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Serum uric acid (SUA), as the end product of purine metabolism, has proven emerging 
roles in human disorders. Here based on a sample of 379 middle and old-aged Chinese 
twin pairs, we aimed to explore the magnitude of genetic impact on SUA variation by 
performing sex-limitation twin modeling analyses and further detect specific genetic vari-
ants related to SUA by conducting a genome-wide association study. Monozygotic (MZ) 
twin correlation for SUA level (rMZ = 0.56) was larger than for dizygotic (DZ) twin cor-
relation (rDZ = 0.39). The common effects sex-limitation model provided the best fit with 
additive genetic parameter (A) accounting for 46.3%, common or shared environmental 
parameter (C) accounting for 26.3% and unique/nonshared environmental parameter 
(E) accounting for 27.5% for females and 29.9, 33.1, and 37.0% for males, respectively. 
Although no SUA-related genetic variants reached genome-wide significance level,  
25 SNPs were suggestive of association (P < 1 × 10−5). Most of the SNPs were located 
in an intronic region and detected to have regulatory effects on gene transcription. The 
cell-type specific enhancer of skeletal muscle was detected which has been reported to 
implicate SUA. Two promising genetic regions on chromosome 17 around rs2253277 
and chromosome 14 around rs11621523 were found. Gene-based analysis found 
167 genes nominally associated with SUA level (P < 0.05), including PTGR2, ENTPD5, 
well-known SLC2A9, etc. Enrichment analysis identified one pathway of transmem-
brane transport of small molecules and 20 GO gene sets involving in ion transport, 
transmembrane transporter activity, hydrolase activity acting on acid anhydrides, etc. 
In conclusion, SUA shows moderate heritability in women and low heritability in men 
in the Chinese population and genetic variations are significantly involved in functional 
genes and regulatory domains that mediate SUA level. Our findings provide clues to 
further elucidate molecular physiology of SUA homeostasis and identify new diagnostic 
biomarkers and therapeutic targets for hyperuricemia and gout.

Keywords: chinese twins, gene-based test, genome-wide association study, heritability, serum uric acid

Abbreviations: BMI, body mass index; DZ, dizygotic; GSEA, gene set enrichment analysis; GWAS, genome-wide association 
study; MZ, monozygotic; SUA, serum uric acid; VEGAS2, Versatile Gene-based Association Study-2.
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inTrODUcTiOn

Serum uric acid (SUA), as the end product of purine metabolism, 
has proven emerging roles in human disorders, such as kidney 
disease (1, 2), diabetic nephropathy (3), metabolic diseases (4, 5), 
preeclampsia (6), cardiovascular disease (2, 7), diabetes (8), etc. 
A systematic review and meta-analysis by Liu et  al. concluded 
that the prevalence of hyperuricemia (13.3%) and gout (1.1%) 
was high in mainland China (9). Hence, it is necessary to explore 
factors affecting SUA homeostasis and elucidate underlying 
pathogenesis of increased SUA level.

The SUA level is mediated by the interplay between genetic 
and environmental factors. So far, the magnitude of genetic 
sources of variance in SUA level has been previously explored in 
several population studies (10–16). A strong genetic component 
was indicated with heritability estimates approximately ranging 
from 35 to 77%. Additionally, the genetic epidemiology has 
presented an enormous impact on the molecular physiology 
related to SUA homeostasis by genome-wide association study 
(GWAS), identifying several genetic loci located in key urate 
transporters such as SLC22A7, SLC2A9, SLC22A11, SLC22A12, 
ABCG2, etc., and a number of additional intriguing genetic 
networks (17–19).

Although intensively deployed, no GWAS has, to our knowl-
edge, yet been performed on a sample of middle and old-aged 
Chinese twins. Chinese population differs in the genetic con-
stitutions and a multitude of life style like dietary habit, work 
type, and physical activity from other ethnic populations in the 
world. Genetically related individuals, such as twin pairs, would 
highly confer increased power in genetic association analysis and 
efficiently identify genetic variants underlying human complex 
diseases (20).

Based on a sample of 379 middle and old-aged Chinese twin 
pairs, we explore the magnitude of genetic impact on SUA vari-
ation by performing twin modeling analyses and replicate previ-
ous findings on heritability of SUA level and further conduct a 
GWAS to detect specific genetic variants associated with SUA.

MaTerials anD MeThODs

Participants
The sample collection was carried out through the Qingdao Twin 
Registry, and details of study recruitment have been described 
previously (21, 22). Participants who were with gout, systemic 
lupus erythematosus, eGFR  <  60%, or serum creatinine level 
>1.4 mg/dL were excluded, and incomplete co-twin pairs were 
also dropped. The final sample consisted of 379 complete twin 
pairs with a median age of 50  years (95% range: 41–69  years), 
including 240 monozygotic (MZ) pairs (114 male and 126 female 
pairs) and 139 dizygotic (DZ) pairs (41 male, 39 female, and 59 
opposite-sex pairs).

All co-twin pairs undertook a health examination after a 
10–12  h overnight fast and completed a questionnaire. Serum 
and plasma were separated from blood cells in the field within 
30 min and kept frozen at −80°C. The zygosity was determined by  
using 16 multiple short tandem sequence repeat DNA markers 
(23, 24). SUA level was measured on the Semi-automatic Analyzer 

(Hitachi 7600, Japan) and transformed following Blom’s formula 
for normality.

This study was approved by the Regional Ethics Committee 
of the Qingdao CDC Institutional Review Boards. Prior written 
informed consent was achieved for all participants. The ethical 
principles of the Helsinki Declaration were followed.

genotyping and Quality control
DNA samples of 139 DZ pairs were genotyped on the Illumina’s 
Infinium Omni2.5Exome-8v1.2 BeadChip platform (Illumina, 
San Diego, CA, USA). Strong quality control was performed using 
the genome-wide efficient mixed-model association (GEMMA) 
(25) by removing the SNPs of call rate (<0.98), Hardy–Weinberg 
Equilibrium (P <  1 ×  10−4), locus missing (>0.05), and minor 
allele frequency (<0.05). Finally, a total of 1,365,181 SNPs was 
included for subsequent GWAS analysis.

statistical analysis
Heritability
Data preparation and descriptive analyses as well as genetic analy-
ses were performed with SPSS version 22.0 and Mx program,1 
respectively. Twin pair phenotypic correlations per zygosity were 
firstly measured by calculating the Pearson’s product-moment 
correlation coefficients. The higher correlations of MZ than those 
of DZ twin pairs indicated the genetic effect on individual differ-
ences in SUA level.

Then, standard structural equation modeling methods were 
used for sex-limitation twin modeling based on the classical twin 
methods. The variation was decomposed into sources of additive 
genetic (A), common or shared environmental (C), and unique/
nonshared environmental (E) parameters. After the general 
sex-limitation ACE model was firstly fitted, we then fitted its 
sub-models: the common effects sex-limitation models by setting 
the male-specific additive genetic effects (Aḿ) and sex-specific 
common or shared environmental effects (Cm and Cf) to 0 and 
the scalar sex-limitation models by constraining the variance 
components for females to be equal to a scalar multiple of the 
variance components for males, respectively.

In order to choose the best fitting model, the likelihood ratio 
test was applied to compare the performances between the general 
sex-limitation model and its sub-models. In the likelihood ratio 
test, twice the difference in the log likelihoods between models 
was calculated, and change in chi-square against the change in 
degrees of freedom were tested. The Akaike’s information crite-
rion (AIC) was calculated and a lower AIC indicated a better fit 
when no statistical difference was observed between two models 
(26). The covariates of age and body mass index (BMI) were 
adjusted for in the analysis.

Genome-Wide Association Study
SNPs-Based Genome-Wide Association Study
The association of SUA level with SNP genotypes was tested using 
the GEMMA (25). The covariates of age, sex, BMI, and the first 
five principle components were adjusted for in the model fitting. 

1 http://www.vcu.edu/mx.
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The conventional genome-wide significance level of P < 5 × 10−8 
and suggestive evidence level of P < 1 × 10−5 for this association 
were adopted (27). We further conducted functional elaboration 
of GWAS results and predicted putative causal variants in haplo-
type blocks, likely cell types of action and candidate target genes 
of noncoding genome by using online HaploReg v4.1 software2 
(28, 29). A set of 25 query SNPs (P < 1 × 10−5) was submitted. The 
enrichments of cell-type enhancers with uncorrected P  <  0.05 
were reported.

Gene-Based Analysis
We performed gene-based tests on GWAS summary results by 
using Versatile Gene-based Association Study-2 (VEGAS2) 
which uses 1,000 genomes data to model SNP correlations 
across the autosomes and chromosome X (30, 31). In the test, 
the evidence for association from all SNPs was aggregated within 
a per gene while correcting for linkage disequilibrium and gene 
size, and genes showing more signal or strength of association 
than expected by chance were identified. The SNPs from “1000G 
East ASIAN Population” were adopted. The P  <  2.63  ×  10−6 
(0.05/19,001) was considered to be genome-wide significant for 
the association as 19,001 genes being evaluated.

Gene Sets-Based Analysis
A list of significant genes (P < 0.05) were included to compute the 
over-represented gene sets in the gene sets-based analysis using the 
online version of gene set enrichment analysis (GSEA) program3 
(32, 33). Gene sets of Canonical pathways, BioCarta, KEGG, 
Reactome, GO biological process, and GO molecular function 
were selected in MSigDB. The significance of over-represented 
gene sets was determined by Benjamini and Hochberg method 
corrected P-value, i.e., false discovery rate (FDR) <0.05.

resUlTs

heritability
The final sample contained a total of 379 twin pairs (240 MZ 
and 139 DZ pairs) with a median age of 50  years (95% range: 
41–69 years). The median (95% range) of SUA level for all par-
ticipating individuals was 256  µmol/L (143–468  µmol/L), with 
males having higher SUA level than females [298 (179–509) vs. 
226 (130–374), P < 0.001] (Table S1 in Supplementary Material).

After adjusting for the effects of age, sex, and BMI, MZ twin 
correlation for SUA level (rMZ  =  0.56, 95% CI: 0.47–0.64) was 
larger than for DZ twin (rDZ = 0.39, 95% CI: 0.25–0.50), indicat-
ing the presence of genetic influence (Table S2 in Supplementary 
Material) As described, we firstly fitted the general sex-limitation 
ACE model and its sub-models and then compared their per-
formances. For the variance in SUA, the common effects sex-
limitation model (Model II) provided the best fit (AIC = 443.56, 
P  >  0.05) with A parameter accounting for 46.3% (95% CI: 
15.0–73.4), C parameter accounting for 26.3% (95% CI: 0–55.8), 
and E parameter accounting for 27.5% (95% CI: 19.8–37.9) for 

2 http://archive.broadinstitute.org/mammals/haploreg/haploreg.php.
3 http://software.broadinstitute.org/gsea/msigdb/annotate.jsp.
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FigUre 2 | Manhattan plot for genome-wide association study of serum uric acid (SUA) level. The x-axis shows the numbers of autosomes and the X chromosome, 
and the y-axis shows the −log10 of P-values for statistical significance. The dots represent the SNPs. None of the SNPs reached the genome-wide significance level 
(P < 5 × 10−8); however, 25 SNPs were suggestive of association (P < 1 × 10−5).

FigUre 1 | Quantile–quantile plot for quality control check and visualizing crude association for genome-wide association study of serum uric acid (SUA) level. The 
x-axis shows the −log10 of expected P-values of association from chi-square distribution and the y-axis shows the −log10 of P-values from the observed 
chi-square distribution. The black dots represent the observed data with top hit SNP being colored, and the red line is the expectation under the null hypothesis of 
no association. Gene at the best SNP is indicated.
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females and 29.9% (95% CI: 0–60.0), 33.1% (95% CI: 5.4–63.4), 
and 37.0% (95% CI: 26.9–50.3) for males, respectively (Table 1).

genome-Wide association study
A total of 1,365,181 SNPs genotyped from a sample of 139 DZ 
twin pairs were included for the GWAS of SUA level. The rela-
tionship between the observed and expected GWAS P-values was 

illustrated in the Q–Q plot (Figure 1). No evidence of genomic 
inflation of the test statistics or the bias from the possible popula-
tion stratification was indicated (λ-statistic = 1). And the slight 
deviation in the upper right tail from the null distribution sug-
gested evidence for weak association. None of the SNPs reached 
the genome-wide significance level as illustrated in Figure  2; 
however, 25 SNPs were suggestive of association (P < 1 × 10−5) 
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Table 2 | The summary of SNPs with P-value < 1 × 10−5 for association with serum uric acid in genome-wide association study.

snP chr band chr bP P-value closest genes or genes Official full name

rs346750 19q13.32 19 45,737,218 2.50E-07 EXOC3L2 Exocyst complex component 3 like 2
rs144505070 22q13.33 22 50,655,722 7.73E-07 SELENOO Tubulin gamma complex associated protein 6
rs2044479 2q31.2 2 179,980,070 6.41E-07 SESTD1 SEC14 and spectrin domain containing 1

rs2253277 17q25.3 17 76,109,073 1.30E-06 TMC6 Transmembrane channel like 6
TNRC6C-AS1 TNRC6C antisense RNA 1

rs11621523 14q24.3 14 74,307,246 2.77E-06 PTGR2 Prostaglandin reductase 2
rs1079120 17q25.3 17 76,092,534 3.25E-06 TNRC6C Trinucleotide repeat containing 6C
kgp8240017 (rs55930513) 14q24.3 14 74,378,876 3.39E-06 ZNF410 Zinc finger protein 410
rs61730171 17q25.3 17 76,060,954 3.50E-06 TNRC6C Trinucleotide repeat containing 6C
rs72780857 16p12.3 16 21,096,980 3.68E-06 DNAH3 Dynein axonemal heavy chain 3
rs6574154 14q24.3 14 74,396,820 5.73E-06 ZNF410 Zinc finger protein 410
rs16970774 17q25.3 17 76,055,547 5.89E-06 TNRC6C Trinucleotide repeat containing 6C
rs16970784 17q25.3 17 76,058,682 5.89E-06 TNRC6C Trinucleotide repeat containing 6C
rs72894061 17q25.3 17 76,048,995 5.89E-06 TNRC6C Trinucleotide repeat containing 6C
rs9893685 17q25.3 17 76,059,784 5.89E-06 TNRC6C Trinucleotide repeat containing 6C
rs4622451 14q24.3 14 74,366,247 6.74E-06 ZNF410 Zinc finger protein 410
rs2336742 14q24.3 14 74,436,502 7.02E-06 ENTPD5 Ectonucleoside triphosphate diphosphohydrolase 5
rs34293811 17q25.3 17 76,060,866 7.29E-06 TNRC6C Trinucleotide Repeat Containing 6C
rs2159179 14q24.3 14 74,316,848 7.44E-06 PTGR2 Prostaglandin reductase 2
rs2270073 14q24.3 14 74,318,754 7.44E-06 PTGR2 Prostaglandin reductase 2
rs2302136 14q24.3 14 74,375,956 7.44E-06 ZNF410 Zinc finger protein 410
rs2270074 14q24.3 14 74,318,645 7.59E-06 PTGR2 Prostaglandin reductase 2
kgp7137390 (rs200828511) 14q24.3 14 74,393,445 7.64E-06 ZNF410 Zinc finger protein 410
rs1005564 14q24.3 14 74,410,405 7.64E-06 FAM161B Family with sequence similarity 161 member B
rs2748431 17q25.3 17 76,105,754 8.93E-06 TNRC6C-AS1 TNRC6C antisense RNA 1

TMC6 Transmembrane channel like 6
rs1483540 8q11.23 8 54,786,341 8.93E-06 RGS20 Regulator of G-protein signaling 20

kgp, 1000 Genomes Project.
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(Table 2). The strongest association was detected with rs346750 
(P = 2.50 × 10−7) in an intronic region of EXOC3L2 on chromo-
some 19q13.32.

Among these top signals, two chromosomal loci (17q25.3 
and 14q24.3) showed nominal association with SUA level as the 
locus zoom plots illustrated (Figures 3 and 4). On chromosome 
17q25.3, seven SNPs (P = 3.25 × 10−6–7.29 × 10−6) and two SNPs 
(P = 1.30 × 10−6–8.93 × 10−6) were located at or near TNRC6C 
and TMC6/TNRC6C-AS1 genes, respectively. At chromosome 
14q24.3, four SNPs rs2270073, rs2270074, rs11621523, and 
rs2159179 (P = 2.77 × 10−6–7.59 × 10−6) were positioned within or 
closest to PTGR2 gene that was involved in terminal inactivation 
of prostaglandins. The rs2336742 (P = 7.02 × 10−6) was located at 
the intronic region of ENTPD5 gene, which was involved in the 
pathway of purine metabolism. The number of SNPs mapping to 
ZNF410 and FAM161B was five (P = 3.39 × 10−6–7.64 × 10−6) and 
one (P = 7.64 × 10−6), respectively. All the abovementioned genes 
showed nominal association with SUA level (P < 0.05) from the 
following VEGAS2 analysis.

As predicted by HaploReg v4.1, two cell-type specific enhanc-
ers (uncorrected P < 0.05) of brain angular gyrus (P = 0.003) and 
skeletal muscle (female) (P = 0.008) were identified for the set of 
25 query SNPs (Table S3 in Supplementary Material). Most of the 
SNPs were located in intronic regions. Several SNPs were detected 
within regions with promoter histone marks or enhancer histone 
marks and could change DNA motifs for DNA-binding proteins, 
and thus would have regulatory effects on gene transcription 

(Table S4 in Supplementary Material). We compared previously 
reported 2,368 significant SUA-associated SNPs in a series of 
studies with our results. Although no genome-wide significant 
SNPs were identified in our study, we defined our SNPs with 
P < 0.05 as supportive to the reported SNPs. And 57 SNPs located 
in genes SLC2A9, ABCG2, LRRC16A, LOC107986260, GLUT9, 
SCGN, LOC107986971, TFCP2L1, TET2, KCNQ1, FRAS1, 
SLC16A9, RAF1P1, LOC100129344, LOC107986581, LRRC16A, 
LOC100287951, WDR1, PDZK1, and LOC107986260 could be 
replicated (Table S5 in Supplementary Material).

While no genes achieved genome-wide significance level, 
a total of 167 genes were observed to be nominally associated 
with SUA level (P  <  0.05) from VEGAS2 analysis. Genes of 
TNRC6C-AS1, ZNF410, TNRC6C, FAM161B, PTGR2, SESTD1, 
RGS20, ENTPD5, EXOC3L2, DNAH3, and TMC6 had already 
been indicated in the SNPs-based analysis (Table  2), whereas 
the others were novel. The well-known urate transporter SLC2A9 
gene was also identified. The top 20 genes ranked by P-values 
were listed in Table 3.

In the gene sets-based analysis using GSEA program, one REAC-
TOME gene set and 20 GO gene sets (FDR q-value < 0.01) were 
presented in Table 4. The only REACTOME pathway was trans-
membrane transport of small molecules (FDR q-value = 0.020). 
And the GO gene sets were involved in ion transport, regulation of 
catabolic process, transmembrane transporter activity, hydrolase 
activity acting on acid anhydrides, cellular process, regulation of 
immune system process, etc.
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FigUre 3 | Regional association plot showing signal around chromosomal loci of 17q25.3 for genome-wide association study of serum uric acid (SUA) level. The 
strongest association was detected with rs2253277 in TMC6/TNRC6C-AS1 genes.
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DiscUssiOn

In this investigation based on 379 twin pairs, we explored the 
proportion of genetic sources in SUA variation, and confirmed 
the genetic variants underlying this trait by GWAS. The MZ twin 
correlation for SUA level was larger than for DZ twin, indicating 
the presence of genetic influence (Table S2 in Supplementary 
Material). In fitting the sex-limitation ACE models, the common 
effects sex-limitation model of dropping Aḿ effects (Model II) 
was favored over the general model (Model I) (AIC =  443.56, 
P > 0.05), indicating that there was no evidence for sex-specific 
additive genetic effects. We then considered whether the com-
mon or shared environmental effects for males (Cm) (Model III) 
and further for females (Cf) (Model IV) could also be fixed to 0. 
However, the goodness-of-fit statistics indicated that these two 
models provided a significantly worse fit (P < 0.05). Thus, these 
two models were rejected and model II remained the favored one. 
Finally, we considered the scalar sex-limitation models (Model 
V and Model VI) by constraining the variance components of 
females to be equal to scalar multiples of the variance compo-
nents of males. Both of the models provided a significantly worse 
fit than Model II (P < 0.05). Hence, we concluded that the Model 

II was the best fitting model, in which additive genetic parameter 
(A) explained larger proportion of SUA variation for females 
(46.3%) than for males (29.9%), whereas the environmental 
parameters together (C and E) explained smaller proportion 
(53.7 vs. 70.1%) (Table 1).

The sex-difference in the genetic and environmental effects on 
SUA variation obtained here was in line with the previous Boyle 
et al.’s genetic study. Based on a sample of 112 twin pairs, they 
also found a more significant genetic component in control of 
SUA variation in females than males, whereas a stronger role of 
environmental component in males (34). We speculated that the 
genetic architecture may indeed differ across sexes because of the 
sex differences in selective pressures during human evolution. 
Additional data from adopted twins and siblings reared together 
may be used to explore this hypothesis further.

Although no genome-wide significant SNPs were identified 
in GWAS, we found two promising genetic regions on chromo-
some 17 around rs2253277 (Figure  3) and chromosome 14 
around rs11621523 (Figure 4). The PTGR2 and ENTPD5 genes 
around the rs11621523 have been emphasized for their roles in 
SUA level. Prostaglandin reductase 2 (PTGR2) is the enzyme 
involved in terminal inactivation of prostaglandins (35) which 
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FigUre 4 | Regional association plot showing signal around chromosomal loci of 14q24.3 for genome-wide association study of serum uric acid (SUA) level.  
The strongest association was detected with rs11621523 in PTGR2 gene.

Table 3 | The top 20 genes from Versatile Gene-based Association Study-2 gene-based analysis showing the strongest association with serum uric acid level.

chr gene number of snPs start position stop position gene-based test statistic P-value Top-snP Top-snP P-value

5 GPR151 3 145,894,416 145,895,676 32.41 5.00E-06 rs7713676 5.30E-05
17 TNRC6C-AS1a 2 76,103,482 76,107,880 38.89 1.30E-05 rs2748431 8.90E-06
14 ZNF410a 9 74,353,317 74,398,991 95.92 1.40E-05 rs6574154 5.70E-06
17 TNRC6Ca 30 76,000,317 76,104,916 253.58 2.30E-05 rs1079120 3.30E-06
5 JMY 14 78,531,924 78,623,038 138.00 4.80E-05 rs2591387 3.00E-05

14 FAM161Ba 11 74,399,694 74,417,117 92.90 4.80E-05 rs1005564 7.60E-06
5 HOMER1 50 78,669,646 78,809,659 277.24 1.00E-04 rs67994113 3.30E-05

12 SLCO1B3 98 20,963,637 21,069,843 712.77 1.20E-04 rs1304539 4.40E-05
14 PTGR2a 11 74,318,533 74,352,168 59.66 2.20E-04 rs2270073 7.40E-06
10 C10orf32-ASMT 18 104,613,966 104,661,655 109.59 2.60E-04 rs10786719 1.70E-04
9 LAMC3 88 133,884,503 133,968,446 311.55 3.00E-04 rs10901336 5.40E-04

14 COQ6 11 74,416,636 74,429,813 54.92 3.00E-04 rs4903159 4.00E-05
10 AS3MT 12 104,629,209 104,661,655 72.58 3.20E-04 rs10786719 1.70E-04
17 CDRT4 18 15,339,331 15,370,925 150.75 3.20E-04 rs76787574 2.50E-05
1 RFX5 3 151,313,115 151,319,769 25.75 3.30E-04 rs1752387 6.70E-04

10 NANOS1 2 120,789,227 120,793,854 21.84 3.30E-04 rs79664216 8.50E-04
17 EFNB3 3 7,608,519 7,614,693 33.50 3.40E-04 rs7141 1.40E-04
10 MYOZ1 4 75,391,369 75,401,515 32.80 3.40E-04 rs11000726 1.10E-04
10 EIF3A 15 120,794,540 120,840,334 98.21 3.40E-04 rs10787901 8.20E-04
19 EML2 29 46,112,657 46,148,775 117.77 3.60E-04 rs6509226 1.40E-04

aRepresented the genes had already been indicated in the SNPs-based analysis.
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Table 4 | The gene sets results-one REACTOME gene set and top 20 GO gene sets (FDR q-value < 0.01) using gene set enrichment analysis (GSEA) program.

gene set name genes in 
gene set (K)

Description genes in 
overlap (k)

k/K P-value FDr q-value

REACTOME_
TRANSMEMBRANE_
TRANSPORT_OF_ 
SMALL_MOLECULES

413 Genes involved in transmembrane transport of small molecules 9 0.0218 1.52E-05 2.02E-02

GO_MOVEMENT_OF_
CELL_OR_SUBCELLULAR_
COMPONENT

1,275 The directed, self-propelled movement of a cell or subcellular 
component without the involvement of an external agent such  
as a transporter or a pore

18 0.0141 5.12E-07 1.81E-03

GO_PROTEIN_ 
LOCALIZATION

1,805 Any process in which a protein is transported to, or maintained  
in, a specific location

21 0.0116 1.25E-06 1.81E-03

GO_REGULATION_OF_
INTRACELLULAR_ 
SIGNAL_TRANSDUCTION

1,656 Any process that modulates the frequency, rate or extent  
of intracellular signal transduction

20 0.0121 1.30E-06 1.81E-03

GO_LOCOMOTION 1,114 Self-propelled movement of a cell or organism from one location  
to another

16 0.0144 1.84E-06 1.81E-03

GO_REGULATION_OF_
MRNA_CATABOLIC_
PROCESS

26 Any process that modulates the rate, frequency, or extent of a mRNA 
catabolic process, the chemical reactions and pathways resulting in  
the breakdown of RNA, ribonucleic acid, one of the two main type  
of nucleic acid, consisting of a long, unbranched macromolecule  
formed from ribonucleotides joined  
in 3’,5’-phosphodiester linkage

4 0.1538 1.94E-06 1.81E-03

GO_ION_TRANSPORT 1,262 The directed movement of charged atoms or small charged  
molecules into, out of or within a cell, or between cells, by  
means of some agent such as a transporter or pore

17 0.0135 2.04E-06 1.81E-03

GO_BIOLOGICAL_ 
ADHESION

1,032 The attachment of a cell or organism to a substrate, another cell,  
or other organism. Biological adhesion includes intracellular attachment 
between membrane regions

15 0.0145 3.39E-06 2.59E-03

GO_CATION_ 
TRANSPORT

796 The directed movement of cations, atoms, or small molecules  
with a net positive charge, into, out of or within a cell, or between  
cells, by means of some agent such as a transporter or pore

13 0.0163 4.55E-06 3.04E-03

GO_MOTOR_ACTIVITY 131 Catalysis of the generation of force resulting either in movement  
along a microfilament or microtubule or in torque resulting in membrane 
scission, coupled to the hydrolysis of a nucleoside triphosphate

6 0.0458 6.83E-06 4.05E-03

GO_NEUROGENESIS 1,402 Generation of cells within the nervous system 17 0.0121 8.14E-06 4.35E-03

GO_POSITIVE_ 
REGULATION_OF_
CATABOLIC_PROCESS

395 Any process that activates or increases the frequency, rate,  
or extent of the chemical reactions and pathways resulting  
in the breakdown of substances

9 0.0228 1.07E-05 5.19E-03

GO_SMALL_MOLECULE_
METABOLIC_PROCESS

1,767 The chemical reactions and pathways involving small molecules,  
any low molecular weight, monomeric, non-encoded molecule

19 0.0108 1.27E-05 5.53E-03

GO_REGULATION_OF_ 
CELL_ADHESION

629 Any process that modulates the frequency, rate or extent of attachment 
of a cell to another cell or to the extracellular matrix.

11 0.0175 1.35E-05 5.53E-03

GO_REGULATION_
OF_NUCLEAR_
TRANSCRIBED_MRNA_
CATABOLIC_PROCESS_
DEADENYLATION_
DEPENDENT_DECAY

15 Any process that modulates the frequency, rate or extent  
of nuclear-transcribed mRNA catabolic process, deadenylation-
dependent decay

3 0.2 1.79E-05 6.14E-03

GO_SECONDARY_ACTIVE_
TRANSMEMBRANE_
TRANSPORTER_ACTIVITY

233 Catalysis of the transfer of a solute from one side of a membrane to  
the other, up its concentration gradient. The transporter binds the  
solute and undergoes a series of conformational changes. Transport 
works equally well in either direction and is driven by a chemiosmotic 
source of energy, not direct ATP coupling. Chemiosmotic sources of 
energy include uniport, symport, or antiport

7 0.03 1.83E-05 6.14E-03

GO_POSITIVE_ 
REGULATION_OF_MRNA_
METABOLIC_PROCESS

45 Any process that activates or increases the frequency, rate,  
or extent of mRNA metabolic process

4 0.0889 1.84E-05 6.14E-03

(Continued )
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gene set name genes in 
gene set (K)

Description genes in 
overlap (k)

k/K P-value FDr q-value

GO_ENZYME_LINKED_
RECEPTOR_PROTEIN_
SIGNALING_PATHWAY

689 Any series of molecular signals initiated by the binding of an extracellular 
ligand to a receptor on the surface of the target  
cell, where the receptor possesses catalytic activity or is closely 
associated with an enzyme such as a protein kinase, and ending  
with regulation of a downstream cellular process, e.g., transcription

11 0.016 3.10E-05 8.97E-03

GO_HYDROLASE_ 
ACTIVITY_ACTING_ON_
ACID_ANHYDRIDES

820 Catalysis of the hydrolysis of any acid anhydride 12 0.0146 3.14E-05 8.97E-03

GO_REGULATION_OF_
IMMUNE_SYSTEM_
PROCESS

1,403 Any process that modulates the frequency, rate, or extent of an immune 
system process

16 0.0114 3.19E-05 8.97E-03

GO_INTRACELLULAR_
SIGNAL_TRANSDUCTION

1,572 The process in which a signal is passed on to downstream components 
within the cell, which become activated themselves  
to further propagate the signal and finally trigger a change in the 
function or state of the cell

17 0.0108 3.48E-05 9.01E-03

GO_ACTIVE_
TRANSMEMBRANE_
TRANSPORTER_ACTIVITY

356 Catalysis of the transfer of a specific substance or related group  
of substances from one side of a membrane to the other, up the 
solute’s concentration gradient. The transporter binds the solute  
and undergoes a series of conformational changes. Transport  
works equally well in either direction

8 0.0225 3.68E-05 9.01E-03

GO_CELL_MOTILITY 835 Any process involved in the controlled self-propelled movement  
of a cell that results in translocation of the cell from one place  
to another

12 0.0144 3.74E-05 9.01E-03

GO_METAL_ION_
TRANSPORT

582 The directed movement of metal ions, any metal ion with an  
electric charge, into, out of or within a cell, or between cells,  
by means of some agent such as a transporter or pore

10 0.0172 3.88E-05 9.01E-03

Collections included CP, CP: BIOCARTA, CP: KEGG, and CP: REACTOME of C2: curated gene sets, and BP and MF of C5: GO gene sets in GSEA.
Genes in Overlap (k): the number of genes in the intersection of the query set with a set from MSigDBet.
K: the number of genes in the set from MSigDB.
FDR q-value: the false discovery rate analog of hypergeometric P-value after correction for multiple hypothesis testing according to Benjamini and Hochberg.

may contribute to renal uric acid metabolism (36, 37). Four 
highly correlated SNPs showing suggestive evidence of associa-
tion with SUA level were detected within or near PTGR2 gene. 
The rs2270073 and rs2270074 were detected within a region with 
promoter histone marks in the 5’-UTR of PTGR2 gene and could 
change DNA motifs for DNA-binding proteins, which provided 
strong evidence for their regulatory effects on gene transcription 
(Table S4 in Supplementary Material). Additionally, rs11621523 
and rs2159179, which were located in an intergenic region at 
14q24.3 and closest to PTGR2 gene, should also be candidates 
to be further studied. The protein encoding by ENTPD5 gene 
was involved in the pathway of purine metabolism in which SUA 
was a by-product of oxidation. As SNP rs2336742 was located at 
the intronic region of ENTPD5 gene and could change its DNA 
motifs, it might be associated with purine metabolism as well as 
SUA level (Table S4 in Supplementary Material). However, the 
association of novel TNRC6C, TMC6, and TNRC6C-AS1 genes 
around the other SNP rs225327 with SUA level still needs to be 
validated. Finally, the enhancer of skeletal muscle was predicted 
by submitting the set of 25 query SNPs to HaploReg v4.1 (Table 
S3 in Supplementary Material). And the relationship between 
SUA level and skeletal muscle strength/volume has been fully 
researched currently (38–41).

As additional replication, we compared the SUA-associated 
SNPs reported in a series of studies with ours (18, 42–59) (Table 

Table 4 | Continued

S5 in Supplementary Material). A list of SNPs could be replicated, 
especially the variants located in the well-known SUA-associated 
genes SLC2A9 and ABCG2. Notably, two SNPs rs2231142 
(ABCG2) and rs10008015 (TET2) were also found by Yang et al. 
(58) and three SNPs rs11996526 (LOC107986971), rs4848700 
(TFCP2L1), and rs179785 (KCNQ1) by Li et al. (49) in Chinese 
populations.

Even though none genome-wide significant genes were found, 
a total of 167 genes were observed to be nominally associated 
with SUA level (P  <  0.05) from VEGAS2 analysis. The results 
of GO gene sets from using GSEA program indicated that these 
genes might be associated with process of generation, catabo-
lism, transport, intracellular signal transduction, and hydrolase 
activity during SUA metabolism. Besides, several genes were 
enriched in pathway of transmembrane transport of small 
molecules, including solute carrier family (SLC14A2, SLC22A1, 
SLC2A9, SLC5A3, SLCO1B3, and SLC12A5) and ATPase family 
(ATP6V1H and ATP11B), which strengthened their significance 
in regulating SUA transport process and thus further influencing 
SUA level (Table 4). Except for the PTGR2 and ENTPD5 genes 
being abovementioned, the GPR151 gene should be also noted. 
This gene encodes an orphan member of the class A rhodopsin-
like family of G protein-coupled receptors (GPCRs) and thus 
influences the GPCRs activity. And the GPCRs could regulate the 
assembly of a multienzyme complex for purine biosynthesis (60). 
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The association of well-known urate transporter gene SLC2A9 
(P = 0.001) with SUA level has previously been reported (61, 62). 
Other genes were of unknown function in terms of SUA level or 
purine metabolism currently, whereas they may also be interest-
ing potential candidates to be future researched and validated, 
especially the top 20 genes (Table 3).

Several strengths must be noticed in our study. First, our 
results based on the twin data of SUA level would be credible. 
Phenotype variation may be under the effect of subjects’ genetic 
background, age, gender, and environmental exposures as well 
as some experimental variables related to sampling, processing, 
and data analysis. Genetically related individuals, such as twin 
pairs, would highly confer increased power in genetic associa-
tion analysis and efficiently identify genetic variants underlying 
human complex diseases (20). Second, given the various genetic 
constitutions and multitude of life style among different ethnic 
populations in the world, this is the first GWAS conducted in the 
sample of middle and old-aged Chinese twins.

Nevertheless, our study has potential limitations as well. 
First, our study was with relatively small sample size and limited 
statistical power resulting from the challenges of identifying 
and recruiting qualified twin pairs. The results presented here, 
however, provided a useful reference for hypotheses to be further 
replicated and validated for exploring increased SUA level. Given 
the genetic effect on SUA variation is expected to comprise a large 
number of SNPs possessing very small effect size, a meta-analysis 
with larger samples will be desirable and ideal. Second, even 
though we replicated parts of our GWAS results by comparing 
with results generated from external and independent datasets, 
most of the SNPs didnot reach the genome-wide significance 
level. In addition, as no other study has explored the differential 
expressed genes based on SUA-discordant samples, we cannot yet 
validate our findings further.

In summary, we have confirmed that genetic factors are signifi-
cant in explaining SUA level variability through twin modeling. 
Two novel suggestive regions located at chromosomes 17 and 14 
were identified. Twenty-five SNPs reached suggestive evidence 
level of association with SUA and most of them could have 
regulatory effects on gene transcription, and 167 genes nominally 
associated with SUA level were involved in significant biological 
functions related to uric acid generating and metabolism. The 
potential candidate biomarkers of SUA level reported here should 
merit further verifications.
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