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Introduction
The major histological type of liver cancer is human hepato-
cellular carcinoma (HCC) that accounts for approximately 
80% of liver cancer burden.1 Hepatocellular carcinoma is one 
of the leading cancers worldwide, and the incidence and mor-
tality rates for HCC are increasing rapidly by approximately 
3% per year.1 HCC incidence is high in Middle and Western 
African East and in South-East Asia, whereas rates are low in 
South-Central and Western Asia and Northern and Eastern 
Europe.2 Chronic infection with hepatitis B and/or hepatitis 
C viruses, diabetes, obesity, and alcohol consumption are 
established risk factors for HCC that all contribute to the 
growing trend.3,4 RNA-Sequencing (RNA-Seq) is a revolu-
tionary tool based on next-generation sequencing technology 
that enables accurate quantifications of large number of 
genes; gene mutation status coupled with RNA-Seq data can 
also be identified.5

In the precision medicine era, data from RNA-Seq and 
other next-generation sequencing (NGS) tools may provide 
therapeutic strategy in treating HCC. Gene-expression data-
bases generated by RNA-Seq, such as Gene Expression 
Omnibus (GEO), Sequence Read Archive (SRA), and the 
Cancer Genome Atlas (TCGA) databases on the human tran-
scriptome, have been widely used to study the causes and seek 
for therapies of cancers, which have produced a large amount 
of expression data.6 In transcriptomic experiments, Gene Set 
Enrichment Analysis (GSEA) is conventionally used to analyze 
and interpret coordinate pathway-level changes. The Molecular 
Signatures Database (MSigDB) is a collection of annotated 
gene sets for use with GSEA that is divided into 8 major collec-
tions, including H, C1, C2, C3, C4, C5, C6, and C7 and that 
accounts for gene expression patterns within a set of transcrip-
tomic experiments to identify statistically significantly enriched 
gene sets.
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The tumor suppressor p53 which has been found to be 
mutated in more than 50% of all human cancer was reported 
to play multiple roles in apoptosis, cell-cycle arrest, cellular 
senescence, and differentiation.7 As a transcription factor, 
p53 activates the expression of many checkpoint and apop-
totic genes, including Puma, Noxa, and p21; somatic p53 
mutations occur in about half of all human cancers.8 Most of 
these mutations are missense mutations within the DNA-
binding core domain of exon5 to exon8, which are often 
more stable and correlated with poor prognosis of the cancer 
patient.9 The p53 gain-of-function mutants promote tumo-
rigenesis via a novel mechanism involving active disruption 
of critical DNA damage-response pathways, and p53 has 
been identified as high-risk mutations associated with 
increased distant metastases and decreased survival time.10 
Despite TP53 mutation contributes significantly to human 
cancer occurrence and progression, the role of mutant P53 in 
HCC development is not fully understood. Several lines of 
evidence revealed that p53 mutants act also as an oncopro-
tein that can gain activities in activating tumor progression 
by collaborating with Ras to cause primary rat cells transfor-
mation and promote tumorigenesis of Saos-2 cells in nude 
mice model, and some expressing p53 mutant cancer cells are 
resistant to wild-type p53-independent apoptosis induced by 
cytotoxic drugs.10

The present study aimed to explore gene expression profile 
and identify novel potential therapeutic targets in human HCC 
with mutated p53 using raw RNA-Seq data generated by 
TCGA consortium. We hope these approaches can take advan-
tage of the massive NGS data generated worldwide and make 
more out of it by exploring new potential therapeutic target 
genes/pathways.

Methods
Data collection

We collected a total of 42 of paired tumor-adjacent normal 
HCC RNA-Seq datasets and 42 samples from the Cancer 
Genome Atlas (TCGA http://cancergenome.nih.gov/).

Gene Set Enrichment Analysis

GSEA is a method of analyzing and interpreting microarray 
and RNA-Seq data using biological knowledge. The data in 
question are analyzed in terms of their differential enrichment 
in a predefined biological set of genes that can publish infor-
mation about biochemical pathway or co-expression in a pre
vious experiment. GSEA was performed using javaGSEA 
Desktop Application from the Broad Institute at MIT. 
Parameters used for the analysis were as follows. The data set 
had 11 799 genes, c2.all.v6.2.symbols.gmt gene set from online 
pathway databases, publications in PubMed, and knowledge of 
domain experts was used for running GSEA.

Survival analysis

The survival analysis of genes expression of the study was 
performed in the Pan-cancer RNA-Seq Web server for 
generating Kaplan-Meier plots by auto selecting best cutoff 
values between lower and upper quartiles into high and low 
expression groups, which are computed in all stages, sex, 
race, and mutation burden (http://kmplot.com/analysis/index.
php?p=service&cancer=pancancer_rnaseq).

Statistical analysis

All statistical analyses in this study were conducted using SPSS 
statistical software (SPSS Inc. PASW Statistics 18.0, Chicago). 
Independent-samples t test was, respectively, used for binary 
variables and continuous variables to compare tumor and adja-
cent normal tissue. The P value of the test was 2-tailed with a 
level of significance (α) = 0.05. A P value of <.05 indicated 
statistical significance.

Results
The top 10 somatic mutations in 42 human HCC

We explored and identified the top 10 genes with exon mutations 
associated with HCC from the TGCA RNA-Seq data. The 
most frequent exon mutations associated with HCC are from 
the following 10 genes: LRP1B, DNAH10, ARID1A, SYNE1, 
ABCA13, NCAM1, MUC16, CTNNB1, TP53, and TTN (Figure 
1A). The p53 gene is among the most frequently mutated genes 
and is the best characterized tumor suppressor in several human 
cancers including HCC. Twenty-nine percent (12/42) in these 
HCC had p53 exon mutations. Among them, there is no synony-
mous mutation detected, the nonsynonymous mutation substitu-
tion present in 11 samples produces the amino acid changes, and 
only 1 is the insertion type (Table 1). This amino acid altering 
substitutions are all heterozygotes in 12 p53 mutant HCC (Table 
1). The analysis flow consists of the following components: HCC 
transcriptome expression and GSEA (Figure 1B). p53 mutations 
were detected in 12 of the 42 patients with HCC. In 2 cases 
(17%), p53 mutation and 6 gene mutations coexisted; in 2 cases 
(17%), p53 mutation and 4 gene mutations coexisted; in 2 cases 
(17%), p53 mutation and 3 gene mutations coexisted; in 3 cases 
(25%), p53 mutation and 2 gene mutations coexisted; in 3 cases 
(25%), p53 mutation and 1 gene mutation coexisted; neither 
mutation was found (Table 2). The survival data of top 10 gene 
expression have been completed by running Web server for 
Kaplan-Meier plots in Figure 1C to L. The results revealed that 
the expression of those top 10 genes is not associated with overall 
survival (OS) in HCC (Figure 1C to L).

Enrichment of the metastasis and poor prognosis 
terms in p53 mutant HCC by GSEA

Within the p53 mutant HCC, significantly upregulated gene 
sets with highest ranked at max metric suggest higher likelihood 
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of involvement in VANTVEER_BREAST_CANCER_
METASTASIS_DN (Figure 2A and B) and VANTVEER_
BREAST_CANCER_POOR_PROGNOSIS (Figure 3A and 
B) that genes whose expression is significantly and negatively 
correlated with poor breast cancer clinical outcome (defined as 
developing distant metastases in <5 years). Of these genes, there 
are 18 genes of core enrichment of breast cancer poor prognosis. 
We further examined whether these genes could serve as a pow-
erful prognosis factor in HCC (Figure 4A). The Kaplan-Meier 
analysis revealed that patients with high expression of NDC80, 
GNAZ, CCNE2, CENPA, NUSAP1, MELK, DTL, PRC1, 
MCM6, RUNDC1, DIAPH3, MMP9, ORC6, CDC42BPA, and 
DCK HCC had significant poor survival compared with patients 
with lower expression of those genes (Figure 4B to S).

HK2 and ENO1 highly expressed in p53 mutant 
HCC than in p53 wild-type HCC

In the metastasis and poor prognosis genes of core enrichment 
expression, “metabolic pathway” expression appeared to rank 
at top, and “cell cycle” was on the second place by KEGG 
pathway clustering (Figure 5A). In the metabolic pathway, 
glycolysis/gluconeogenesis processing enzymes were analyzed 
by the ratio of enzyme expression of mean values of p53 
mutant versus p53 wild-type and mean values of p53 wild-
type versus p53 mutant. Two genes, HK2 and ENO1, with a 
fold change (FC) >2 in the heatmap were then selected for 
further survival analyses (Figure 5B).

HK2 and ENO1 as the significant prognostic power

The cancer RNA-Seq database was searched to analyze the 
differential expression of HK2 and ENO1 mRNA between 
tumor and adjacent normal tissues. The average expression 
level of HK2 and ENO1 mRNA in HCC was significantly 
higher than that in the adjacent normal tissues (P = .028 and 
P < .001, respectively; Figure 6A and B). In addition, the levels 
of HK2 and ENO1 expression are higher in mutant p53 HCC 
than those in wild-type p53 HCC (Figure 6C and D; P = .06 
and P < .001, respectively).

A Web tool was used to validate survival-associated mRNAs 
utilizing expression data from liver cancer (http://kmplot.com/
analysis/index.php?p=service&cancer=pancancer_rnaseq). We 
found the high HK2 and ENO1 expression that split patients 
by the median has poor prognosis in OS and relapse-free sur-
vival (RFS) in patients with liver cancer (P = .0082 and 
.000055, respectively; Figure 6E and F).

Discussion
HCC is associated with persistent inflammation, and it is a 
clear example of inflammation-related cancer as more than 90% 
of HCCs arise in the cause of hepatic injury and inflamma-
tion,11 and p53 can modulate the inflammatory microenviron-
ment, tumor microenvironment, and tumor suppression.12 
Although previously the function of the p53 widely considered 
to induce cell-cycle arrest and apoptosis, an increasing number 
of evidence have indisputably served as the tumor suppressive 

Table 1.  p53 mutation status in HCC.

Hugo_Symbol Variant_
Classification

Reference_
Allele

Tumor_Seq_Allele Exon Amino acid 
changes

P53 Nonsense_Mutation A T, c.T831A exon8 p.C277X

P53 Missense_Mutation T C, c.A578G exon6 p.H193R

P53 Missense_Mutation C A, c.G481T exon5 p.A161S

P53 Missense_Mutation A C, c.T376G exon5 p.Y126D

P53 Missense_Mutation T C, c.A578G exon6 p.H193R

P53 Missense_Mutation G T, c.C452A exon5 p.P151H

P53 Missense_Mutation G A, c.C742T exon7 p.R248W

P53 In_Frame_Ins – CGCGGA, c.476_477insTCCGCG exon5 p.A159delinsVRA

P53 Nonsense_Mutation G A, c.C916T exon8 p.R306X

P53 Missense_Mutation C A, c.G481T exon5 p.A161S

P53 Missense_Mutation C A, c.G747T exon7 p.R249S

P53 Nonsense_Mutation C A, c.G511T exon5 p.E171X

P53 Missense_Mutation A C, c.T470G exon5 p.V157G

P53 Missense_Mutation A G, c.T679C exon7 p.S227P

Abbreviation: HCC, hepatocellular carcinoma.

http://kmplot.com/analysis/index.php?p=service&cancer=pancancer_rnaseq
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Figure 1.  Mutations of RNA-Seq in HCC-cohort (N = 42). (A) Top 10 mutations frequency of RNA-Seq in HCC cohort in a pie chart. (B) A flowchart is a 

pictorial representation of the steps in a process where each step is represented by a block. (C-L) Kaplan-Meier curves of patients with HCC with 

low- versus high expression of top 10 mutated genes of HCC. HCC indicates hepatocellular carcinoma; RNA-Seq, RNA-sequencing.
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Table 2.  List of top 10 gene mutation distribution in 12 mutant p53 HCC.

Patient ID TP53 mutation MUC16 TTN DNAH10 ABCA13 NCAM1 SYNE1 LRP1B CTNNB1 ARID1A Total

TCGA-DD-A1EG-01A TP53 mutation V V V V V V 6

TCGA-DD-A1EE-01A TP53 mutation V V V V V V 6

TCGA-ES-A2HT-01A TP53 mutation V V V V 4

TCGA-DD-A113-01A TP53 mutation V V V V 4

TCGA-DD-A1EB-01A TP53 mutation V V V 3

TCGA-DD-A1EI-01A TP53 mutation V V V 3

TCGA-FV-A3R2-01A TP53 mutation V V 2

TCGA-DD-A114-01A TP53 mutation V V 2

TCGA-DD-A1EL-01A TP53 mutation V V 2

TCGA-BC-A216-01A TP53 mutation V 1

TCGA-BD-A3EP-01A TP53 mutation V 1

TCGA-FV-A3I1-01A TP53 mutation V 1

Abbreviations: HCC, hepatocellular carcinoma; “V,” mutation.

Figure 2.  Metastasis genes mRNA expression of p53 status by GSEA. (A) An expression data set sorted by correlation with p53 status (gray: p53 

mutated sample; yellow: p53 wild-type), and the corresponding heatmap of VANTVEER_BREAST_CANCER_METASTASIS_DN set within the sorted list 

from the C2 functional collection. (B) Plot of the running sum for VANTVEER_BREAST_CANCER_METASTASIS_DN, including the location of the 

maximum enrichment score (ES) and the leading-edge subset. GSEA indicates Gene Set Enrichment Analysis.
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Figure 3.  Poor prognosis gene mRNA expression of p53 status by GSEA. (A) An expression data set sorted by correlation with p53 status (gray: p53 

mutated sample; yellow: p53 wild-type), and the corresponding heatmap of VANTVEER_BREAST_CANCER_POOR_PROGNOSIS set within the sorted 

list from the C2 functional collection. (B) Plot of the running sum for VANTVEER_BREAST_CANCER_POOR_PROGNOSIS, including the location of the 

maximum enrichment score (ES) and the leading-edge subset. GSEQ indicates Gene Set Enrichment Analysis.

capability of the p53 that also rely on its capability to control 
and modulate cellular metabolism and maintain cellular oxida-
tive homeostasis.13 We applied GSEA to identify the functional 
gene sets or biological pathways that enrich in differentially 
expressed wild-type p53 and mutant p53 groups. The output of 
results revealed that gene sets of “VANTVEER_BREAST_
CANCER_METASTASIS_DN” and “VANTVEER_
BREAST_CANCER_POOR_PROGNOSIS” were enriched 
in mutant p53 group of HCC. In addition, TP53 is the most 
frequently mutated gene in invasive breast cancer of about 30% 
to 35% in all cases, and p53 is mutated in approximately 80% of 
triple-negative (TN) tumors (tumors negative for ER, PR, and 
HER2).14,15 In Table 1, among the p53 mutations, a missense 
mutation, R249S in exon7 of p53 gene has been reported that 
its protein has a gain of function via c-Myc activation on CDK4 
phosphorylation at serine 249 and consequent PIN1 binding to 
promote HCC progression.16 However, most of these muta-
tions were served as dominant-negative function.

Interactions of metabolic and immune response pathways 
are considered as a critical homeostatic mechanism that when 
perturbed, will lead to metabolic disorders and diseases.17 

Results from this study revealed that p53 mutant HCC has 
initiated HK2 and ENO1 activation in metabolic pathway, 
and HK2 and ENO1 expression levels can serve as predictive 
markers for poor prognosis in HCC. HK2 is the enzyme that 
catalyzes the conversion of glucose to glucose-6-phosphate 
(G6P) in the first step of glycolysis. HK2 is regulated by p53 
transcriptional target gene18 and is required for initiation and 
maintenance of tumor. Its systemic deletion inhibited glucose-
derived ribonucleotides and damaged glutamine-derived car-
bon use in anaplerosis of mouse models of cancer.18 ENO1, 
also known as pyruvate dehydrogenase, catalyzes the dehydra-
tion of 2-phospho-D-glycerate to phosphoenolpyruvate.19 
ENO1 silencing by shRNA has been shown to effectively 
suppress the proliferation and increase chemosensitivity of 
gastric cells.20

We proposed big data sets collected from TCGA to 
obtain complete gene expression profiles in p53 status. The 
GSEA method is responsible for 11 799 genes expression of 
an entire database evaluation that can execute the calculation 
of an ES, estimate the significance level of ES, and adjust for 
multiple hypothesis testing.21 Enrichment score distribution 
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Figure 4.  The 18 genes were significantly enriched in VANTVEER_BREAST_CANCER_POOR_PROGNOSIS. (A) The significantly enriched  

genes list. (B) to (S) Kaplan-Meier curves of patients with HCC with low- versus high expression of 18 genes. HCC indicates hepatocellular 

carcinoma.

of VANTVEER_BREAST_CANCER_METASTASIS_
DN and VANTVEER_BREAST_CANCER_POOR_
PROGNOSIS sets from the C2 functional collection in the 
list of genes in the HCC is ranked by their correlation with 
p53 status.

Despite the modest sample size of HCC samples analyzed, 
this study successfully used genome-wide transcriptome profil-
ing of p53 wild-type and p53 mutants and provided prognosis 
marker and therapeutic targets for HCC. In addition, the raw 
data generated by TCGA consortium was mapped to identify 
gene difference in metabolic pathway. The expressions of the 2 

genes, HK2 and ENO, have been proved to be of significance in 
HCC by other researchers.

Conclusions
In conclusion, in this proof-of-concept study, we provide a 
convenient and feasible approach for identifying novel 
potential prognosis and therapeutic target pathways/genes 
for human diseases using the abundant RNA-Seq data 
worldwide. The transcriptome profiling of specific disease 
target may be beneficial for seeking adjuvant therapy in the 
precision medicine era.
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Figure 5.  Enriched pathway terms of significantly enriched metastasis and poor prognosis genes in HCC. (A) Counts of metastasis and poor prognosis 

genes distributed in different pathways from KEGG datasets. (B) List of 8 genes of metabolic pathways that involved breast cancer metastasis and poor 

prognosis of GSEA database. (C) All enzyme mRNA expression of glycolysis/gluconeogenesis in p53 wild-type and mutant HCC. (D) A colored KEGG 

pathway of glycolysis/gluconeogenesis will be drawn and color means genes that p53 mutant versus p53 wild-type group in TCGA HCC database. HCC 

indicates hepatocellular carcinoma; GSEA, Gene Set Enrichment Analysis.
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Figure 6.  Expressions of HK2 and ENO1 correlate with HCC poor prognosis. (A) and (B) HK2 and ENO1 expression in HCC tissues and adjacent normal 

tissues. HK2 and ENO1 expression levels were positively associated with HCC tissues (P = .028 and P < .001). (C) and (D) HK2 and ENO1 expression in 

mutant p53 HCC and wild-type p53 HCC. HK2 and ENO1 expression levels were positively associated with mutant p53 HCC tissues (P = .060 and P < 

.001). (E) and (F) Kaplan-Meier curves of patients with HCC with low- versus high expression of HK2 and ENO1 (n = 370; P < .001, log-rank test). HCC 

indicates hepatocellular carcinoma.
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