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Cognitive impairment, and working memory deficits in particular, are debilitating, treatment-resistant aspects of schizophrenia.
Dysfunction of brain network hubs, putatively related to altered neurodevelopment, is thought to underlie the cognitive symptoms
associated with this illness. Here, we used weighted degree, a robust graph theory metric representing the number of weighted
connections to a node, to quantify centrality in cortical hubs in 29 patients with schizophrenia and 29 age- and gender-matched
healthy controls and identify the critical nodes that underlie working memory performance. In both patients and controls, elevated
weighted degree in the default mode network (DMN) was generally associated with poorer performance (accuracy and reaction
time). Higher degree in the ventral attention network (VAN) nodes in the right superior temporal cortex was associated with better
performance (accuracy) in patients. Degree in several prefrontal and parietal areas was associated with cognitive performance only
in patients. In regions that are critical for sustained attention, these correlations were primarily driven by between-network
connectivity in patients. Moreover, a cross-validated prediction analysis showed that a linear model using a summary degree score
can be used to predict an individual’s working memory accuracy (r = 0.35). Our results suggest that schizophrenia is associated with
dysfunctional hubs in the cortical systems supporting internal and external cognition and highlight the importance of topological

network analysis in the search of biomarkers for cognitive deficits in schizophrenia.
Schizophrenia (2022)8:76 ; https://doi.org/10.1038/s41537-022-00288-y

INTRODUCTION

Cognitive impairment is a core feature of schizophrenia and has
been linked to poor occupational and social functioning in
schizophrenia patients'. Considering its major impact on
functional outcomes and the fact that the available therapeutic
tools are limited, cognitive deficits remain an important treatment
target. While focal neuromodulation techniques including
network-guided transcranial magnetic stimulation (TMS) are
increasingly available in psychiatry, the lack of well-defined
network targets linking neurophysiology to cognitive outcome
renders translational treatment development challenging.

Working memory (WM) impairment is a well-documented
cognitive symptom of schizophrenia®. WM impairment has been
demonstrated in different sensory modalities>®, at various levels
of task demands’® and is typically reflected in reduced WM
capacity and slower responses (see prior meta-analysis® for a
detailed characterization). While WM deficits in schizophrenia
have been thoroughly investigated using imaging and electro-
physiology>®'°, there is a paucity of studies investigating WM
deficits in the context of brain network topology. Identifying
topological features that are associated with cognitive symptoms
is important as it could guide targeted treatments.

General functional connectivity abnormalities in schizophrenia
have been extensively studied. For detailed reviews, see previous
work'"'2, Whereas structural connectivity and other structural
measures are reportedly diminished in schizophrenia'>~'°, func-
tional connectivity has been reported both as increased and
decreased, and abnormalities occur in many different regions/
networks across the brain'"'2, This diffuse profile of functional
connectivity abnormalities may reflect heterogeneity in study

populations and methods, but also the complex nature of
schizophrenia pathophysiology. Based on neurodevelopmental
models of schizophrenia, genetic and early environmental factors
lead to abnormal brain maturation during adolescence and result
in a dysfunction in the brain network hubs, which may, in part,
explain the diffuse profile of aberrant functional connectivity in
schizophrenia'®. Graph theory provides a robust framework for
studying functional brain topology and putatively dysfunctional
network hubs in schizophrenia'”"8,

In the current study, we used a validated, functional network
parcellation' and weighted degree, a graph theory metric
quantifying hub centrality, to identify the cortical hubs that
underlie verbal working memory performance in patients with
schizophrenia and matched healthy controls. This metric takes
both the number of edges connected to a node and the strength
of its connections; therefore, it captures the total involvement of
the node in the network (i.e., its centrality based on these two
features). Unlike many previous graph theory studies focusing on
global efficiency in schizophrenia, we sought to determine how
disruptions in individual hubs are linked to WM performance. We
assessed the correlations between weighted degree and WM
performance that are common to both schizophrenia patients and
healthy controls as well as those that are unique to schizophrenia.
We hypothesized that degree in cortical hubs located in the late-
maturing networks in the association cortex such as the default
mode network (DMN), frontoparietal and attention networks
would be altered in schizophrenia and predict individual
differences in WM performance. Finally, in a cross-validated
analysis, we built a degree-based predictive model to determine
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whether WM performance can be reliably predicted using a
degree-based summary statistic.

METHODS
Participants

Forty medicated outpatients with schizophrenia and forty age-
and gender- matched healthy controls were recruited as part of a
larger fMRI study. Patients were recruited from an outpatient
psychosis program at Massachusetts General Hospital. Schizo-
phrenia diagnosis was confirmed with the Structured Clinical
Interview for DSM-IV-TR. Results from a separate analysis involving
task-related fMRI activation and seed-based functional connectiv-
ity on these data have been published elsewhere®. Exclusion
criteria included history of significant head injury, substance
abuse, or neurological disease. Due to the high sensitivity of
functional connectivity measures to head motion?%?', participants
who did not satisfy head motion criteria were removed from the
analysis (please see Preprocessing and Functional Connectivity for
details). Based on these criteria, seven patients were removed. In
addition, due to poor image quality, registration between
functional and anatomical images failed in three patients, who
were also removed. One patient who performed below chance
level and showed an inconsistent reaction time pattern was also
excluded from the analysis. The remaining 29 patients were
matched a priori to 29 participants in the control group based on
age and gender and included in the current analysis. Resulting
groups were perfectly matched based on gender and closely
matched based on age (Table 1). The groups did not differ in head
motion (measured by framewise displacement) during the fMRI
scan (mean =+ standard deviation = 0.108 + 0.046 for controls and
0.112 £ 0.060 for patients). Information about demographics, use
of medication, antipsychotic medication dose and symptom
severity of this group of patients is listed in Table 1. All participants
gave written informed consent, and the protocol was approved by

Table 1. Demographics, clinical measures, and working memory
performance.
SZ PATIENTS CONTROLS p
DEMOGRAPHICS *
Age 40.6 £9.5 40.3+9.5 n.s.
Sex 22 M/7F 22 M/7F n.s.
Race 15 Caucasian/ 19 Caucasian/ n.s.
14 Other 10 Other
Length of illness (years) 16.2+9.4 -

Handedness 4 Left/25 Right 3 Left/26 Right  n.s.
CLINICAL

PANSS total 729+ 14.1 -

Antipsychotic dose 632.7 £608.8

(mg CPZE)

Atypical 86.2 -

antipsychotics (%)

Antidepressants (%) 44.8 -

Anticonvulsants (%) 31 -

PERFORMANCE

Estimated Verbal 1Q** 100.2+11.8 109.3+10.2 0.003
WM accuracy (% correct) 84.5+10.1 91.5+6.0 0.002
WM reaction time (ms) 949.6 +147.7 879.5+129.7 0.059

CPZE chlorpromazine equivalent, PANSS positive and negative syndrome
scale, WM working memory, SZ schizophrenia, n.s. not significant.

*Mean £ SD is shown for quantitative variables.

**Verbal IQ was missing for two patients.
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Partners Human Research Committee. For a correlation analysis
assessing the relationships between clinical variables (e.g., positive
symptom severity, duration of illness) and working memory
performance, see Supplementary Information.

Working memory task

The Sternberg Item Recognition Paradigm?? (SIRP) was used to
evaluate WM function at 4 different loads (1, 3, 5 and 7 letters).
The SIRP is a verbal WM task that has been shown to induce
robust linear changes in reaction time and brain activation in
response to increasing load>?*23, EPRIME 1.1 was used to present
stimuli and collect the participants’ responses. All participants
performed a practice run to become acclimated to the task. Each
block of the WM task involved encoding, delay and multiple probe
epochs (Fig. S1). During encoding, participants were asked to
memorize a set of 1, 3, 5 or 7 consonants displayed on the screen.
Then the delay epoch was introduced with a fixation cross (2's),
which was followed by the presentation of 14 successive probes
consisting of letters for 1.1 s, each separated by a varying intertrial
interval (ITl). Participants indicated, using a keypad placed in the
dominant hand, whether the letter displayed on the screen was a
target (one of the letters presented during encoding; 50% of
probes) or a foil (not presented during encoding; 50% of probes).
Probes were jittered (range 1.7 to 3.65s) to facilitate a separate
event-related analysis. Each of the four task loads was used twice
during the task run, totaling 112 trials and 8 blocks.

MRI acquisition

MRI data were acquired in a 3T Siemens TIM Trio System using a
12-channel quadrature head coil. A T1 image (repetition time/
echo time/flip angle = 2200 ms/1.54 ms/7°) with 144 axial slices
and a voxel size of 1.2 x 1.2 x 1.2 mm? was acquired. Resting state
fMRI images were collected using the following scan parameters:
repetition time/echo time/flip angle =3s/30ms/ 85° in-plane
resolution =3 mm x 3 mm, slice thickness=3 mm. Before the
sequence, participants were asked to keep their eyes open and
stay still during 6 min of scanning.

Preprocessing and functional connectivity

Preprocessing was performed using FMRIB Sofware Library (FSL,
v6.0, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki), and Matlab v9.10 (https://
www.mathworks.com/products/matlab.html). The anatomical
image (T1-weighted) was first reoriented to the anterior
commissure—posterior commissure (AC-PC) plane and the brain
skull was stripped. The image was then segmented into gray
matter, white matter, and cerebrospinal fluid and normalized to
the Montreal Neurological Institute brain template (MNI152). The
first four volumes in the fMRI series were removed to ensure the
stabilization of the MR signal. The preprocessing of resting state
fMRI data included realignment using the middle functional
volume and head motion correction using a six-parameter rigid
body linear transformation, and intensity normalization. Given the
sensitivity of functional connectivity measures to head motion, a
quality control analysis was performed using Art Repair (https://
www.nitrc.org/projects/art_repair/) and customized scripts®*. Fra-
mewise displacement (FD) was computed at each timepoint. The
participants who had average FD > 0.25 mm (over the resting state
run) were excluded from the analysis. In addition, volumes with
FD > 0.5 mm were scrubbed from the connectivity analysis (0.7%
and 1.7% of all volumes in controls and patients respectively). All
functional images were normalized to the MNI152 brain template
(3mm?3 isotropic), smoothed with a 6 mm full-width-at-half
maximum (FWHM) isotropic Gaussian kernel and band-pass
filtered retaining BOLD signal between 0.01Hz and 0.08 Hz.
Potential confounders were removed via regression by applying
a model including the 6 parameters from rigid body linear
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Fig. 1 Weighted degree per group. Group averaged composite weighted degree is illustrated for controls (A) and schizophrenia patients (B).
Gordon et al. parcels used in this analysis and their corresponding color-coded networks are displayed in (C). Areas with high degree centrality
included nodes in the primary sensory, motor, and default mode networks in both groups.

transformation, the global signal, and applying the component-
based method CompCor (5 parameters from cerebrospinal fluid
signal and 3 parameters from the white matter signal). The
residual volumes were used for the functional connectivity
analysis.

Regions of interest (ROIs) were defined using the Gordon et al.
parcellation, which includes 333 parcels generated using surface-
based resting state functional connectivity boundary mapping'®.
These parcels are assigned to 12 distinct networks: default mode
(DMN), visual (VN), frontoparietal (FP), dorsal attention (DAN),
ventral attention (VAN), salience (SN), cingulo opercular (CON),
somatomotor (SM), somatomotor lateral (SML), auditory (AN),
cingulo parietal (CP), and retrosplenial (RSP). Based on this
parcellation, communities with very small number of parcels
(<5) are not assigned to a separate network and named
‘unassigned’ (UA). Functional connectivity was computed as the
correlation between each parcel’s mean signal time course and
every other parcel's mean time course using Pearson’s product
moment correlation. 333 x 333 correlation matrices were con-
verted to z-maps using Fisher’s z transformation, to enhance the
normality of the distribution of correlations. We then removed all
negative correlations to minimize ambiguity in interpretation?>5,
All ROI analyses were performed in the volume space and
projected onto the surface for visualization using Connectome
Workbench?’.
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Degree centrality

The processing pipeline for weighted degree centrality computa-
tion is illustrated in Fig. S2. Following published methods®®, we
used a range of sparsity thresholds between 2-10% edge density
(with 1% increments) to construct the graphs and obtain a robust
estimate of degree centrality. Degree values from each thre-
sholded matrix were summed up to obtain an estimate of
‘composite’ weighted degree per ROI for each subject. This step
ensures that the resulting networks are robust and do not rely on
a particular threshold. Weighted degree at each threshold was
computed as the sum of all weighted connections to a node in the
thresholded matrix?°:

n
k,': E CI,'/
=

where a; is the correlation between the time series of i and j™
parcel, n is the total number of parcels, and k; is the weighted
degree for the it parcel. Figure 1A, B depicts the group average
composite weighted degree for each of the 333 cortical nodes and
Fig. 1C displays the network assignment for each of the Gordon
parcels. In order to test for significant differences in weighted
degree between the groups, we used permutation testing
(n=5000) to obtain a null distribution. In this analysis, the group
labels were randomly reassigned and the difference between
group means were calculated for each permutation. The p-value
was calculated as the proportion of permuted mean differences

Schizophrenia (2022) 76



H. Eryilmaz et al.

Accuracy (%)
k
.
7
J/
e
Reaction Time (ms)

—

Control
-+ Patient

17 3T T

WM Load

WM Load

Fig. 2 Behavioral results. Percent WM retrieval accuracy (A) and average reaction time (B) are displayed per WM load for controls (blue) and
patients with schizophrenia (red). Patients consistently performed less accurately across working memory loads and responded more slowly
compared to healthy controls. Asterisks demonstrate significant differences between the groups (p < 0.05).

that were greater than or equal to the observed difference
between the group means. The obtained p-values were corrected
for multiple comparisons across 333 parcels at 5% False Discovery
Rate (FDR).

Relationship to behavior

We assessed the relationships between weighted degree and two
behavioral outcomes, namely WM accuracy (averaged across all
WM loads) and reaction time (averaged across all trials and loads)
using a correlation analysis. A nonparametric permutation test was
utilized to determine the significance of the correlations®*3". 5000
permutations were performed to estimate the standard error of
the correlation coefficient at each node. The correlations were
then converted into z-scores (by dividing them by the standard
error), which we used to calculate two-tailed p-values. FDR at 5%
was used to correct for multiple comparisons across 333 parcels. In
addition, a threshold of p <0.025 was used for familywise error,
which represents a Bonferroni-corrected value for the two
behavioral variables (WM accuracy and reaction time). Thus, the
correlations with FDR-corrected p-values surviving this threshold
were considered significantly correlated with the behavioral
measure.

Within- vs. between-network edges

Among the ROIs that showed a significant correlation with
behavior exclusively in patients, we further analyzed the
connectivity patterns in these nodes. We focused on these ROIls
because the presence of correlation uniquely in patients suggests
a mechanism involved in the pathophysiology of the impairment.
Specifically, within-network degree and between-network degree
were calculated separately considering only the edges from the
same network as the node and those from different networks
respectively. As in our main correlation analysis, degree was
obtained for graphs that were defined using a range of thresholds
(2-10% edge density). For each of the ROIs, we then calculated the
Pearson’s correlation between the behavioral measure (WM
accuracy or reaction time) and within- or between-network
degree. In this post-hoc analysis, correlations with p <0.05 were
considered significant.

Prediction analysis

To examine the predictive value of degree features on behavior in
new individuals, we employed degree-based predictive modeling.
Connectome-based predictive models are robust tools that allow
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to identify brain-behavior relationships with improved general-
izability (e.g., compared to simple regression or correlation)3233,
Establishing the predictive power of neuroimaging measures can
improve translational applicability. In this analysis, we tested
whether primary degree features could be used to predict WM
accuracy or reaction time of the participants. For this prediction
analysis, we utilized our entire sample (N=58) to maximize
statistical power for cross-validation. Following previously pub-
lished methods®2 and established protocols®3, we employed
leave-one-out cross-validation (LOOCV) in our entire sample
(N=58) to (i) select degree features that are relevant for WM
performance, (ii) build a summary statistic from these features
using the training set, (iii) test the model on the subject that is left
out in each iteration, and (iv) and evaluate the power (correlation
between predicted and observed values) and significance
(permutation testing) of the prediction. For the details of this
prediction analysis, please see Supplementary Methods.

RESULTS
Behavioral results

Figure 2 depicts the behavioral results for both groups at each WM
load level. Consistent with previously reported results in a larger
version of this cohort®, a two-sample t-test revealed that patients
performed less accurately than controls at WM loads 3, 5, and 7
(p =0.001 for combined accuracy). This analysis also revealed a
significant effect in reaction time for moderate WM loads (3 and 5)
with patients responding more slowly (p =0.025 for combined
reaction time).

Group differences in weighted degree

Weighted degree was calculated for each of the Gordon parcels
using weighted connections and by summing up degree values
from a range of graph thresholds. Figure 1 shows the degree maps
averaged for each group. Areas with high degree included the
primary sensory and motor areas as well as the DMN regions along
the medial wall. While none of the ROIs survived the FDR
correction, a number of regions showed medium to large effect
sizes for group differences in weighted degree. Among the
regions with higher weighted degree in controls, the largest effect
sizes in group differences were observed in two nodes in right
anterior insula (d=0.998, d =0.67), and right postcentral gyrus
(d = 0.68). Conversely, among the regions with higher degree in
patients (vs. controls), the largest effect sizes were found in left
intraparietal sulcus (IPS, d = —0.98), left lateral orbitofrontal cortex
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Table 2. Regions showing significant correlations between weighted
degree and behavioral outcomes.
Region Network Coordinates Correlation Peorr
coefficient
X y z
WM ACCURACY
All subjects
STS VAN 58 —45 9 0.330 0.0183
PHG UA 32 -9 -—-36 —0421 0.0216
Controls
IPL DMN 49 53 29 0.506 0.0015
mPFC DMN -7 55 18 0474 0.0100
dIPFC FPN —43 19 34 0484 0.0101
STG AN —60 —39 17 0.387 0.0153
Patients
Precuneus CON —17 —-36 43 —0.661 4.69E-09
PHG UA 32 -9 -—-36 —-0.582 5.32E-05
STS VAN 46 37 3 0.547 2.77E-04
STS VAN 47 =22 -9 0.459 0.0025
STS VAN 61 -39 2 0.444 0.0119
REACTION TIME
All subjects
SMA SM 5 —17 52 —-0442 0.0049
FG VN —34 —44 -22 -0.400 0.0083
Controls
Patients
dIPFC DMN —42 16 48 0.615 1.15E-08
FEF DAN —45 3 32 0.577 1.21E-04
IPL DMN —47 —58 31 0.508 1.50E-04
SMA SM 5 —-17 52 —-0.525 6.11E-04
FG VN —34 —44 -22 -0.519 0.0074
IPS DAN —43 —45 43 0.553 0.0189
STS VAN 58 —-45 9 —0.536 0.0189
SMA FPN -6 29 44 0.469 0.0227
SMG CON 58 —40 35 0.473 0.0227

dIPFC dorsolateral prefrontal cortex, FEF frontal eye field, FG fusiform gyrus,
IPL inferior parietal lobule, IPS intraparietal sulcus, mPFC medial prefrontal
cortex, PCC posterior cingulate cortex, PHG parahippocampal gyrus, PoCG
postcentral gyrus, SMA supplementary motor area, SMG supramarginal
gyrus, STG superior temporal gyrus, STS superior temporal sulcus.
Networks: AN auditory network, CON cingulo-opercular network, DAN
dorsal attention network, DMN default mode network, FPN frontoparietal
network, SM somatomotor network, UA unassigned, VAN ventral attention
network, VN visual network.

(IOFC, d=-0.65), and left superior parietal lobule (SPL,
d=—0.64). All ROIs showing moderate to large effect sizes in
group differences are shown in Fig. S3 for illustration purposes,
and the ROIs showing nominally significant group differences and
their corresponding Gordon networks are listed in Table S1.

Relationship between weighted degree and behavior

Association between weighted degree and the two behavioral
outcomes (WM accuracy and reaction time) was assessed using a
correlation analysis and FDR for multiple comparisons correction.
Across all participants, degree in a node in the parahippocampal
gyrus (unassigned network) as well as in superior temporal sulcus
(STS) showed a significant correlation with accuracy, whereas
degree in supplementary motor area (SMA) and fusiform gyrus
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(FG) showed a significant correlation with reaction time. For
illustration purposes, correlation maps for both behavioral out-
comes across all participants as well as in each group are
displayed in Fig. S4 and Fig. S5 respectively. Table 2 lists the ROIls
showing significant correlations with both behavioral outcomes in
each group, as well as across both groups.

In controls, weighted degree correlated negatively with WM
accuracy in DMN regions such as mPFC, and in FPN regions such
as the dIPFC. Conversely, degree in left superior temporal gyrus
and right inferior parietal lobule (IPL) showed a significant positive
correlation with accuracy. Figures 3 and S6 depict the scatterplots
for all the ROIs that show significant correlations exclusively in
patients for each behavioral outcome. In patients, weighted
degree in left precuneus and right parahippocampal gyrus (PHG)
showed a strong negative correlation with WM accuracy, whereas
degree in multiple STS nodes in the VAN was positively correlated
with WM accuracy. Higher degree in DMN and DAN regions
including left IPL, left dorsolateral prefrontal cortex (dIPFC), and
left frontal eye field (FEF) was associated with longer reaction
times in patients. Finally, higher degree in posterior SMA, STS, and
FG was associated with faster responses in patients.

Within- vs. between-network

To further investigate the 14 nodes (listed in Table S2 and
illustrated on the surface maps in Figs. 3 and S6) where degree
was significantly correlated with behavior exclusively in patients,
we calculated weighted degree for within-network and between-
network edges separately. For 8 of the 14 nodes, the correlation
with the behavioral measure remained nominally significant for
both within- and between-network degree (Table S2). Two nodes
in the DAN (left FEF and left IPS) showed a significant correlation
with reaction time only for between-network degree (FEF within-
network: p =0.107, FEF between-network: p =0.001; IPS within-
network: p =0.213, IPS between network: p = 0.0003). Similarly, a
node in the VAN (right STS) and another node in the CON (right
SMG) significantly correlated with reaction time only for between-
network degree (STS within-network: p=0.118, STS between-
network: p=0.0007; SMG within-network: p=0.101, SMG
between-network: p = 0.007). A node in the right PHG showed a
significant correlation with WM accuracy only for between-
network degree (within-network: p =0.183, between-network:
p =0.00003). Finally, a DMN node (left IPL) showed a significant
correlation between reaction time and within-network degree
(p =0.003), but a correlation at trend-level strength with between-
network degree (p = 0.076).

Predicting WM performance

In a cross-validated analysis, we tested whether a single summary
statistic derived from weighted degree can be used to predict
individual WM accuracy and reaction time (averaged across all
loads). The significance of the predictions was determined via
permutation testing. WM accuracy prediction was not significant
(p > 0.05) for the model using the combined degree score (derived
from the positive and negative sets). However, a closer examina-
tion of performance at different WM loads revealed that the
model was predictive of WM accuracy for the high WM loads
(p =10.022, r =0.34 for 5T and p = 0.022, r = 0.35 for 7T accuracy),
but not for the lower loads (p>0.05). The nodes that were
predominantly selected across the different iterations of cross-
validation for the significant model predicting WM accuracy at
7-letter condition are displayed in Fig. 4. DMN nodes including
PCC, mPFC, and dIPFC (from the negative set) as well as the VAN
nodes in the STS (from the positive set) were consistently selected
across iterations. Reaction time prediction was not significant at
individual WM loads or when averaged across loads (p > 0.05).
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Fig. 3 Weighted degree and behavior. Scatterplots depict the relationships between WM performance and weighted degree in six of the
fourteen nodes that showed a significant correlation with performance in patients. See Fig. S6 for the remaining nodes. The data points and
the best fit lines are plotted in blue for controls and in red for patients. The left and right panels show the relationships with WM performance
for the nodes marked on the surface views in the middle panel. Warm colors depicting the regions represent a positive correlation and cool
colors reflect a negative correlation with the behavioral measure. The scatterplot is shown for only one of the three neighboring significant

nodes in the STS.

DISCUSSION

Schizophrenia is increasingly recognized as a cognitive disorder
driven by abnormal neurodevelopment and consequent dysfunc-
tion in the brain’s network hubs. Therefore, identifying network
biomarkers that underpin cognitive performance in patients is
crucial for developing novel, targeted treatment strategies. In this
study, we utilized a resting state graph theory analysis to assess
impairments in network hub function in schizophrenia and
determine the relationship between a robust hub centrality index
and working memory performance. Our findings revealed diffuse
abnormalities, with moderate effect size, in patients with
schizophrenia in cortical hubs encompassing top-down control
networks such as the FPN and CON, the DMN, somatomotor and
attention networks. Our correlation analysis revealed that elevated
degree centrality in nodes in the DMN such as left IPL and dIPFC
as well as areas of the CON such as precuneus was strongly
associated with poorer WM performance in patients. Conversely,
higher degree centrality in the VAN regions along STS, fusiform
gyrus and posterior SMA was associated with better WM
performance. Further, we found that summary degree scores
derived predominantly from DMN regions were predictive of WM
accuracy in both patients and control subjects. However, within
the DMN, we found that largely different cortical locations account
for WM performance in patients and controls, which suggests that
discrete  mechanisms underlie working memory function in
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patients with schizophrenia and healthy controls. These effects
appeared to be unrelated to clinical outcomes such as positive
symptom severity, disease chronicity and antipsychotic medica-
tion dose, as these variables were not associated with WM
performance in patients. This is consistent with previous studies
reporting nonsignificant associations between positive symptoms
and neurocognitive performance in schizophrenia®*** and
emphasizes the distinct role of cognitive impairment in this
disorder®

Our findings demonstrated both increases and decreases in
weighted degree in schizophrenia throughout the cortex. While
these changes have not reached significance at 5% FDR, at
uncorrected levels, the direction of the effects was generally
consistent in each network. For example, we found that anterior
insula (as part of VAN and CON) and areas of the lateral
somatomotor network showed reduced degree in schizophrenia
patients. Conversely, IPS, angular gyrus, and IOFC encompassing
the default mode and frontoparietal networks showed increased
weighted degree in patients. Increases in connectivity may be
compensatory or reflect dysregulated circuitry due to abnormal
hub functioning'®. Our correlation analysis revealed that regions
showing elevated degree in schizophrenia patients (e.g. IPS)
predicted poorer performance. This suggests that these effects are
less likely to be compensatory and more likely to reflect
dysregulated circuitry.
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Fig. 4 Predictive modeling. Feature prevalence across cross-validation iterations is shown for a significant predictive model that predicted
WM accuracy at high load (A). This model was built using weighted degree from both groups combined to maximize statistical power
(N=58). Nodes with high prevalence scores were consistently selected as primary features correlating with behavior at each LOOCV and
contributed to the summary degree score. On the right panel, predicted vs. observed WM accuracy is displayed for this significant model (B).
Abbreviations: 7T 7-letter task condition. LOOCV Leave-one-out cross-validation.

In terms of the relationship between weighted degree and
working memory performance, although we observed several
common themes among patients and controls (e.g., higher degree
in DMN linked to poorer performance, higher degree in VAN
linked to better performance), different nodes accounted for
behavioral performance in the two groups. For example, the mPFC
showed an association with WM accuracy in controls, yet this
effect was not present in patients. In patients, two other DMN
nodes in the left IPL and left dIPFC exhibited a strong correlation
with a different aspect of behavior, reaction time. This dichot-
omous pattern suggests that functional organization of the DMN
and its role in cognitive function is altered in patients. Previous
work consistently demonstrated altered DMN connectivity in
patients with schizophrenia®’-38, their first-degree relatives®®, and
individuals at clinical high risk®® for schizophrenia. Our findings
suggest that DMN is centrally implicated in working memory
function in both health and schizophrenia3®4°, but this relation-
ship manifests itself through different areas of the network.

Anterior insula and ventral attention/salience networks are
thought to play a significant role in working memory function
putatively by supporting dorsal and ventral visual attention
systems*' and coordinating other task-related networks to
facilitate access to attentional resources*?. Lower degree in right
anterior insula we found in our study might underlie some of the
clinical features associated with schizophrenia such as aberrant
salience*®. We did not observe a significant relationship between
reduced degree in insula and working memory performance in
patients. However, both in controls and in patients, degree in
other nodes of the VAN (e.g., superior temporal cortex), exhibited
significant correlation with WM accuracy. Moreover, degree scores
from these nodes were consistently selected during cross-
validation in a significant model predicting WM accuracy at high
loads. High frequency oscillations in the superior temporal cortex
were previously linked to working memory maintenance in
electrophysiology studies in humans**°, Additionally, in a fMRI
study using a large cohort of healthy individuals, we previously
demonstrated that both within- and between-network connectiv-
ity to areas of the VAN are among the primary features predicting
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specific WM load in a support vector machine classification
algorithm®®. Taken together, the observation that weighted
degree in superior temporal areas is associated more strongly
with WM accuracy (vs. reaction time) may indicate a specific role in
WM maintenance.

Aside from VAN and DMN, nodes in other networks also
accounted for WM performance. For example, weighted degree in
precuneus, a medial parietal area of the CON, negatively
correlated with WM accuracy. While its exact role in WM is not
clear, repetitive TMS to the precuneus during the probe phase of
a verbal WM task was shown to improve accuracy”. A
dysregulated hub in this region may contribute to the WM
deficits in schizophrenia. We also identified several regions that
were exclusively associated with reaction time. Frontal and
parietal areas of the DAN such as left FEF and left IPS, as well
as right supramarginal gyrus (SMG) showed a positive correlation
with reaction time. The dorsal attention system plays an
important role in visual processing speed and putatively
contributes to age-related decline in processing speed®®. There-
fore, dysregulated nodes in this network in schizophrenia might
contribute to slower responses during cognitive performance in
patients. Notably, the correlation with reaction time was driven by
between-network connectivity for these nodes. IPS and SMG have
been shown to underlie the interaction between memory load
and visual attention during a spatial WM task®. A load-
dependent role for these regions may require interaction with
other task-related networks including the FPN and DMN, and thus
their relationship to behavioral performance may depend on this
cross-network talk. Finally, degree in posterior SMA was
negatively correlated with reaction time. SMA is implicated in
monitoring of both successful and erroneous actions®®>', thus,
connectivity deficits in this area may impair efficient action
monitoring during the probe epochs in our task and slow down
responses to the probes.

Limitations

Our study has several limitations. Due to our predetermined head
motion criteria, we had to remove a number of patient
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participants from the analysis, which reduced our sample size and
potentially our statistical power. Similarly, we combined data from
controls and patients in our degree-based predictive model
analysis to maximize statistical power, which limits the ability to
make group-specific inferences. Replication or extension of our
findings in other patient samples will provide further clarity on the
effects that we demonstrated in our study. In addition, it is not
clear if the elevated degree we observed in several networks (e.g.,
DMN, FPN, limbic regions) in patients reflects abnormal structural
connectivity, a compensatory response to structural deficits, or
simply the local pathophysiology. Future studies using both
functional and structural imaging modalities can be helpful in
elucidating this point.

CONCLUSION

Patients with schizophrenia showed diffuse abnormalities in hub
centrality particularly in VAN, FPN, DMN, SM and cortical limbic
areas. Some of these hubs appear to be relevant to WM
impairment and account for individual differences in performance.
Predictive models using summary degree scores successfully
predicted WM accuracy at high load in both groups. DMN and
VAN features were predominantly involved in such models. The
nodes that were found to be critical to patients’ WM performance
in the current study can be examined in future work on cognitive
impairment in schizophrenia, and weighted degree can be tested
as a potential physiological marker in studies using noninvasive
neuromodulation.
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