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Abstract: Nerves are critical structures that may be difficult to recognize during surgery. Inadvertent
nerve injuries can have catastrophic consequences for the patient and lead to life-long pain and
a reduced quality of life. Hyperspectral imaging (HSI) is a non-invasive technique combining
photography with spectroscopy, allowing non-invasive intraoperative biological tissue property
quantification. We show, for the first time, that HSI combined with deep learning allows nerves
and other tissue types to be automatically recognized in in vivo hyperspectral images. An animal
model was used, and eight anesthetized pigs underwent neck midline incisions, exposing several
structures (nerve, artery, vein, muscle, fat, skin). State-of-the-art machine learning models were
trained to recognize these tissue types in HSI data. The best model was a convolutional neural
network (CNN), achieving an overall average sensitivity of 0.91 and a specificity of 1.0, validated
with leave-one-patient-out cross-validation. For the nerve, the CNN achieved an average sensitivity
of 0.76 and a specificity of 0.99. In conclusion, HSI combined with a CNN model is suitable for
in vivo nerve recognition.

Keywords: hyperspectral imaging; artificial intelligence; tissue recognition; intraoperative navigation
tool; optical imaging; deep learning; precision surgery; convolutional neural network

1. Introduction

Minimally invasive surgery offers obvious advantages to patients, including a faster
postoperative recovery and a shorter hospital stay. To improve surgical performances,
intraoperative imaging modalities might enhance the surgical vision and assist the surgeon
in the tasks of recognizing important anatomical structures that need to be safeguarded or
selectively removed [1].

Specifically, nerves are fundamental structures that need to be preserved, and an
inadvertent nerve injury might result in an important function loss with a consistent
negative impact on the patient’s quality of life. Iatrogenic nerve injury might occur in
general during surgical procedures, and precise nerve identification remains a challenging
task in both open and minimally invasive surgery. In fact, despite technical improvements
in intraoperative imaging systems, nerves remain difficult to visualize. In particular,
after laparoscopic colorectal resections, the incidence of fecal incontinence resulting from
damage to the pelvic autonomic nerves remains high, with a rate of 40–60% [2].
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On the other hand, during an open surgical procedure, such as thyroidectomy, the
identification of the recurrent laryngeal nerve is a key step to avoid an iatrogenic injury.
However, although permanent vocal cord palsy caused by recurrent laryngeal nerve injury
is rare, ranging from 0.5% to 1.5%, it still remains a considerable burden, considering that
thyroidectomy is one of the most frequently performed surgical procedures worldwide [3].

The difficulty of identifying nerves intraoperatively is principally attributed to their
small size and tubular shape. Furthermore, in their original anatomical positions, nerves
are often embedded into a sheet of connective and fatty tissue, together with blood vessels:
the neurovascular bundle. As a result, distinguishing a nerve from other tissue types, such
as small venous or arterial blood vessels, surrounding fatty tissue intraoperatively can be
rather challenging.

An intraoperative guidance tool able to precisely and objectively discriminate and
identify the nerves would provide important assistance to the surgeon to prevent iatrogenic
injuries during open and laparoscopic operations. In this view, hyperspectral imaging
(HSI) represents a promising technology.

HSI, an optical imaging technology, combining a photo camera with a spectrometer,
provides both spatial and spectral information of the analyzed structures. The tissue/light
interaction (reflectance, absorption, scattering) generates specific spectral signatures, en-
abling non-invasive and non-ionizing qualitative and quantitative analysis of the biochemi-
cal composition of an object: the so-called optical biopsy. However, HSI produces a massive
amount of data, and in order to extract and classify the discriminative information, machine
learning (ML) techniques are required.

Given its ability to discriminate materials rapidly and over large surfaces, HSI has
been previously successfully used in the field of remote sensing [4], vegetation and water
resource control [5], the recycling industry [6] and forensic medicine [7]. As a result, HSI,
providing a non-invasive, contrast-free optical biopsy, is able to discriminate pathological
from healthy tissues [8]. For this reason, this technology has been progressively developed
in the medical field over recent years [9,10] and recently found several applications in the
field of gastroenterology [11].

Likewise, HSI could be easily integrated into current surgical optical navigation tools,
such as laparoscopes [12], endoscopes [13] or even robotic systems; hence, it has captured
the attention of the surgical community as a potential innovative surgical guidance tool [14].
In particular, HSI technology has been previously applied in digestive surgery to quantify
intestinal perfusion before anastomosis during several procedures [15–17], as well as in
the case of mesenteric ischemia [18,19], or to quantify liver perfusion [20]. A number of
previous works focused successfully on the ability of HSI to discriminate between normal
and tumoral tissue, particularly in prostate cancer [21], colorectal cancer [22–24], gastric
cancer [25,26], glioblastoma [27] and head and neck cancers [28–31]. In the oncological
field, advances in hyperspectral signature classification have been remarkable and led to
the successful use of sophisticated deep learning algorithms [25–27,30–32]. However, these
previous works were conducted ex vivo: either using surgical specimens or histopatho-
logical slides. Furthermore, only binary tissue recognition has been carried out: cancer
versus the cumulative non-cancer class. Several groups have attempted to employ HSI as a
surgical navigation tool for intraoperatively discriminating key anatomical structures, such
as the bile duct [33], esophagus or tracheal tissue [34], parathyroid gland [35], nerves and
ureter [36]. However, those previous tissue recognition works were conducted using either
simple feature discrimination algorithms [33–35] or band selection methods [36,37].

The aim of this study was to apply HSI in combination with several advanced machine
learning algorithms, particularly convolutional neural networks (CNNs) and support
vector machines (SVMs), to differentiate nerves from several surrounding classes of tissues
in an in vivo porcine model. These classes are artery, fat, muscle, skin and vein. We
also include metallic objects (instruments) as an additional class to be recognized by the
ML models.
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2. Materials and Methods
2.1. Overview

In this section, we discuss the HSI image dataset, the machine learning task and
training process and our performance evaluation setup. The models were trained to
recognize the tissue type at any spatial location within HSI images, among a set of pre-
defined tissue types. We solved this problem by training state-of-the-art models using
supervised learning. This involved two stages: The first stage was the training stage, where
the model parameters were automatically optimized to maximize recognition performance
on a training dataset with known tissue classes provided by an expert surgeon. The second
stage was the inference stage, where the predictive performance was evaluated with HSIs
of subjects that are not present in the training dataset with leave-one-out cross-validation
(LOPOCV). This evaluation measures the performance and generalization capability of
the model.

2.2. Animal Characteristics

In the present study, 8 adult pigs (Large White) were included. This experiment
was part of the ELIOS project (Endoscopic Luminescent Imaging for Oncology Surgery),
approved by the local ethical committee on animal experimentation (ICOMETH No.
38.2016.01.085), and by the French Ministry of Superior Education and Research (MESR)
(APAFIS#8721-2017013010316298-v2). All animals were managed according to French
laws for animal use and care, and according to the directives of the European Community
Council (2010/63/EU) and ARRIVE guidelines [38].

A 24 h preoperative fasting with free access to water was observed. Premedication
was administered 10 min preoperatively, with an intramuscular injection of ketamine
(20 mg/kg) and azaperone (2 mg/kg) (Stresnil, Janssen-Cilag, Beerse, Belgium). Intra-
venous propofol (3 mg/kg) combined with rocuronium (0.8 mg/kg) was used for induction.
Anesthesia was maintained with 2% isoflurane. At the end of the procedures, pigs were
sacrificed with an intravenous injection of Pentobarbital Sodium (40 mg/kg) (Exagon®,
AXIENCE, Pantin, France), under 5% isoflurane anesthesia.

2.3. Surgical Procedure and Hyperspectral Data Acquisition

A midline neck incision was performed, and the neurovascular bundle of the neck
was carefully dissected. Successively, the vagal nerve, common carotid artery and the
common jugular vein were isolated bilaterally, and the nerves were marked using a
3-0 polypropylene suture thread. The surgical scene was stabilized using self-retaining
retractors. The hyperspectral imager employed during the experiment was a commercially
available push-broom scanning complementary metal–oxide–semiconductor (CMOS) com-
pact system (TIVITA®, Diaspective Vision GmbH, Am Salzhaff-Pepelow, Germany) CE
marked for human use, with a 640 × 476 pixel spatial resolution, acting within a spectral
range from 500 to 1000 nm (5 nm spectral resolution). The camera head possessed an
integrated illumination system, consisting of 6 halogen lamps. The 6 lamps illuminate
the scene with incoherent white light, and the spectrometric unit of the camera analyzes
the reflectance spectra. The hyperspectral camera was placed at approximately 45 cm
from the surgical field, and an acquisition was taken. In order to avoid any potential bias,
environmental lights were switched off, and the ventilation was paused for the few seconds
required for each acquisition (<10 s). Supplementary material Figure S1 shows the RGB
images of each acquisition.

2.4. Imaging Postprocessing and Data Annotation

Immediately after each acquisition, in the OR and with the surgical scene still available,
the operating surgeon (MB), by means of an image manipulator software (GIMP, GNU
Image Manipulation Program, open source), manually annotated the resulting RGB image.
The annotated classes were the vagal nerve, jugular vein, carotid artery, subcutaneous fat,
muscle, skin and metal of the retractor. The RGB images for each subject are shown in
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Figure 1a, which were provided by the camera device and synthesized from the HSI. As it is
visible in the pictures, the nerves and the vessels are rather small and difficult to distinguish
from the RGB images alone. For this reason, the annotation was carried out by the operating
surgeon, still looking at the surgical field, in which the structures were well distinguishable,
given the precise anatomical position of the dissected elements of the neck neurovascular
bundle (carotid artery, jugular vein and vagal nerve). These images are visualized in
grayscale with annotations overlaid as colored regions in Figure 1b. These figures are
cropped and oriented similarly for better visualization. It is not feasible to correctly
annotate every pixel in each image. Consequently, the annotation of each class is a subset
of the pixels of the class for which the human annotator was certain of the class type. The
machine learning models were trained and evaluated using only the annotated regions. One
of the primary challenges is that the HSI camera has a limited resolution of 640 × 476 pixels,
and, consequently, the thin structures (in particular, nerves) are challenging to recognize.
Supplementary material Figures S2 and S3 show the annotations of each HSI.
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the CNN (convolutional neural network) model. In each row, we show images from subjects 1–8.
From left to right, in columns, we show the RGB image simulated from HS (a), the ground truth
classifications from the surgeon (b), the predicted classifications from the CNN (c) and the error map
(d). Black pixels in the error map indicate a perfect classification (no error). Colored pixels indicate
an incorrect classification, and the color provides the incorrect prediction.

2.5. Image Pre-Processing and Spectral Curve Distributions

The HSI images were calibrated to account for the illumination source, dark current
and the current of the charge-coupled device (CCD) camera. Therefore, intensity calibration
was not required as a pre-processing step. The images have 100 equally spaced wavelength
bands in the range of 500 (visible green light) to 1000 nm (near-infrared). Normalization
techniques are commonly applied as a pre-processing stage to reduce spectral variability
caused by tissue morphology effects (changes in illumination angle, and non-flat struc-
tures) [39,40]. The most popular normalization technique was tested: standard normal
variate (SNV), where each individual curve is transformed to have a zero mean and stan-
dard deviation of one. SNV renders a spectral curve invariant to linear transforms caused
by, e.g., surface orientation variability. However, SNV may adversely affect recognition
performance because of the potential loss of discriminative information. Models were
trained by us both with and without SNV normalization to assess its benefits and limits.

Before applying machine learning, a qualitative analysis of the spectral curves of each
tissue class was performed to understand the intrinsic difficulty of the recognition problem.
These curves are plotted in Figures 2 and 3, where we show spectral curve distributions
for each class with and without the use of SNV normalization. Classes that are easier to
recognize by the machine have two general characteristics: (i) low intra-class variation
(spectral distribution is similar for the same class) and (ii) high inter-class variation (spectral
distribution is different for different classes). Intra-class variation is primarily caused by
differences in the same tissue class in different subjects. In Figure 2, intra-class variation is
represented by the spectral curve spread (one standard deviation from the mean, illustrated
by the gray zone). Inter-class variation is visualized by differences in the mean spectral
curves (solid black line). Inter-class variability is tissue-specific, where veins and skin
are the most dissimilar tissues. Muscle, nerves and fat are relatively similar, indicating
that recognizing them with machine learning is not trivial. The metal class has a strongly
different profile compared to the tissue classes. The large intra-class variation of metal can
be explained by strong specular reflections.

It is clear that intra-class variability was reduced by SNV normalization, but inter-class
variability was also reduced. The mean spectral curves of all classes are plotted together in
Figure 3, showing the curves without and with SNV normalization (left and right graphs
of Figure 3, respectively).



Diagnostics 2021, 11, 1508 6 of 20Diagnostics 2021, 11, x FOR PEER REVIEW 7 of 22 
 

 

 
(a) 

Figure 2. Cont.



Diagnostics 2021, 11, 1508 7 of 20Diagnostics 2021, 11, x FOR PEER REVIEW 8 of 22 
 

 

 
(b) 

Figure 2. (a) Standard normal variate (SNV) within the classes: Spectral curve profiles of the tissue 
classes without and with SNV normalization. Relative absorption is plotted as a function of wave-
length for each class. The mean spectral curve is shown as a black solid line, and the curve spread 
is shown with a gray band of one standard deviation from the mean curve. (b) Standard normal 
variate (SNV) within the classes: Spectral curve profiles of the tissue classes without and with SNV 
normalization. Relative absorption is plotted as a function of wavelength for each class. The mean 
spectral curve is shown as a black solid line, and the curve spread is shown with a gray band of one 
standard deviation from the mean curve. The metal class has a very large spectral distribution be-
cause of specular reflections, with a completely different profile to the tissue classes. 

It is clear that intra-class variability was reduced by SNV normalization, but inter-
class variability was also reduced. The mean spectral curves of all classes are plotted to-
gether in Figure 3, showing the curves without and with SNV normalization (left and right 
graphs of Figure 3, respectively). 

Figure 2. (a) Standard normal variate (SNV) within the classes: Spectral curve profiles of the
tissue classes without and with SNV normalization. Relative absorption is plotted as a function of
wavelength for each class. The mean spectral curve is shown as a black solid line, and the curve
spread is shown with a gray band of one standard deviation from the mean curve. (b) Standard
normal variate (SNV) within the classes: Spectral curve profiles of the tissue classes without and with
SNV normalization. Relative absorption is plotted as a function of wavelength for each class. The
mean spectral curve is shown as a black solid line, and the curve spread is shown with a gray band
of one standard deviation from the mean curve. The metal class has a very large spectral distribution
because of specular reflections, with a completely different profile to the tissue classes.
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Figure 3. Mean spectral curves of all classes overlaid in a single plot (left without SNV, right with
SNV normalization).

2.6. Machine Learning Recognition Problem

Given a hyperspectral image, for each spatial coordinate (pixel), a sub-volume centered
on the pixel is extracted, which is then input to a predictive machine learning model. This
model produces a score for each tissue class, where a higher score indicates a greater
likelihood of the tissue class being present at the spatial coordinate. Finally, the pixel is
assigned to the class with the highest predictive score. This process repeats for each pixel
of interest. This machine learning recognition problem is illustrated in Figure 4.
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Figure 4. Schematic representation of hyperspectral (HS)-based tissue class recognition: Illustration
of the general tissue recognition problem with HS image data. The core task is to recognize the
tissue type at a given spatial location within an HS image. A sub-volume is extracted at the spatial
location with a small spatial window, which is passed to the predictive machine learning model.
Predictive scores are then automatically generated for each tissue class. Finally, the class with the
highest predictive score is selected.

2.7. Machine Learning Models

Various machine learning models have been applied to other HSI image classification
problems including medical imaging and remote sensing, and there is no single model that
performs best on all datasets [41,42]. Consequently, the two most successful models for HSI
image segmentation were studied in this work: support vector machines (SVMs) [41,43,44]
and convolutional neural networks (CNNs) [42,45].

2.8. Support Vector Machine (SVM)

SVMs have been shown to work well for HSI classification problems, particularly
remote sensing [46–48]. They are simple to train and they offer good performance when
the training set size is limited [41] and when the input data are high-dimensional, as is
the case for our dataset. An SVM classifier fits a decision boundary (hyperplane) in a
multidimensional feature space. The feature space is constructed by transforming the data
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points using a kernel, such as radial basis functions, to the feature space. Training is then
performed to determine a hyperplane that separates the classes in the feature space. Once
trained, a new spectral curve at a given pixel is first transformed to the feature space and
then classified using the hyperplane. SVMs generalize naturally to multi-class classification
problems such as ours, and they have been shown to outperform other classical machine
learning models in HSI classification problems such as k-nearest neighbor (KNN) and
decision trees [49]. We constructed the feature space using the relative absorption of each
wavelength in the HSI sub-volume centered at a given pixel. Consequently, the feature
space had 100 dimensions (one dimension per wavelength).

2.9. Convolutional Neural Network (CNN)

The second model is a CNN, shown to work well with many types of image data
including HS [42,45,50,51]. A CNN is a special type of feed-forward neural network where
neurons are arranged in a series of hidden layers. The image is fed into the first layer, and
the purpose of the layer is to extract meaningful features to aid classification. These features
are fed into the second layer, where higher-level features are computed from the inputted
features, and the process repeats until the last layer. Finally, a classification decision is
made using the features at the last layer. CNNs are specially designed so that the features
are extracted using convolutional filters. The filter weights are trainable parameters of
the mode, and during learning, they automatically adapt to extract features that are most
pertinent to the specific classification task.

2.10. Implementation and Training

For each HS image in the dataset, we sampled the sub-volume centered on every anno-
tated pixel. Spatial patches of 5 × 5 pixels were extracted to form 5 × 5 × 100 sub-volumes.
The third dimension corresponds to the wavelength dimension with the 100 bands. The
dataset was then composed of 213,203 samples.

Those sub-volumes were successively split into training and testing sets respecting
the LOPOCV process to train and evaluate the performance of the model. LOPOCV is a
standard practice in medical image classification with small datasets, and it ensures that a
model is not trained and tested on data from the same subject. Performance statistics with
LOPOCV measure the generalization performance of a classifier on new subjects. LOPOCV
was performed by partitioning the subjects into 8 subsets, S1, S2 . . . S8, where each subset
Si was formed of every sub-volume extracted from all subject HS images excluding the ith
subject. The models were trained on a subset Si, and then performance was tested on the
ith subject HS image. The process was repeated 8 times for each subject.

The SVM classifier was implemented with Python’s scikit-learn library [52]. Auto-
scaling was applied to each spectral band (unit variance and mean centering) [53] to
eliminate the influence of variable dimensions. Default SVM parameters were used from
Python’s sklearn.svm.SVC class (radial basis kernels (RBFs of degree 3 and regularization
parameter C=1). The CNN was implemented in Pytorch v1.2 using an established 3D CNN
neural network architecture [50] that has been implemented in a public code. The CNN
processed a sub-volume centered around a given pixel using a 5 × 5 spatial window, and it
had 32,628 trainable parameters with 7 hidden layers. The first 6 layers were convolutional,
and the last hidden layer was fully connected. The final output layer had 7 neurons, where
7 is the number of classes (6 tissue classes and the metal class). Each output layer computed
the predictive score of each class. Finally, the class with the highest score was selected.
The architecture of the CNN is provided in Figure 5, for full reproducibility. The CNN
was trained using Pytorch’s backpropagation implementation with Adam optimization
(0.001) [54]. As the dataset was highly imbalanced with some classes significantly more
represented than others, training was implemented with a weighted cross-entropy loss
with weight inversely proportional to the number of training samples per class. This is
standard practice to prevent the classifier attempting to maximize performance for the
most represented class (in our case, the skin class).
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Figure 5. Convolutional neural network architecture: The input is an HSI sub-volume centered on a given pixel, with
5 × 5 spatial dimensions and 100 wavelength dimensions. Down-sampling convolutional operations are applied to trans-
form the input to a final 1D feature space vector, which is followed by a final fully connected layer to produce the tissue
prediction scores.

Training was performed on a DGX V1 (Nvidia corp.) equivalent deep learning server
(Cysco inc.), taking approximately 15 h for the CNN and 25 h for the SVM. Training
was performed 8 times in order to implement LOPOCV. Each training session had seven
training images and one test image, and training was repeated eight times so that every
image was used once as a test image.

2.11. Performance Metrics and Statistical Methods

Performance was evaluated with standard metrics used in machine learning, imple-
mented by Python scikit-learn (version 0.23, https://scikit-learn.org; (accessed on 2 January
2020)). Multi-class Type 1 and Type 2 errors were evaluated and are presented as confusion
matrices. The area under the receiver operator curve (AU-ROC), sensitivity, specificity and
Sørensen–Dice coefficient score (DCS) were used to evaluate class-specific performance
using ‘one versus all’ and macro averaging. DCS is commonly used to evaluate the clas-
sification accuracy of machine learning models at the pixel level in the medical imaging
community, and it is equivalent to the F1 score and represents the harmonic mean of a
classifier’s positive predictive value and its sensitivity. Statistically significant differences
were computed with a two-tailed paired t-test (α = 0.05) similarly to previous works in
HSI classification analysis [55] using Excel (Microsoft Office 365, Microsoft, Redmond,
WA, USA).

3. Results
3.1. Model Configurations

We compare the performance of different models to measure performance across two
axes. The first axis is the model type (SVM with radial basis kernel versus CNN), and the
second is with and without standard normal variate (SNV) normalization. This produces
four combinations, named as follows:

1. CNN: CNN trained without SNV normalization;
2. CNN+SNV: CNN trained with SNV normalization;
3. SVM: SVM trained without SNV normalization;
4. SVM+SNV: SVM trained with SNV normalization.

3.2. Confusion Matrices

The confusion matrices provide a compact representation of the multi-class classifica-
tion performance in Figure 6. One confusion matrix is presented per model, and an item
(i, j) in each matrix shows the proportion of pixels of class i that are predicted to be of class
j. The confusion matrices are normalized such that each row adds up to 1. Consequently,

https://scikit-learn.org
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the diagonal entries provide the true positive rate (TPR) of each class, equivalently, its
sensitivity. The off-diagonal entries (i, j) with j > i provide the false positive rate (FPR,
Type 1 error) for class i with respect to class j. The off-diagonal entries (i, j) with i > j
provide the false negative rate (FNR, Type 2 error) for class i with respect to class j. A
confusion matrix of a perfectly performing model has zeros everywhere, except for ones
along the main diagonal.
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The CNN model achieves a sensitivity of 89.4% and above for all tissue classes except
for nerve, which has a sensitivity of 76.3%. Skin tissue has the lowest class confusion among
all tissue classes with a sensitivity of 99.7%. Considering the CNN versus the SVM model,
the CNN achieves a much higher sensitivity for fat (93.6% versus 78.4%), nerve (76.3%
versus 56.4%) and vein (96.1% versus 80.9%) tissues. The remaining classes (artery, skin,
muscle and metal) have similar sensitivities within 3% of each other for either model. These
results indicate that SNV normalization, in general, harmed the performance of the CNN.
Instead of improving performance thanks to a reduction in intra-class variability (for which
SNV normalization is designed), it harmed the performance of the CNN because it filtered
out useful information that can be exploited by the CNN via deep learning. One can see
that this lost information is useful to the CNN to obtain a good classification performance,
especially for nerve and vein tissues. Consequently, the CNN model learned useful spatio-
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spectral features via deep learning that are able to handle inter-class variability without
SNV normalization. In contrast, the benefit of SNV normalization on the SVM model is
mixed. SNV normalization improves the sensitivity of the vein class with the SVM model
(80.9% versus 87.8%), but for the other classes, the sensitivity is similar and within 2%
for either model. Therefore, the SVM, which does not learn deep features, can sometimes
achieve better results by reducing intra-class variation with SNV normalization, but there
is not a systematic improvement for all tissue classes.

3.3. Performance Visualizations

The outputs of the best model (CNN) are visualized in Figure 1. This figure is arranged
into rows and columns as follows. Each row corresponds to a different subject, and there
are four images per row. From left to right, these are as follows: (a) the RGB simulated
from the HSI image, (b) the corresponding ground truth tissue annotations provided by
the surgeon (overlaid on grayscale images for better visibility), (c) the predicted tissue
annotations computed by the model and (d) an error map visualization. The error map
shows where predictions from the model deviated from the ground truth annotations.
Pixels in the error map that are black indicate a perfect agreement between the predicted
and ground truth tissue classes. Colored pixels in the error map indicate a prediction error,
and a color is provided for the class that was incorrectly predicted. A perfectly performing
model has a completely black error map. When a mistake is made by the model at a spatial
location, we visualize the incorrectly predicted class.

For all subjects, we clearly see excellent recognition performance for the skin, subcu-
taneous fat, carotid artery, jugular vein and metal classes, with very low errors. For the
muscle and vagal nerve classes, we observe a strong performance for subjects 1, 2, 4, 5, 7
and 8, with few errors (indicated by mostly black pixels in the error visualization maps).
There are two main sources of error: in subject 3, nerve was mistaken for muscle, and in
subject 6, muscle was mistaken for nerve and artery.

3.4. Further Quantitative Analysis and Statistics

Model performance was further analyzed with receiver operator characteristic (ROC)
curves and other performance metrics: Dice similarity coefficient (DSC), sensitivity and
specificity. An ROC curve measures the performance of a classifier in terms of false positive
and true positive rates. These are generated for each model and for each tissue class as
follows. For each class, the prediction scores for all pixels in the test images are computed,
and then the false positive and true positive rate is computed using a varying detection
threshold. For a lower threshold, a higher false positive rate is obtained, but at the cost of a
lower true positive rate. The ROC curve is generated by sweeping the detection thresholds
from low (true positive rate of zero) to high (true positive rate of one). ROC curves are
plotted for the four models in Figure 7. A high recognition performance is indicated by
a high area under the curve (ROC-AUC), and the ROC-AUC summarizes the balance
between false positives and true positives, and it is also insensitive to high class imbalance,
which is the case with this dataset where some classes, e.g., the skin class, are significantly
more represented than others, e.g., the nerve class. The ROC-AUC is also equivalent to the
probability that a randomly selected sample will have a higher classification score for its
true class compared to other classes. For the CNN model, all ROC-AUCs are above 0.99,
which is considered an outstanding performance [56]. For the other models, ROC-AUCs
are similar, but the ROC-AUC for the nerve class with the SVM and SVM+SNV models is
consistently lower compared to CNN and CNN+SVM.
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Figure 7. Receiver operator characteristic curves: Receiver operator characteristic curves for the four
models. In each figure, we plot the ROC curves for one model for all classes.

The DCS (also called the Dice coefficient or F1 score), sensitivity and specificity
performances of the four models are plotted in Figure 8. These are commonly used
performance metrics used in the medical image processing literature. The DCS provides
the harmonic mean of a classifier’s precision and sensitivity [57]. Solid bars represent the
average performance metric for each model and for each class, computed by averaging the
performance metric across each of the 8 images. Error bars represent one standard error.
Statistically significant differences were computed with a two-tailed paired t-test (α = 0.05)
similarly to previous works in HSI classification analysis [55]. Significance is indicated
by the bracketed bars in Figure 8, with one star for p < 0.05 and two stars for p < 0.01.
Sensitivity and specificity scores are additionally summarized in Table 1. Regarding the
DSC, the CNN model generally has a better average DSC compared to CNN+SNV, but the
difference is not statistically significant. In contrast, the CNN model obtains a significantly
better DSC performance compared to SNV for the nerve (p = 0.010) and vein (p = 0.044)
classes. No other models (CNN+SNV, SVM, SVM+SNV) obtain a significantly better DSC
compared to the CNN model. Concerning sensitivity, there are no significant differences
between the CNN and CNN+SNV models. In contrast, the CNN model has a significantly
better sensitivity compared with the CNN and CNN+SNV models for the nerve class
(p = 0.0038 and p = 0.0011, respectively). Concerning specificity, there is no significant
difference between the CNN and CNN+SNV models. The CNN model has a significantly
better specificity compared to the SVM model for skin tissue (p = 0.021) and a better
specificity compared to the SVM+SNV model for muscle tissue (p = 0.036). The DSC,
sensitivity and specificity were averaged across all tissue classes, shown in the right-most
bars in Figure 4. The CNN model obtains the highest average scores for all three metrics.
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Table 1. Performance of the four classification models in terms of sensitivity (top) and specificity (bottom).

Sensitivity Artery Fat Metal Muscle Nerve Skin Vein

CNN 0.894 ± 0.172 0.936 ± 0.102 0.991 ± 0.016 0.915 ± 0.183 0.763 ± 0.203 0.997 ± 0.004 0.961 ± 0.067
CNN + SNV 0.902 ± 0.145 0.907 ± 0.213 0.997 ± 0.002 0.906 ± 0.211 0.719 ± 0.218 0.989 ± 0.014 0.874 ± 0.267

SVM 0.870 ± 0.132 0.784 ± 0.274 0.980 ± 0.022 0.942 ± 0.119 0.564 ± 0.262 0.997 ± 0.002 0.809 ± 0.255
SVM + SNV 0.874 ± 0.132 0.803 ± 0.216 0.993 ± 0.008 0.932 ± 0.140 0.536 ± 0.261 0.992 ± 0.008 0.878 ± 0.190

Specificity Artery Fat Metal Muscle Nerve Skin Vein

CNN 0.996 ± 0.008 0.998 ± 0.002 0.998 ± 0.003 0.994 ± 0.005 0.990 ± 0.185 0.997 ± 0.008 0.999 ± 0.001
CNN + SNV 0.993 ± 0.140 0.998 ± 0.001 0.999 ± 0.001 0.988 ± 0.137 0.988 ± 0.020 0.998 ± 0.005 1.000 ± 0.001

SVM 0.997 ± 0.003 0.998 ± 0.002 0.999 ± 0.002 0.980 ± 0.022 0.991 ± 0.015 0.990 ± 0.013 0.999 ± 0.001
SVM + SNV 0.995 ± 0.006 0.997 ± 0.003 0.999 ± 0.001 0.985 ± 0.012 0.991 ± 0.016 0.985 ± 0.024 1.000 ± 0.000

4. Discussion

In the current work, despite the relatively small sample size (eight pigs), we were
able to recognize six different tissue classes with a high degree of accuracy using HSI in
combination with advanced machine learning algorithms in an in vivo porcine model. The
CNN proved to be the best performing model. There are three key advantages of CNNs that
make them very popular for image classification: (1) They automatically learn a hierarchical
representation of the data tailored to the specific classification task at hand. Unlike classical
methods such as SVMs or decision trees, the CNN learns the best features from the raw
image data. This eliminates tedious feature engineering tasks. (2) CNNs are general
purpose and highly flexible, and model complexity can be modified with different CNN
designs. (3) CNNs can be trained efficiently using highly parallelized implementations
such as Pytorch [58]. The main disadvantage of CNNs is that they typically have many
parameters to learn (several millions is not uncommon), and this can make them susceptible
to poor performance if training data are limited. Various techniques exist to overcome this,
including using smaller models, simulating additional training data (data augmentation)
and training by randomly deactivating neurons (drop-out) or by reusing parameters from
a CNN trained on a related task with a greater amount of data (transfer learning). The
CNN model used in this study is relatively small with 32,628 parameters, and we were
able to train well-performing models that, in general, outperformed the SVM models.
Consequently, it is possible to solve multi-class tissue classification with HSI using a
relatively small CNN, and therefore to benefit from automatic discovery of relevant spatio-
spectral features within the HSI data using deep learning.

Hyperspectral imaging is a powerful tool that enables unraveling the invisible in an
objective way, relying on curves obtained by the interaction of the emitted light with the
biochemical tissue components. Given the contrast-free and non-invasive nature of this
versatile technology, it has the potential of becoming a future intraoperative guidance
navigation tool. As a result, the rationale behind our experimental study was to test
the reliability of HSI in recognizing multiple tissue classes in vivo, in order to develop,
at a later stage, an HSI-based automatic intraoperative navigation system for use in the
clinical setting.

More than a decade ago, in a pioneer work, Zuzak et al. successfully differentiated
the portal vein from the biliary duct and the hepatic artery, by means of a laparoscopic
hyperspectral imager prototype [33]. In their experimental proof of the concept, the spec-
tral curves of the different tissue types were analyzed using PCA (principal component
analysis). However, despite the promising results, the long acquisition time of the HSI la-
paroscopic prototype and the scarce reproducibility of the PCA-based tissue discrimination
impaired the clinical translation of this technology.

Recently, other authors attempted to discriminate anatomical structures by means
of HSI intraoperatively [36,37]. However, in both works, the authors did not rely on
the spectral curves for the discriminative analysis, rather attempting to select the best
spectral bands in order to obtain an RGB enhanced image, in order to highlight, for the
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human eye, the chosen target structures, such as nerves or ureters. This approach has
the potential of allowing for a rapid analysis, once the best band is selected. However,
this principle very much resembles the concept of NBI (narrow band image), a band
selection modality, largely utilized in diagnostic gastrointestinal endoscopy. In fact, the
light emitted in this particular band (415 nm) is able to delineate the surface micro-vessels,
which are, due to neoplastic neoangiogenesis, more represented within cancerous lesions,
allowing for discriminating normal from cancerous or pre-cancerous mucosa. Despite the
remarkable results of both groups, band selection only partially uses the potential of HSI
and still requires a substantial interpretation of the operator to discriminate the enhanced
structure. The utilization of advanced machine learning algorithms to reliably detect the
slight differences within spectral curves of different tissues enormously reduces the human
interpretation bias, heading towards precision surgery.

Enormous advances have been made in this sense, in the field of HSI-based cancer
detection. In particular, deep learning has been successfully coupled to HSI to detect, with
high accuracy, gastric cancer from healthy tissue on fresh samples [26] or microscopic
slides [25]. Recently, in a remarkable work involving 82 patients, a group could identify
salivary gland and thyroid tumors on operative specimens, with impressive precision [32].
Additionally, the authors were able to demonstrate the superiority of HSI in detecting
the specific cancer types against fluorescence dye-based imaging techniques. All these
innovative works have the merit of discriminating cancerous lesions with a high degree
of accuracy by coupling HSI to deep learning algorithms. However, in contrast to those
previous works, in which only cancer has to be recognized over the non-cancer merged
classes, in our setup, we were able to discriminate precisely among six different tissue
classes in an in vivo large animal model.

Since we had a limited amount of data, we decided to use all data for the training
phase, and by employing the leave-one-patient-out cross-validation (LOPOCV) technique,
we could reliably verify our algorithms’ performance. On the other hand, a cross-validation
in which only a subset of data is used as training and the rest as testing data, as performed
in a number of previous works, has the disadvantage of being less reliable than the
LOPOCV method.

During our experimental setup, the ground truth was provided by annotations made
intraoperatively by a fully trained surgeon. As explained in the methods, the annotations
were performed in the OR, having the surgical scene still available and magnifying the
RGB images associated with each hyperspectral image on the computer’s screen. In fact,
annotation based on the RGB images alone in a subsequent postprocessing phase would
have certainly led to annotation mistakes. However, only the tissue classes that, after
accurate dissection, could be visually recognized with absolute confidence were annotated,
and this was always the case of the elements of the neurovascular bundle (carotid artery,
jugular vein and vagal nerve), given their defined anatomical position. As a consequence,
a large part of the image remained unlabeled, since without systematical histopathological
mapping (which is hardly practicable in reality), it is not possible to visually discriminate
certain tissue types, such as fat from connective tissue, which might be encountered over
large areas.

Despite the limited sample size, we were able to achieve an excellent discrimination
accuracy. This result supports the fitness of CNNs for objectively interpreting HSI datasets.

Previously tissue discrimination was achieved by qualitative analysis of the spectra
obtained by means of the probe-based diffuse reflectance spectroscopy (DRS) [59]. As noted
in our findings, those authors also observed analogous patterns within curves of fatty tissue,
muscle and nerves, and they were able to find discriminative characteristics for these tissue
types only by using an additional DRS sensor able to analyze the spectrum beyond 1000 nm.
However, the hyperspectral imager we employed reached a maximal spectral range at
1000 nm, but still, we were able to successfully discriminate those ambiguous tissue types.
This was achieved with the fine adjustment of the CNN parameters, demonstrating that
CNNs are particularly suitable to analyze, with high precision, large hypercubes.
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However, our work has several limitations. Firstly, the HSI system we employed has
a limited spectral range (500–1000 nm), a relatively low spectral resolution (5 nm) and a
relatively low spatial resolution (640 × 476 pixel). This could have negatively affected our
results. However, we employed this system since it is approved for human use, and fitting
recognition algorithms on such a system would enable a faster clinical translation of our
research. Secondly, the limited sample size represents a considerable limitation of this study.
Thirdly, among all tissue types, nerves displayed the lowest sensitivity and specificity. This
could result from the fact that they are the tiniest structures compared to all others, and
for this reason, they are underrepresented in our setting. Another reason could be that the
underrepresented nerves displayed similar spectral curves to the overrepresented muscles,
and this contributed to confusing the algorithms.

In conclusion, this work demonstrates that an in vivo recognition of anatomical key
structures (in particular, blood vessels and nerves) using hyperspectral technology in
association with deep learning is possible and highly accurate. Future efforts will be
allocated to developing an advanced HSI-based navigation tool to support the mental
anatomical map of the surgeon, as a tool to avoid inadvertent injuries to key anatomical
structures. Furthermore, as the era of autonomous robotic surgery emerges, automatic
tissue classification will be an essential tool to facilitate safe autonomous procedures, and
HSI combined with deep learning may prove a key enabling technology. As future follow-
up work, we aim to enlarge the study with more subjects and to repeat the experimental
protocol with human data captured in an observational clinical trial.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/diagnostics11081508/s1, Figure S1: RGB images of the dataset (uncropped), Figure S2: dataset
annotation for subjects1-4, Figure S3: dataset annotation for subjects 5–8.
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