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Background

Ground reaction force (GRF) time-histories, measured

Abstract

Background: This investigation characterized the time-history pattern of the free moment (FM)
during walking and, additionally, assessed whether walking with either an internally or externally
rotated foot position altered the FM's time-history.

Methods: Force plate and foot kinematic data were acquired simultaneously for || healthy
subjects (6 males, 5 females) while walking at their self-selected comfortable speed in 3 foot
rotation conditions (normal, internal and external). The FM was calculated and normalized by the
product of each participant's body weight and height prior to extraction of peak FM, occurrence
of peak FM in stance and net relative impulse. Differences in these values across foot rotation
conditions were assessed using separate one-way, repeated measures analysis of variance and
subsequent pair-wise comparisons.

Results: The average FM pattern during normal walking exhibits a biphasic shape: resisting inward
rotation during approximately the first half of stance and outward rotation during the latter part
of stance. While no differences in peak FM or net relative impulse were observed between the
internal foot rotation condition and normal walking, the external foot rotation condition resulted
in significantly greater peak FM and relative net impulse in comparison to normal walking.

Conclusion: The differences in selected FM variables between normal walking and the external
foot rotation condition are attributable to individual subject response to walking with an externally
rotated foot. In this condition, some subjects displayed a FM pattern that was similar to that
recorded during normal walking, while others displayed markedly larger FM patterns that are
comparable in magnitude to those reported for running. The larger FM values in these latter
subjects are speculated to be a result of excessive transverse plane body movements. Whilst
further investigation is warranted regarding the FM time-history characteristics during walking, our
results indicate that the FM may provide useful information in assessment of gait.

predominantly using floor embedded force plates, have  that quantify GRF patterns focus on forces

been documented extensively in both normal and patho-

logical populations and for a variety of human ambula-
tory activities (e.g. [1-6]). The majority of investigations

acting along

the primary, orthogonal axes (i.e. vertical, anterior-poste-
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rior and medio-lateral). An additional force plate measure
rarely reported is the free moment (FM) (table 1). The FM
is the reaction to the force couple exerted by the foot on
the ground acting about a vertical axis originating at the
foot's center of pressure (CoP) (figure 1) [7,8].

Recently, attention has been drawn to the clinical useful-
ness of the FM by Milner et al [9], who were able to dis-
criminate retrospectively, based on FM indices, between a
group of healthy runners and a group of female runners
with a history of tibial stress fractures. Based on the results
of Milner et al [9], it can be speculated that the FM might
serve as an indicator for the amount of torsional loading
experienced during ambulation. While this supposition
has yet to be validated, there are two related points that
make it appealing: one, cortical bone is not able to sustain
large amounts of torsional loading [10,11], and, two, con-
siderable torsional loading is experienced during ambula-
tion, specifically during the push off phase of walking
[12]. The question that naturally arises is whether an ele-
vated FM during walking a potential cause of tibial stress
fractures?

An elevated FM may be due to individual gait characteris-
tics. Specifically, the FM has been found to be sensitive to
gait modifications employed in the transverse plane: both
Li et al [13] and Umberger [14] observed temporal and

- sts.
Figure |
Experimental procedures. White parallel lines placed
over the walkway aided subjects in reproducing the foot
rotation angle in the internal (INT) and external (EXT) con-
ditions. The FM is depicted as acting vertically through the
hypothetical location of the center of pressure at this time
instant, and its direction is in accordance with the force plate
coordinate system used in this investigation.

amplitude dissimilarities in the FM pattern when subjects
walked across a force platform with and without arm
swing, a movement that exerts a transverse force couple
on the ground during walking. The vertical and anterior-
posterior GRF components, on the other hand, were virtu-
ally indistinguishable across the two arm conditions [14].

Another gait modification employed in the transverse
plane, and that might influence the FM, is the foot rota-
tion angle adopted during walking. Modification of the
foot rotation angle during walking as been documented to
occur naturally as a function of the goals of the ambula-
tory task, or may be artificially induced as part of an inter-
ventional program. For example, it has been suggested
that the adaptation of an internally rotated foot position
during walking minimizes the resistive moment that must
be overcome by the ankle plantar flexors during the push-
off phase of stance [15]. This is achieved by effectively
reducing the moment arm of the GRF vector with respect
to the talocrural joint axis. Eredmir and Piazza [15] note
that modifying the foot rotation angle to a more internal
one has been observed in high school aged subjects dur-
ing sprint-running [16], and in subjects walking while car-
rying external loads [17]. In contrast, several
investigations have demonstrated that adapting a more
externally rotated foot position decreases the magnitude
of the knee adduction moment, thus unloading the
medial compartment of the knee [18-21]. This is achieved
by shortening the moment arm of the GRF in relation to
the knee joint center in the frontal plane, primarily during
the second half of stance [20]. While the influence of foot
rotation on frontal knee and ankle moments has been
examined, its influence on the transverse plane moments
and the FM during walking has not been explored in
adults.

While the influence of the foot rotation angle adopted
during stance on the FM pattern is unclear, it can be pos-
tulated that, irrespective of the foot rotation position
adopted relative to normal walking, attempting to align
the foot with the direction of forward progress during late
stance would require individuals to exert a twisting action
of the foot on the ground that would subsequently alter
the magnitude of the FM. Thus, the aim of this investiga-
tion is to test whether different foot rotation positions
produce changes in the pattern of the FM pattern during
walking. As part of this investigation, the pattern of the
FM during normal walking will be described, conse-
quently addressing the paucity of information related to
this force plate measure.

Methods

This investigation used an existing data set [22], for which
the data collection procedures have been outlined [23-
25]. These will be briefly described, as well as additional
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Table I: Investigations reporting upon the free moment (FM) during running and walking.

Author(s), year Activity

Subjects FM

Peak FM (* SD) t
Normalization

Nigg et al, 1982 [34] + Walking (w) & Running (r) 16, unilateral ACL insufficiency None (W) Injured limb 12.9 Nm
(w) Normal limb 11.5 Nm
(r) Injured Limb 15.9 Nm
(r) Normal Limb 17.5 Nm
Nigg, 1986 [7] § Running 1, rear foot striker. None Range across different footwear
3.5 ms ) conditions57 Nm
Holden & Cavanagh, 1991 Running 10, male, 'normal foot arches'. BW x ht 'Varus' shoes 6.7 £ 1.6 x 10-3
[8] £ (4.5 £ 10% ms") ‘Neutral' shoes 9.7 + 1.6 x 103
'Valgus' shoes 12.4 + 1.6 x 103
Milner et al, 2006 [9] Running Control Group: BW x ht 59+2.1 x 103
(3.7 £ 5% ms!) 25, mixed, healthy. 9.3 +43x (03
Experimental Group:
25, female, history of tibial stress
fractures.
Creaby & Dixon, 2008 Running Control Group: BW x ht 93+3.2x 103
[33] (3.6 £ 5% ms!) 20 military recruits, no lower 95+2.1 %103
extremity injuries.
Experimental Group:
10 military recruits, sustained
tibial stress fracture.
Lietal, Walking 17 total (5 adult males, 6 adult BW Range across speed conditions,
2001 [13]§ (low', 'comfortable', 'fast) females, 6 children). adults only
25 100x 103
Umberger, 2008 [14] § Walking (1.3 ms-!) 5 male, 3 female, healthy. BW x LL Range
0.51.5 x 102

BW = bodyweight, ht = height, LL = leg length

T Note differences in peak FM magnitude between studies due to different normalization procedures.

I Nigg et al (1982) do not provide ambulation speeds, participant sex or peak FM dispersions measures.

£ Holden and Cavanagh (1991) report peak FM variability using the standard error of the mean (SEM).

Values were converted to SD by multiplying the SEM by the square root of the sample size (n = 10).

§ Peak FM values not explicitly given. Approximate values are listed based on visual estimation of depicted FM time histories.

information pertaining to the aims of the current investi-
gation.

Subjects

A convenience sample of six males (age (mean + SD) 23.9
+ 1.8 years, height 1.84 + 0.07 meters, weight 819 + 67 N)
and five females (age 21.9 + 0.8 years, height 1.67 + 0.07
meters, weight 579 + 63 N) volunteered to participate in
the study. None of the subjects were suffering from or
reported a history of lower extremity injury. Prior to test-
ing, all subjects were briefed on the procedures of the
investigation and subsequently gave their informed con-
sent. Approval for this study was obtained from the
Queen's University's Research Ethics Board.

Equipment

Foot rotation angle during the stance phase, defined as the
angle between the foot's long axis and the direction of for-
ward progress, was calculated from the position of three

active infrared-emitting diodes (IREDS) affixed directly to
each subjects' right lateral malleoulus, tuber calcanei and
5th metatarsal head. The IREDS were tracked in three
dimensional space using two Optotrak position sensors
(Northern Digital Inc., Waterloo, ON, Canada). Ground
reaction force measurements were obtained using a strain-
gauge force platform (model OR6-7-1000, AMTI Inc.,
Watertown, MA, USA). Both IRED and force plate data
acquisition were sampled synchronously at 100 Hz. A cal-
ibration procedure was employed prior to data collection
to align the coordinate systems of the force plate and
Optotrak system.

Procedures

Subsequent to marker placement, a static-standing cali-
bration trial was performed with the subjects standing
such that the middle-posterior aspect of the heel and 2nd
toe were aligned with the anterior-posterior force plate
axis. All subsequent foot rotation angles are referenced to
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this position in the global coordinate system. Subjects
were then asked to perform several practice trials while
walking across the force platform at a self-selected com-
fortable speed. During these practice trials the normal
(NORM) foot rotation angle of each of the subjects' right
foot was determined. During testing, the subjects walked
across the force platform normally (NORM) or while
rotating their foot externally (EXT) or internally (INT) by
approximately 30 degrees with respect to their NORM
angle. To aid the subjects in reproducing the EXT and INT
foot rotation angles during testing, two parallel lines were
placed on the walkway (Figure 1). The gap between the
two lines corresponded to each participant's individual
foot length such that, when subjects walked with their
foot filling the gap, the same foot rotation angle could be
achieved. Subjects were given as many practice trials as
needed in order to ensure their ability to walk comforta-
bly while performing the INT and EXT conditions. The
subjects performed five trials in each foot rotation condi-
tion (NORM, INT, EXT) in a random order. Arm swing
was standardized across subjects and conditions by asking
subjects to walk with their elbows bent at a 90 degree
angle.

Data Analysis

Prior to the extraction of the variables of interest, kine-
matic data were filtered using a 2nd order, zero phase shift,
low pass Butterworth filter with a cut-off frequency of 6
Hz. Calculation of the free moment was in accordance
with a reaction-oriented, orthogonal force plate coordi-
nate system, where the anterior-posterior axis (Y) points
in the direction of forward progression, the vertical axis
(Z2) points upwards and the medio-lateral (X) axis points
to the right (Figure 1). Thus, with respect to the right foot,
a positive free moment opposes outward rotation. Con-
versely, a negative free moment opposes inward rotation.
The calculation of the FM requires the force (Fx, Fy, Fz)
and moment (Mx, My, Mz) components, as well as the
location of the CoP, which was calculated as follows:

cor, M) a
Z

CoP, =%(Zoff) )
<

Where CoP, and CoP, are the positions of the center of
pressure along the medio-lateral and anterior-posterior
force plate axes, respectively, and Z; is the vertical dis-
tance offset between the surface and true center of the
force plate. To control for erroneous CoP values at the
beginning and end of stance due to division by small ver-
tical forces (Fz), the calculation of the CoP was initiated
and terminated when the Fz value was above 5% of the

maximal value recorded during each trial. The FM is given
by [26-28]:

FM = M, — F,(CoP,) + F,(CoP,) 3)

Note that the CoP and FM calculations are only valid for
the model of force plate used in this investigation.

All FM waveforms were amplitude-normalized to the
product of each individual's body weight (N) and height
(m). Additionally, the period of foot contact with the
force plate was normalized to a uniform length of 101
data points, which represented 0 100% of the stance
phase. To assess differences in FM between foot rotation
conditions, the following dependent variables were
extracted from each of the five trials performed in each
condition and subsequently averaged per subject: peak
free moment (PFM), occurrence of peak free moment in
stance (OPFM) and the relative net impulse (IMP), which
is the net area under the FM stance curve [29]. We also
report the un-normalized peak FM magnitudes for com-
parison with studies that have chosen not to normalize
the FM.

Statistical Analysis

Temporal similarity between pairs of FM waveforms
(NORM vs. EXT and NORM vs. INT, respectively) was
assessed using Pearson product moment correlation coef-
ficient (r) [30,31], while differences in magnitude were
assessed by the root mean square difference (RMSD).
RMSD values were calculated separately for each subject
and subsequently averaged across subjects [14]. With
regards to the calculation of r, since correlation coeffi-
cients are not normally distributed, a Fisher Z transforma-
tion was applied to all individual r values, which were
then averaged across subjects. Thereafter, the hyperbolic
tangent of the average Z score was taken to obtain the
average correlation coefficient [31].

Dependent measures were tested for differences between
the three foot rotation conditions using a one-way,
repeated measures analysis of variance (ANOVA) (p <
0.05). For all omnibus test comparisons, the degrees of
freedom used to calculate p values were corrected using
Greenhouse-Geisser sphericity estimates. Subsequently,
pair-wise comparisons were used to assess differences
between the NORM foot rotation condition and the INT
and EXT foot rotation conditions, respectively. The alpha
level for these comparisons was adjusted using a Sidak
correction procedure, based on an a priori alpha level set
at 0.05. In addition, estimates of effect size (ES) were cal-
culated following the guidelines of Dunlop et al [32].

The relationship between the foot rotation angle adopted

during stance and PFM and IMP was also assessed using
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Pearson product moment correlation coefficient (r). This
was done in two ways: first, r was calculated between the
‘absolute' foot rotation angle in each condition and the
corresponding PFM and IMP values obtained. Second, r
was calculated between the relative change in foot rota-
tion angle in the INT and EXT foot rotation conditions
and the corresponding change in PFM and IMP with
respect to normal walking. This was done by subtracting
the values recorded for each subject during the NORM
walking condition from those obtained in the INT and
EXT conditions.

Finally, differences in average gait speed and foot rotation
angle in each of the three foot rotation conditions were
assessed using a one way, repeated measures ANOVA and
planned contrasts. The alpha level for these comparisons
( =0.05) was adjusted using a Bonferonni correction pro-
cedure.

Results

Figure 2(a) and 2(b) depict the FM during normal walking
and in the internal and external foot rotation conditions,
respectively. In general, the FM in all three foot rotation
conditions exhibits a biphasic shape whereby the FM ini-
tially resists inward rotation, then reverses just prior to
mid stance to produce a positive FM that is indicative of
resistance to outward rotation. Large inter-subject varia-
bility was present in the EXT foot rotation condition. Fig-
ure 3 shows that subjects could be characterized by one of
two FM patterns, one similar in magnitude to that
observed in the normal condition and another where the
pattern demonstrated large excursions in magnitude dur-
ing early and late stance. Evaluation of r values calculated
between pairs of FM curves indicate that on average, the
FM patterns for the INT and NORM foot rotation condi-
tions are more similar in magnitude and temporal charac-
teristics (r = 0.79, RMSD = 49.9%) than the EXT and
NORM foot rotation conditions (r = 0.69, RMSD =
147.6%).

Results of the ANOVAs performed on selected FM varia-
bles (table 2) reveal that PFM and IMP were significantly
affected by foot rotation condition. Consequently, pair-
wise comparisons show differences in the NORM and EXT
average PFM values (2.8 + 0.8 x 103vs. 6.7 + 4.1 x 1073,
respectively, p < 0.05, ES = 0.88) and in the IMP values
(5.8 +£3.2x102vs. 10.1 £ 4.3 x 102, respectively, p < 0.05,
ES = 0.92). Conversely, no differences were found
between the NORM and INT conditions in (p > 0.05 for
both PFM and IMP), nor was a significant main effect
detected in OPFM across the three foot rotation condi-
tions (INT 70 + 9%, NORM 69 + 3%, EXT 77 + 9%, p >
0.05). Effects size values were relatively small for all of
these latter comparisons (ES range = -0.14 0.39), except
for differences between NORM vs. EXT OPFM, which
exhibited a moderate ES of 0.51.

The magnitudes of the relationships between the absolute
foot rotation position and the magnitude of PFM and IMP
were 7 = 0.39 and r = 0.28, respectively. Evaluation of the
corresponding coefficient of determination values (12) for
these relationships suggest that very little of the variation
seen in PFM or IMP may be explained by the absolute foot
rotation angle adopted during stance (2= 0.15 and 0.08
respectively). When expressed relative to the values
recorded for the normal walking condition, the magni-
tudes of the relationships of foot rotation position and
PFM and IMP were r = 0.65 and 0.31, respectively. Once
more, the portion of the variation in relative PFM and IMP
explained by foot rotation position adopted relative to
normal walking is comparatively small (2 = 0.42 and
0.09, respectively).

The average foot rotation angle adopted in each foot rota-
tion position was found to be significantly different (INT
-9.1 £ 7.9°, NORM 18.5 + 8.15°, EXT 40.2 + 8.7°, p <
0.016 for all planned contrasts), with all subjects walking
during individual trials within 2.8 degrees of their average
foot rotation angle in each of the conditions. Finally, no
significant main effect was detected for average walking
speeds (INT 1.08 + 0.16 ms!, NORM 1.10 + 0.12 ms’},
EXT 1.12 £ 0.15 ms'}, p > 0.05).

Discussion

The primary aim of this investigation was to assess
whether time-history differences exist in the FM when
modifying the foot rotation angle during walking. In addi-
tion, a description of the characteristics of the FM during
normal walking was presented. With regards to differ-
ences in FM patterns across the three foot rotation condi-
tion, we assumed that during late stance, alignment of the
foot with the direction of forward progress would necessi-
tate a twisting action of the foot on the ground that would
alter the FM pattern. Based on this, it was expected that
internal and external foot rotation condition would alter
the FM pattern in different directions. Specifically, for the
internally rotated foot position, we contemplated that
abduction of the foot would occur during late stance and
subsequently produce a positive FM. Conversely, in the
externally rotated foot condition, we expected the foot to
adduct during late stance and subsequently produce a
negative FM pattern. In the latter condition the FM time-
history is clearly altered, but not in the expected direction.
There are several plausible explanations to the discrep-
ancy between out hypothesis and the results obtained.
The first explanation is that we did not consider that the
FM reflects the sum of the force couples effects about a ver-
tical axis [28]. As such, while the foot might be in fact
attempting to align with the direction of forward progress
during late stance, and consequently producing a negative
FM, the movements of other body segments acting to gen-
erate a larger coupling effect in the opposite direction ulti-
mately produce a net FM that is not reflective of the
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Figure 2

The free moment time history pattern normal walking. a) FM during normal walking (black line is average, grey shad-
ows are * | SD variability bands) and when walking with an internally rotated foot (white line is mean, red shadows are + | SD
variability bands) and b) FM during normal walking (black line is average, grey shadows are * | SD variability bands) and when
walking with an externally rotated foot (white line is average, red shadows are £ | SD variability bands).
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Individual subject free moment time history pattern during walking with an externally (EXT) rotated foot. Each
line represents individual subject ensemble average curve of 5 trials in the external foot rotation walking condition.

movement of the foot. Another explanation relates to the
argument presented by Li et al [13] as to the role of the FM
during the double support phase of stance, where the FM
produced by both feet acts in the same direction to coun-
teract the moment produced by the horizontal forces
about the body's vertical axis. Thus, a reversal of the FM
pattern during late stance would likely create an imbal-
ance about the body's vertical axis, which would be

unbeneficial as this may interfere with the goal of forward
progression [13].

Additionally, changes in the FM pattern during late stance
were evident in the externally rotated foot condition. In
this condition, several participants displayed normalized
peak FM values that are as large as those reported for run-
ning in either healthy participants or those who have suf-

Table 2: Foot rotation angle, walking speed and FM measures in each of the three foot rotation conditions.

Foot rotation condition

Variable Internal§ Normal Externalt
Foot Rotation Angle (degrees)t 9.1 +£79 18.5 £ 8.15 40.2 £ 8.7
Walking Speed (ms-') 1.08 £ 0.16 1.10 £ 0.12 1.12 £ 0.15
Un-normalized Peak FM (Nm)* 39+ 1.0 34+ 14 88+ 6.4
PFM (dimensionless, x 10-3) 32+09 28+0.8 6.7 +4.1%
OPFM (% stance) 693 709 779
IMP (x 10-2) 75+27 58+32 11.0 £ 4.1%

PFM = normalized peak free moment, OPFM = occurrence of peak free moment, IMP = relative net impulse. All values presented as mean * | SD.
* Un-normalized peak FM presented for the sake of comparison with results of other investigations.

T All foot rotation angles significantly different than each other (p < 0.016)

I Significantly different than normal walking condition (p < 0.05)

§ Effect size values for Norm vs. INT: PFM = 0.31, OPFM = -0.14, IMP = 0.39.
£ Effect size values for Norm vs. Ext: PFM = 0.88, OPFM = 0.51, IMP = 0.92.
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fered from tibial stress fractures [9,33]. The un-
normalized peak FM values for these participants were as
large as the average peak FM values reported by Nigg et al
[34] for participants suffering from unilateral anterior cru-
ciate ligament deficiency performing walking and running
trials. Given that we standardized arm swing within sub-
ject and across conditions, the greater PFM values
observed for some participants in the EXT condition sug-
gests the existence of transverse plane movement modifi-
cations employed by other body segments. Unfortunately,
we cannot identify what underlying movement modifica-
tions were made by those participants who exhibited
greater FM values. However, it is interesting to note that
changes in either absolute or relative PFM and IMP were
not particularly dependent on the absolute or relative foot
rotation angle adopted during stance. This may suggest
that the greater FM values observed for some participants
in the EXT condition may be related individual anatomi-
cal structural constraints, such as increased hip tightness,
or perhaps due to asynchrony in subtalar and tibio-femo-
ral rotations as a result of prolonged foot pronation [35].

We have mentioned in the introduction section that the
FM may perhaps be reflective of the torsional loading
experienced by the lower extremities during ambulation.
However, this supposition may not hold true in light of
the results presented and current knowledge on this topic.
Specifically, Carter [12] found that torsional stresses dur-
ing the push-off phase of walking are substantially greater
than those recorded during running. If the FM is a proxy
for torsional stresses than the PFM during the push-off
phase in walking should be greater than that observed for
running. Our results suggest that the PFM in walking is
less than or equal to that for running, but not substan-
tially greater. However, given the sensitivity of the FM to
subject specific responses when asked to walk with an
externally rotated foot, and inferring from the discussion
of Milner et al [9], we contemplate that the FM may be
indicative of individual gait characteristics that may pre-
dispose individuals to tibial stress fractures or other lower
extremity injuries in which excessive transverse plane rota-
tions are suspected to be part of the mechanism of injury
[e.g. anterior knee pain|. As such, researchers in these
topic areas might benefit from extracting the FM for pur-
poses of differentiating between injured and non-injured
participants, especially in prospective-type studies plan-
ning to utilize force plate data. In addition, the FM might
be used for the evaluation of proposed interventional pro-
grams exploiting artificially-induced external foot rota-
tion [e.g. [19,20]].

There are some limitations to the present study. The first
is that the changes in FM pattern and magnitude seen in
subjects in the EXT condition may be primarily a result of
foot placement targeting of the force plate. This has been

previously found to have an insignificant effect on the
magnitude and variability of most time domain orthogo-
nal GRF parameters [36,37], and since the FM is a func-
tion of these parameters we would expect similar results
for the FM. The second limitation relates to the restriction
of arm swing during walking. The standardization of arm
swing was pertinent for comparisons across foot rotation
conditions, as arm swing has been documented to affect
the magnitude of the FM [13,14]. Whilst taking this into
account, it should be noted that we employed an arm
swing standardization procedure that is much less con-
straining then the ones employed by either Li et al [13] or
Umberger [14]. However, future investigations are needed
to establish whether changes in arm swing accompany
changes in foot rotation position during walking, and
subsequently how this affects the FM pattern.

Conclusion

This study presented a description of the time-history of
the FM in normal walking and the effect of foot rotation
upon it. On average, the free moment during walking
tends to oppose inward rotation during early to just
before mid stance at which time it reverses to oppose out-
ward rotation. When walking with an internally rotated
foot, selected FM indices were not statistically different
than those recorded for normal walking. Conversely,
when walking with an externally rotated foot, peak nor-
malized free moment and impulse were significantly
greater than normal walking.

This study is one of less than a handful of investigations
that has reported upon the FM during walking. Future
research directions on the behaviour of the FM waveform
in other walking conditions, and in different subject pop-
ulations, would help facilitate our understanding of the
FM as an objective gait assessment measure.
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