mode collective position operator ​​q​​ (N)​  = ​ ∑ j​ N ​​ ​√ 

_
 ​​ j​​ ​ ​q​ j​​ / ​√ 

_
 ​​​ (N)​ ​​, 

where qj is mode j’s dimensionless position operator and is normal-
ized such that the zero-point motion has a variance of 1/2. The 
superscript “(N)” is used throughout to represent the number of 
conditioned mechanical modes, although we suppress it when it is 
clear from context. All mechanical modes not included in q(N) con-
tribute to the measurement noise, which also encompasses vacuum 
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Fig. 1. Experimental apparatus. (A) Illustration of the structurally engineered 
double-disk optomechanical resonator and tapered fiber used for optical excitation. 
(B) Microscope image of the optomechanical resonator. The key dimensions of the 
resonator are the following: diameter, 70 m; thickness, 400 nm; and separation 
between the disks, ∼300 nm. (C) Schematic of homodyne measurement of optome-
chanical system. The laser is tuned onto resonance with the optomechanical reso-
nator. The optomechanical device is housed in a vacuum chamber (pressure <10−6 
mbar), as indicated by the black dashed box. The photocurrent Y(t) is digitized on 
an oscilloscope and stored for post-processing.
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fluctuations, classical laser phase noise, and electronic noise arising 
in the photodetector and amplifiers. A collective momentum p(N) 
can be defined by analogy to q(N) to satisfy the canonical commuta-
tion relation, [q(N), p(N)] = i.

Conditional state preparation and verification
To perform conditional state preparation, we construct optimal causal 
Wiener filters for the position and momentum of the collective 
mechanical mode under study and apply them to the measurement 
data. A commonly used alternative is Kalman filtering (13, 18). 
However, unlike Wiener filtering, this requires detailed knowledge 
of the temporal dynamics of the system. This is not available for 
structurally damped systems because they lack a widely accepted 
linear time domain model (29).

We construct the causal Wiener filter for the collective position 
q(N) by separating the measured power spectral density into a signal 
component from the mechanical mode(s) that participate in the 
collective mode and a noise component arising from all other 
mechanical modes, shot noise, classical phase noise, etc., as in Eq. 1. 
The filter can then be calculated as

	​​​  → H ​​ q​​( ) = ​  1 ─ ​M​ Y​​ ​ ​​[​​ ​ 
​S​ qY​​

 ─ 
​M​Y​ * ​

 ​​]​​​ 
+

​​​	 (2)

where the forward (right) arrow indicates that the estimate is causal, 
i.e., it estimates the current state from data recorded at earlier times. 
The cross-spectral density SqY() is calculated on the basis of the 

fitted optomechanical parameters of the estimated mode(s), and 
the causal spectral factor MY() is numerically generated from a fit 
to the entire measured power spectrum. [⋯]+ denotes the causal 
part of the contained function. An analogous procedure is used 
to generate the causal Wiener filter for the collective momen-
tum, ​​​ → H ​​ p​​()​.

Applying the causal Wiener filters to the measured photo-
current yields causal estimates of the position and momentum. 
For example, the causal position estimate is ​​​ → q ​​​ (N)​(t ) = ​​ → H ​​q​ (N)​(t) ⊛ Y(t)​, 
where ​​​ → H ​​q​ (N)​(t)​ is the collective position filter and ⊛ denotes a convo-
lution. To quantify the uncertainty in the estimates, it is necessary to calcu-
late the variances of their deviation from the true values. For example, 
the conditional position variance is given by ​​V​ ​ → q ​​ → q ​​​  =  〈 ​(​q​​ (N)​ − ​​ → q ​​​ (N)​)​​ 2​ 〉​. 
Unlike the estimates of the position and momentum themselves, 
the variances cannot be directly obtained because the “true” posi-
tion q(N) and momentum p(N) are experimentally inaccessible. In-
stead, the prepared conditional state must be verified via comparison 
to a second set of independent estimates. We use anticausal filters 
(​​​ ← H ​​ q​​​ and ​​​ ← H ​​ p​​​), which estimate the current position and momentum 
from measurement data at later (future) times, i.e., they perform 
retrodiction. These are labeled by a backward (left) arrow. The 
anticausal estimate of position, for example, is calculated as  
​​​ ← q ​​​ (N)​(t ) = ​​ ← H ​​q​ 

(N)
​(t ) ⊛ Y(t)​.

Following Rossi et al. (18), we define the relative position and 
momentum estimates, ​q(t) = ​​ → q ​​​ (N)​ − ​​ ← q ​​​ (N)​​ and ​p  = ​​  → p ​​​ (N)​ − ​​ ← p ​​​ (N)​​. 
The conditional variances have generally been thought to be related 
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Fig. 2. Preparation of single- and two-mode mechanical states of a structurally damped resonator. (A) Power spectral density of thermal noise (purple) and fitted 
curves using structural damping (orange) and viscous damping (brown dashed line), normalized such that the shot noise (SN) level is 1/2. (B) Zoom-in of the thermal noise 
power spectral density (purple) of the first two mechanical modes. Red (gray) shading indicates the fundamental antisymmetric (symmetric) flapping mode. These modes 
are calibrated to have (1, 1, 1)/2 = (0.74,244,0.69) kHz and (2, 2, 2)/2 = (0.053,281,0.50) kHz, respectively. (C) Normalized absolute squared amplitude (solid line, 
left axis) and phase (dashed line, right axis) of filter functions. Blue, single-mode estimation; green, two-mode estimation. (D) Time traces of the photocurrent (purple), the 
causal (pink) and anticausal (maroon) position estimates of the first mechanical mode, and the corresponding relative estimate (blue), normalized by the standard deviation 
(SD) of the thermal fluctuations, ​​q​ th​​  = ​ (​∫−∞​ 

∞
 ​​ ​S​ qq​​( ) d / 2)​​ 1/2​​. (E) Phase space distributions of the unconditional state (pink) and relative single- and two-mode estimated 

states (blue and green, respectively), where q = (q, p). The axes are normalized to the SD of the thermal position and momentum (​​p​ th​​  = ​ (​∫−∞​ 
∞ ​​ ​S​ pp​​( ) d / 2)​​ 1/2​​) fluctua-

tions. (F) Magnified phase space distributions of the one- and two-mode relative estimates. White dashed ellipses show their respective probability distribution contours 
(1/e of the maximum probability). (E and F) Histograms (4 million data points) of the position and momentum distributions, which obey Gaussian statistics.
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to the variances of these relative estimates by a simple factor of 2 (18). 
However, we find that this simple relationship does not hold for struc-
tural damping (see Materials and Methods). In general, the variances 
can be related by ​​V​ qq​​  =  2(1 − ​F​ q​​ ) ​V​ ​ → q ​​ → q ​​​​ and ​​V​ pp​​  =  2(1 − ​F​ p​​ ) ​V​ ​ → p ​​ → p ​​​​, 
where the conversion factors Fq and Fp characterize the deviation 
from a factor of 2. We use simulations to determine these conver-
sion factors for each collective mode studied. We refer the reader to 
the Supplementary Materials for details on our prediction and 
retrodiction procedures.

Single-mode estimation
We begin by optimally estimating the position q(1) and momentum 
p(1) of only the (lowest frequency) fundamental antisymmetric 
flapping mode, with all other mechanical modes treated as noise. 
The magnitude response of the optimal causal Wiener filter for q(1) 
is shown by the blue trace in Fig. 2C. Wiener filters act to accept 
frequency components with high signal to noise and to reject those 
with low signal to noise. This is illustrated by the deep notch around 
the frequency of the fundamental symmetric flapping mode. To 
show the effect of the Wiener filter in the time domain, we compare 
the measured optical phase quadrature as a function of time before and 
after filtering. The left side of Fig. 2D shows the raw (normalized) 
phase quadrature Y. The thermally driven fundamental antisymmetric 
flapping mode is the dominant mechanical contribution, due to 
its strong optomechanical coupling, but its motion is partially 
obscured by measurement noise and the dynamics of the other me-
chanical modes. On the other hand, the pink trace on the right side 
of Fig. 2D shows the optimal causal estimate of the position ​​​ → q ​​​ (1)​(t)​ 
as a function of time, calculated by applying the filter as described 
above (​​​ → q ​​​ (1)​(t ) = ​​ → H ​​q​ (1)​(t ) ⊛ Y(t)​). As can be seen, applying the filter 
removes much of the noise present in the unfiltered trace. The dark 
red trace shows the anticausally estimated position. This agrees 
closely with the causal estimate, as quantified by the relative esti-
mate (blue trace).

Figure 2E plots the relative estimates in mechanical phase space, 
together with the direct position and momentum estimates. This 
allows the effect of single-mode conditioning on the mechanical 
state to be directly visualized. The phase space distribution of the 
direct estimates is consistent with a room temperature thermal 
state, as expected. The relative estimates, magnified in the phase 
space distribution of Fig. 2F, are confined much more closely near 
the origin. This is an example of “cooling by measurement” (30).

After determining the conversion factors ​​F​q​ (1)​  =  0.26​ and ​​
F​p​ (1)​  =  − 0.11​, we find that the position and momentum conditional 
variances are ​​V​​ → q ​​ → q ​​ 

(1) ​   =  (2.5 ± 0.2) ×1 ​0​​ 5​​ and ​​V ​​ → p ​​ → p ​​ 
(1) ​   =  (2.7 ± 0.2 ) × 1 ​0​​ 5​​, 

respectively. These results agree with simulations within their un-
certainties, which are estimated using Monte Carlo propagation 
of the fitted optomechanical parameters (see the Supplementary 
Materials). They are also robust to the choice of roll-off frequency—a 
full order of magnitude change in C (over the range from 1 to 
10 kHz) changes the position and momentum variances by only ±10 
and ±1%, respectively (see the Supplementary Materials). The con-
ditional variances are reduced by factors of 9.7 × 10−3 and 10 × 10−3, 
respectively, compared to the thermal variance of the mode, 
showing substantial conditional cooling. An upper bound on the 
conditional phonon occupancy of the mode can be calculated as 
​​​n  ̄​​ cond​​ <  (​V​​ → q ​​ → q ​​ 

(1) ​  + ​V​​ → p ​​ → p ​​ 
(1) ​  − 1) / 2 =  10 × 1​0​​ −3​ ​n​ th​​​. Thus, the fundamen-

tal antisymmetric flapping mode is conditionally cooled by at least 
two orders of magnitude.

Note that, while the phase space distributions of Fig. 2 (E and F) 
appear to show notable thermomechanical squeezing, this is, in 
part, an artifact of the differences between the conversion factors 
for position and momentum. When conditioning only the first 
mode, this asymmetry falls below the uncertainty in the estimates 
once the relative variances are converted into conditional variances; 
the ratio of momentum to position variances is 1.7 ± 0.2 for the 
relative variances but only 1.1 ± 0.1 for the conditional variances. 
This highlights the importance of correctly accounting for the rela-
tionship between variances.

The low level of thermomechanical squeezing also highlights 
the detrimental effects of the higher-order mechanical modes on the 
estimation process. For an isolated viscously damped resonator, the 
squeezing criterion is S = 16 ntot/2 > 1, where ntot = nth + C + 1/2 
is the total effective occupancy of the mode. This criterion was first 
obtained by Chen (31) and later, using the Wiener filter treatment 
and definition of measurement rate used here, by Meng et al. (15). 
By numerical simulation, we find that it can also be applied to the 
structural damping case. The criterion indicates that a high mea-
surement rate, a large total effective occupancy, and a low resonance 
frequency are all advantageous to achieve thermal squeezing. The 
benefit of a low resonance frequency can be understood because 
this determines that the time delay before the (directly measured) 
position of the oscillator is converted to momentum. The longer the 
period of the oscillator, the more information the measurement ex-
tracts about position before it starts to yield momentum informa-
tion (15).

For our experiments, the fundamental antisymmetric flapping 
mode has S = 3.5 × 103 ≫ 1. Consistent with this, our simulations 
show that, were the fundamental antisymmetric flapping mode well 
isolated from all other modes, the conditional state should be ex-
tremely strongly squeezed, having a ratio of momentum to position 
variances of 60. The problem of the presence of additional mechanical 
modes can be avoided, for example, by using a single-mode pendu-
lum system; parallel experiments by Matsumoto and Yamamoto 
(32) have demonstrated single-mode thermomechanical squeezing, 
although without state verification. As we will show in what follows, 
multimode conditioning provides an alternative and more generally 
applicable solution.

Multimode estimation
Multimode conditioning achieves two closely related goals: It 
reclassifies the higher-order modes from noise to signal and, in the 
process, increases the effective measurement strength (33–37). We 
first examine the two-mode case, estimating the collective position 
and momenta of the well frequency-separated fundamental symmet-
ric and antisymmetric flapping modes. Including these two modes 
increases the effective (inefficiency-reduced) optomechanical mea-
surement rate from (1)/2 = 0.86 kHz to (2)/2 = 0.91 kHz. The 
causal Wiener filter for the collective position, calculated via Eq. 2, 
is shown in green in Fig. 2C. Applying this filter and its anticausal 
counterpart, we find that the collective conditional position variance 
of this two-mode collective mode is ​​V​​ → q ​​ → q ​​ 

(2) ​   =  (1.6 ± 0.1) × 1​0​​ 5​​ with 
​​F​q​ (2)​  =  0.39​. Similarly, we find a collective momentum variance of 
​​V​​ → p ​​ → p ​​ 

(2) ​   =  (2.0 ± 0.2) × 1​0​​ 5​​ with ​​F​p​ (2)​  =  − 0.18​. These variances are, 
respectively, 6.4 × 10−3 and 7.9 × 10−3 times smaller than the 
two-mode thermal variance and are improved by factors of 1.6 and 
1.4, respectively, compared to single-mode estimation. Because the 
two-mode estimate reduces the variance in (collective) position 
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more than in momentum, it increases the thermomechanical 
squeezing. This results in a statistically significant level of squeez-
ing, with a ratio of momentum to position variances of 1.2 ± 0.1. A 
similar improvement in squeezing of the relative estimates is seen in 
phase space (green dots) in Fig. 2 (E and F).

Our two-mode estimate, while superior to a single-mode estimate, 
is still roughly a factor of 400 inferior to predictions from simula-
tions with no other mechanical modes present in the detected 
photocurrent. The state preparation can be improved further by 
including a larger number of mechanical modes in the collective 
mode. As an example, we select the first five modes, shown with red 
shading in the power spectral density in Fig. 3A. The combination 
of strong optomechanical coupling (6, 38) and the intrinsic non-
linearity of the optomechanical measurement introduces several 
nonlinear peaks in this frequency region. The power contained in 
these (gray shaded) contributions is well below that of the linear 
peaks and more than 30 dB below the fundamental mechanical 
mode. The measurement signal is therefore dominated by the linear 
measurement signal, allowing the nonlinear peaks to be safely treated 
as noise. Treating them as noise, the optimal causal Wiener filter for 
the position of the five-mode collective mode is shown in Fig. 3B. It 
exhibits a broadband response, with slow modulations due to changes 
in the signal-to-noise ratio and several sharp notches that arise because 
of noise peaks in the power spectral density (shaded gray in Fig. 3A).

Applying the five-mode Wiener filter, the analogous filter for 
momentum, and the counterpart anticausal filters results in the 
experimental relative conditional state visualized in Fig. 3C. As can be 
seen, the five-mode collective state breaks the rotating wave approximation 
more strongly than the one- and two-mode states, being significantly 

more elliptical in phase space. This can be expected because it has a 
collective measurement rate of (5)/2 = 1.0 kHz, higher than the 
measurement rates for either single- or two-mode cases. We calculate 
the conditional position variance to be ​​V​​ → q ​​ → q ​​ 

(5) ​   =  (1.1 ± 0.1) × 1​0​​ 5​​, 
5.0 × 10−3 times smaller than the five-mode thermal variance, with 
​​F​q​ (5)​  =  0.21​. The ratio of momentum to position conditional vari-
ances is found to be 2.3 ± 0.2, almost a factor of 2 larger than the 
two-mode case. Increasing the number of modes to nine further 
improves the measurement rate and thermal squeezing ratio to 
(9)/2 = 1.3 kHz and 2.7 ± 0.2, respectively (see the Supplementary 
Materials).

The better conditioning that we achieve using collective me-
chanical modes implies that the measurement is inducing condi-
tional correlations between the mechanical modes. We show these 
correlations experimentally, choosing to examine position-position 
and momentum-momentum correlations between two collective 
modes. The collective modes that we choose are the two-mode 
collective mode comprising the lowest- and second lowest-frequency 
modes (position, q(2); momentum, p(2)) and the three-mode collec-
tive mode composed of the third, fourth, and fifth lowest-frequency 
modes, with collective position and momentum denoted here as 
q(*3) and p(*3), respectively. Figure 3D plots the relative position 
estimates of the two collective modes against each other, while 
Fig. 3E plots the relative momentum estimates.

A negative correlation of ​〈 ​q​​ (2)​  ​q​​ (*3)​ 〉 / ​√ 
______________

  〈 ​q​​ (2) 2​ 〉〈 ​q​​ (*3) 2​ 〉 ​ =  − 0.38​ 
is observed between the relative collective positions, while a positive 
correlation of +0.09 is observed between momenta, calculated in 
the same way. The fact that the observed correlations are of 
opposite sign suggests that stronger measurements could generate 
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conditional entanglement. In Materials and Methods, we show that 
this is indeed possible for viscous damping, deriving the entangle-
ment condition for N identical modes, ​C  > ​ n​th​ 2 ​ Q / 2N​.

DISCUSSION
Our work demonstrates the preparation of multimode mechanical 
states by continuous measurement, beyond previous work focused 
on single viscously damped resonators (6, 18, 32). The use of multi-
mode conditioning allows operation outside the usual rotating 
wave approximation and thereby the generation of thermomechanical 
squeezed states. While our work operates very much in the classical 
regime, this breaking of the rotating wave approximation verifies a 
crucial theoretical prediction for the generation of quantum squeezed 
states of mechanical resonators at room temperature (15). We have 
also shown that the measurement generates conditional correlations 
between the position and momentum of different ensembles of 
mechanical modes. This is a key precursor for the generation of 
multimode mechanical entanglement, for which we derive an 
analytic condition.

It is interesting to ask how multimode conditioning and structural 
damping might affect the ability to generate quantum squeezing. It 
is known that measurements of the collective motion of multiple 
mechanical modes yield a larger effective measurement strength 
than single-mode measurements (33–37,  39). However, to our 
knowledge, whether this can allow more effective quantum squeez-
ing has not previously been addressed. Similarly, by reducing the 
high-frequency thermal noise of a mechanical resonator, structural 
damping has been shown to relax the requirements to observe radia-
tion pressure backaction (20) and to achieve quantum squeezing of 
light (40). However, one might expect that the ability to prepare 
nonclassical mechanical states would be degraded by the increased 
low-frequency thermomechanical noise introduced by structural 
damping as well as by any correlations that structural damping 
creates with the mechanical environment.

To address these questions, in Materials and Methods, we 
theoretically model a collective optomechanical measurement of N 
mechanical modes. We find analytically that, for identical modes, 
the use of multiple modes relaxes the required cooperativity to 
achieve quantum squeezing by a factor of 1/N compared to a single 
mode, a result that holds for both structurally and viscously damped 
resonators. We also show that this result is robust to variations in 
the resonance frequencies of the modes. Our simulations show, 
somewhat remarkably, that in the thermal noise–dominated regime 
(nth ≫ C), the cooperativity needed for quantum squeezing is also 
lower for a structural damped resonator than for a viscously damped one, 
in this case reduced by a factor of (Q/nth)1/12. Together, we find that 
quantum squeezing is achievable for a structurally damped multimode 
resonator so long as ​C  > ​ n​tot​ 

(N)1/4​ ​Q​​ 3/4​ / N​, where ​​n​tot​ (N)​  = ​ n​ th​​ + NC + 1 / 2​ 
is the total thermal occupancy of the collective mechanical mode.

The theoretical calculations of the previous paragraph show that 
structural damping and multimode conditioning can substantially 
reduce the requirements for quantum squeezing and therefore may 
allow it to be achieved at room temperature. To examine the experi-
mental feasibility of this, we consider a multimode structurally 
damped zipper cavity device of the form reported by Leijssen et al. 
(38). The zipper device had a mechanical frequency /2 = 3 MHz, 
a single-photon optomechanical coupling strength of g0/2 = 24 MHz, 
and mechanical and optical decay rates of /2 = 100 Hz and /2 = 20 

GHz, respectively. For a single mechanical resonance and assum-
ing a detection efficiency of  = 0.5, these parameters should allow 
room temperature conditioning of quantum squeezed states 
using only 160 intracavity photons. Were an array of N identical 
resonators used, the required intracavity photon number would 
drop by 1/N. It should be noted that the very large optomechanical 
coupling provided by this device leads to large optomechanical non-
linearity at room temperature. Nevertheless, Wiener filtering can 
still be used for state preparation, provided that the measurement 
record is linearized. This can be achieved by using a second, much 
weaker laser to perform feedback cooling, reducing the am-
plitude of motion into the linear regime, analogous to the scheme 
used in (41). Hence, our results open a pathway to room tem-
perature quantum squeezing and to room temperature quantum 
optomechanical technologies, such as quantum force sensors and 
interfaces, and to explore the crossover between quantum and clas-
sical physics.

An alternative approach to achieving room temperature quan-
tum squeezing would be to use a suspended mass system such as 
those found in gravitational wave detectors (42). This provides the 
dual advantages of exceptionally low frequency, in the range of 1 Hz 
(43), and of the simplicity associated with having only a single well 
isolated mechanical mode. With the high optical powers available 
to gravitational wave detectors, it is conceivable that room tempera-
ture quantum squeezing may be possible (15, 44) and that this may 
have benefits for the detection of gravitational waves or tests of 
fundamental physics. A major advantage of our approach is that 
the mechanical resonator is fabricated on a silicon chip and can 
be integrated with other on-chip technologies. This provides the 
prospect of applications in chip-scale quantum sensing and com-
puting (7, 9, 45, 46).

A substantial technical advance in our paper is the development 
of a method to perform state preparation on structurally damped 
resonators and, in the process, to determine the roll-off frequency 
of structural damping. Structural damping is encountered in many 
macroscopic engineered structures (26, 29, 47) and has been ob-
served in a range of optomechanical systems (20, 27, 48–50). It is 
thought to be non-Markovian; however, there is no widely accepted 
model for its origins (19). To our knowledge, the transition to a flat 
thermomechanical noise spectrum at low frequencies that is required 
to satisfy thermodynamics has never been observed in experiments. 
Our use of the equipartition theorem to constrain the value of the 
transition frequency, even when it is beneath experimentally resolvable 
frequencies, therefore provides a means to access new information 
about structural damping. Together, these possibilities provide a 
new route toward understanding the underlying mechanisms that 
give rise to this widespread and relatively poorly understood form 
of damping (19).

MATERIALS AND METHODS
Optomechanical system and measurement
Our tailor-engineered double disks have been optimized to maximize 
the frequency separation of adjacent mechanical modes; this is 
achieved by incorporating off-center slots that result in asymmetric 
pinning, a key characteristic that differs from previous designs 
(23–25). Qualitatively speaking, this forces the mechanical modes 
to behave more like those of a singly clamped cantilever, which are 
widely separated in frequency. Specifically, typical symmetrically 
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clamped double-disk resonators exhibit a pair of low-frequency 
modes, with the next mode occurring at a frequency around 1.6 times 
the frequency of the fundamental (lowest-frequency) mode (51). By 
comparison, in our asymmetrically clamped double disks, this third 
mode is shifted up to 2.9 times the fundamental frequency. This 
increased separation is in close alignment to the case for a singly 
clamped cantilever oscillator, for which the third mode is at approxi-
mately three times the fundamental frequency.

The asymmetric pinning in our tailor-engineered double-disk 
design acts to lengthen the mechanical arms of the oscillator, which 
lowers the frequencies of the fundamental mechanical modes 1 
and 2. This assists in the preparation of squeezed states, as dis-
cussed in (15). The slots in our double disk also act to reduce the 
effective mass (meff,1 = 536 pg for the fundamental antisymmetric 
flapping mode). As a result, our design increases the zero-point 
motion of fundamental mode by a factor of 2.1 compared to a 
spiderweb double disk (23) and 5.7 compared to a solid double disk 
(51, 52). Counteracting these improvements, the asymmetric pinning 
suppresses motion on one half of the disk, reducing the op-
tomechanical coupling strength by a factor of 3.6 to 4.3 GHz/nm, a 
reduction which is consistent with our experimental observations 
(51). Overall, by permitting the thermal noise of the two lowest-
frequency modes to dominate the power spectral density over a 
larger bandwidth than a comparable symmetrical double disk, our 
design allows better estimation of the motion of the collective mode 
that consists of the lowest- and second lowest-frequency modes.

A continuous-wave diode laser running at the wavelength of 
1555  nm is resonant with the whispering-gallery mode of the 
double-disk device. For a fixed optical power injected into the 
optomechanical system, it is desirable to work near the critical 
coupling point, where the intrinsic cavity energy damping rate 0 is 
equal to the input-output coupling rate ex, because this maximizes 
the effective measurement rate ​  ∝ ​ ​ex​ 2 ​ / ​(​​ 0​​ + ​​ ex​​)​​ 4​​. In practice, we 
couple the light in and out by positioning a tapered optical fiber 
close to the perimeter of the double disk. Positioning limitations 
means that we operate in the slightly overcoupled regime, with 
0/2 = 1.0 GHz and ex/2 = 1.8 GHz. Injecting 3.7 W of optical 
power results in 4300 intracavity photons. The total detection 
efficiency is  = 30% (including the escape efficiency of 64%, fiber 
transmission of 67%, taper transmission of 89%, and detector quan-
tum efficiency of 80%).

Double-disk design optimization
The geometry of the double-disk structure is optimized to maximize 
the ratio of the frequencies of the high-order modes to the funda-
mental flapping modes. As the symmetric and antisymmetric fun-
damental modes are close to each other in frequency, and because 
our fabrication technique leads to roughly identical slot shape and 
size on both top and bottom disks, we simplified the model by 
simulating one disk with one slot. For a fixed diameter of disk, the 
mechanical frequencies are affected by the location and geometry of 
the slot and of the sandwich layer between the disks (which acts as a 
clamping point for the mechanical motion). We choose the slot 
geometry to be a half-circle with a flattened top, as shown in Fig. 4A.
The flattened top reduces the width of the slot and increases the 
effective mass of the fundamental mode without significantly 
changing its spring constant. This decreases its frequency. On the 
other hand, it can stiffen the higher-frequency modes and has a 
smaller effect on their effective masses. Together, this results in an 

increased frequency separation compared to alternative double-
disk designs.

The slot geometry is defined by the mask used in electron beam 
lithography. The radius of the circular part is chosen to ensure that 
the rim of the disk is wide enough to contain the whispering gallery 
modes of the device and therefore that the slot does not introduce 
large optical losses. In fabrication, the etchant reaches the sand-
wich layer both from outside the disk and by diffusing through the slot. 
This results in the semicircular sandwich layer geometry shown in 
Fig. 4A. By tuning the duration of the etch, we are able to tune the 
width of the sandwich layer.

Given that the slot and sandwich layer widths can both be tuned 
in fabrication, we perform finite-element simulations to investigate 
what the optimum choice of these two parameters is to maximally 
separate the frequency of the fundamental mode from the higher-
frequency modes. Specifically, we determine the ratio of the fre-
quency of the lowest-frequency mode to that of the second lowest 
mode, as a function of slot and sandwich layer widths. We note that 
including two disks, rather than the one modeled here, the lowest-
frequency mode separates into the symmetric and antisymmetic 
fundamental modes that we observe in the experiment. The results 
of the simulation are shown in Fig. 4B, where the sandwich and slot 
widths are normalized to the diameter of the disk. As can be seen, 
the maximum mode separation of around a factor of 3 occurs when 
the slot width and sandwich width are both around 20% of the 
disk diameter.

Model of multimode state preparation with viscous damping
To understand theoretically how collective measurements on mul-
tiple modes differ from the single-mode measurements considered 
by Meng et al. (15), we restrict ourselves to the simple case where 
the mechanical modes are identical (equal C, , , etc.). It is then 
possible to directly use the results of Meng et al. (15) to predict the 
effectiveness of localization of a viscously damped collective mode; 
one need only make the simple replacement C → NC. We find that 
the rotating wave approximation breaks down when ​C  > ​ Q​​ 2​ / N ​n​tot​ 

(N)​​. 
The breakdown of the rotating wave approximation and therefore 
generation of thermal squeezing occur at cooperativities a factor of 
N lower than those found by Meng et al. (15). Moreover, we find 
that—deep within the regime where the rotating wave approximation 
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breaks down—the conditional variance of the collective position  
becomes

	​​ V​qq​ (N) ​   ≈ ​​ [​​ ​ 
​Q​​ 2​ ​n​tot​ 

(N)​
 ─ 

64 ​(NC)​​ 3​
 ​​]​​​​ 

1/4

​​	 (3)

Compared to the single-mode case, this variance is reduced by a 
factor of N3/4 in the thermal noise–dominated regime and N1/2 in 
the backaction-dominated regime.

The purity of the conditional state of ​P  = ​ √ 
_

 NC / ​n​ tot​​ ​​ is increased 
but saturates to the same value in the backaction-dominated re-
gime. We see therefore that collective measurements on multiple 
mechanical oscillators can both greatly relax the requirement to 
prepare a nonclassical state and improve the quality of the non-
classical state that is prepared.

Within the regime of validity of the rotating wave approximation, 
collective measurements on multiple mechanical modes can also 
improve cooling by measurement. Specifically, the condition for 
when the ground state of a viscously damped resonator is approached 
is relaxed by a factor of N to C > nth/N.

Model of state preparation with structural damping
For structurally damped resonators, we begin by modeling a single-
mode mechanical resonator and extend to the multimode case in 
the same way as in the viscous damping case treated above. To make 
qualitative conclusions, we consider continuous position measure-
ment and numerically calculate the conditional position variance as 
a function of C and nth (assuming unity detection efficiency). The 
results are shown in Fig. 5. Note that the results are almost indepen-
dent of the choice of C; for the single-mode case here, there is less 
than 0.1% change in conditional variance as C is swept from 1 
to 10 kHz. Here, we fix the bath at room temperature so that an 
increase in nth corresponds to a decrease in the mechanical fre-
quency. We observe that quantum squeezing can be achieved when 
​C > ​ n​tot​ 

1/4​ ​Q​​ 3/4​ / ​ (black dashed line in Fig. 5), i.e., with lower C com-
pared to a single-mode viscously damped oscillator in the thermal 
noise–dominated regime (15) (white dashed line in Fig. 5). For N 
identical structurally damped modes, the quantum squeezing criterion 
is relaxed to ​C  > ​ n​tot​ 

(N)1/4​ ​Q​​ 3/4​ / N​ by replacing C → NC, as in the 
viscous damping case.

To explore a more general case where the mechanical modes are 
nondegenerate, we numerically considered a multimode oscillator 
constructed from a set of mechanical resonators whose resonance 
frequencies are equally spaced with a separation  around a cen-
tral frequency ​​ ̄ ​​. The linewidths and central frequency were held 
fixed. As seen in Fig. 6, a larger separation of mode frequencies does 
indeed degrade the conditional position variance but only gently. 
This implies that the required measurement strength for quantum 
squeezing will only slightly increase for the nondegenerate multimode 
case compared to the degenerate case. A more comprehensive treat-
ment is beyond the scope of this paper.

Relationship between relative and conditional variances 
for a structurally damped resonator
In our experiments, the conditional state is prepared and verified 
using prediction and retrodiction. In the case of a single viscously 
damped resonator and in the limit of a high measurement rate, the 
conditional variance is equal to half the variance of the difference 
between the estimates produced via prediction and retrodiction 
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(i.e., the variance of the relative estimate) (18). However, we observe 
that this is not the case for a structurally damped oscillator even in 
the high measurement regime. As a result, characterization of the 
conversion factors Fq and Fp is essential to obtain the conditional 
state. We characterize them via simulations. As an example, Fig. 7 
shows both conversion factors as a function of the thermal occu-
pancy and cooperativity. As can be seen, Fp becomes negative at 
sufficiently high cooperativities, with the regime over which this 
occurs roughly coinciding with the regime where the rotating wave 
approximation is invalid. Fq, on the other hand, is always positive 
but is nonzero at high cooperativities.

Analysis of measurement-induced entanglement
In our discussion of measurement-induced entanglement in the 
main text, we consider a specific form of entanglement in which an 
even number N of identical mechanical modes (equal C, , , etc.) 
is measured. The common position (q1 + q2 + q3 + q4…qN − 1 + qN) is 
strongly conditioned (as discussed above). Conversely, the differential 
momentum (p1 − p2 + p3 − p4… + pN−1 − pN) is entirely decoupled 
from the dynamics of the common position (this follows from  
being equal for all modes), so the measurement provides no infor-
mation about the differential momentum. Furthermore, every 
mechanical mode is driven by the same radiation pressure noise, 
resulting in no net backaction on the differential momentum; con-
tributions from every odd mode (p1, p3, …) are exactly cancelled by 
the even modes (p2, p4, …). As a result, the conditional momentum 
of the differential mode is equal to its unconditional (thermal) 
momentum, ​​V​a​ → p ​​ → p ​​ 

(N−) ​  = ​ n​ th​​ + 1 / 2​. The criterion ​​V​​ → q ​​ → q ​​ 
(N) ​ ​ V​​ → p ​​ → p ​​ 

(N−) ​  <  1 / 4​ is 
a sufficient criterion for entanglement (9). Using the thermal 
momentum and Eq. 3, this leads to the condition for the two collective 
modes to become conditionally entangled, as stated in the main text.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm7585
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