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ABSTRACT

Background Epistasis has been historically used to
describe the phenomenon that the effect of a given
gene on a phenotype can be dependent on one or more
other genes, and is an essential element for
understanding the association between genetic and
phenotypic variations. Quantifying epistasis of orders
higher than two is very challenging due to both the
computational complexity of enumerating all possible
combinations in genome-wide data and the lack of
efficient and effective methodologies.

Objectives In this study, we propose a fast,
non-parametric, and model-free measure for three-way
epistasis.

Methods Such a measure is based on information
gain, and is able to separate all lower order effects from
pure three-way epistasis.

Results Our method was verified on synthetic data and
applied to real data from a candidate-gene study of
tuberculosis in a West African population. In the
tuberculosis data, we found a statistically significant pure
three-way epistatic interaction effect that was stronger
than any lower-order associations.

Conclusion Our study provides a methodological basis
for detecting and characterizing high-order gene-gene
interactions in genetic association studies.

INTRODUCTION

Understanding the mapping from genetic variation
to phenotypic variation has a great potential
helping us understand, predict, diagnose, and treat
common human diseases. However, existing
main-effect-centered methodologies and techniques
that depend on fundamental assumptions about a
simple genetic architecture can only find very
limited individual associations with disease risks.
Genome-wide association studies'™ and next
generation sequencing® make millions of single
nucleotide polymorphisms (SNPs) in the human
genome available for testing associations with
phenotypic traits. These developments call for new
methodologies that embrace the complex genetic
architecture of diseases.’ © The non-additive effects
of gene-gene interactions, that is, epistasis, are
believed to be an important contributor to the
complex relationship between genetic and pheno-
typic variations.”'! The focus of recent disease
association research is shifting from identifying
single locus susceptibility to quantifying interaction
effects between multiple candidate loci throughout
the human genome.? ® 12

Detecting and quantifying epistasis is a very chal-
lenging task. First, the epistatic interactions could
involve multiple genes from a pair to a large set,
and this undetermined order of interactions
imposes enormous computational complexity of
enumerating all possible combinations of genetic
attributes for varying orders.® ' Second, as the
order of interacting genetic attributes goes beyond
two, it becomes mathematically difficult to separate
the additive lower-order effects and the pure
higher-order synergy, that is, the extreme case in
which the association can only be observed when
all attributes are considered together. Those are
also the major reasons why most existing epistasis
studies are limited to pairwise interactions on gen-
etics data of moderate sizes.

Information-theoretic measures have emerged as a
very useful tool to quantify synergistic interactions
among multiple genetic attributes.'*' These mea-
sures are based on the Shannon entropy, which
quantifies the amount of information, or uncertainty,
of a random variable.?? By considering genetic attri-
butes and phenotypic traits as random variables,
entropy-based information-theoretic measures can
be used to quantify the shared information between
one gene and a trait, i.e., the main effect, as well as
the gained extra information about a trait obtained
from combining multiple genes, i.e., the synergistic
effect or epistasis. However, as discussed previously,
due to the mathematical complexity, the application
of information-theoretic measures in disease associ-
ation studies is mainly limited to pairwise epistasis
between two genetic attributes.

In this study, we propose a new measure to quan-
tify the synergistic effects among three genetic attri-
butes that contribute to disease susceptibility by
extending the information-theoretic measure for
pairwise synergy. In particular, we first measure the
total amount of information that three attributes
together can provide about the phenotypic status,
and then subtract all lower-order effects including
the main effects of the three attributes and all pair-
wise synergies between them. This yields a very
strict measure of pure three-way epistasis. There
have been previous attempts at extending
information-theoretic measures on three-way and
higher-order synergies."* 7 23 2* However, most
existing measures are not able to decouple lower-
order interaction effects from the higher-order
effects and the formalization of higher-order
synergy is still debatable. We compared our new
measure to those existing ones and were able to
show that our measure performed the best at
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separating all lower-order effects from the pure three-way epis-
tasis by applying to both synthetic data containing artifact epis-
tasis models and real human disease data from a candidate-gene
association study of tuberculosis in a population from West
Africa.®® Of particular interest, we identified a statistically sig-
nificant three-way epistasis model in the tuberculosis data, in
which the three-way synergy is stronger than all the main effects
and pairwise-interaction effects combined. With further bio-
logical verification and interpretation, this model could be very
valuable in advancing tuberculosis research.

METHODS

Information-theoretic measures

In information theory,?? entropy is a measure of the uncertainty
of a random variable. It can be explained as the amount of
information required on average to describe a random variable.
For a discrete variable X with alphabet X’ and probability mass
function p(x), its entropy H(X) is defined as

=-> p(x)logp(x

xeX

When there are more than one random variable, the defin-
ition of entropy can be extended as follows. The joint entropy
of two discrete random variables X and Y with a joint distribu-
tion p(x,y) is defined as

=3 p(x,y)logp(x,y),

xeX ye)y

and the conditional entropy of X given the knowledge of Y can
be obtained by the chain rule as

H(X]Y) = H(X,Y) — H(Y).

The dependency between two random variables can be
described using mutual information.?? This is a measure of the
amount of information that one random variable contains about
the other, or can be thought of as the reduction of uncertainty
of one random variable given the knowledge of the other. In
the context of genetic association studies, mutual information
can be very useful to quantify how much of a phenotypic status
is explained by genotypic variations. We consider a genetic attri-
bute G; and the phenotypic class C, for example, case or
control, are both discrete random variables. The mutual infor-
mation I(Gp; C) measures the reduction in the uncertainty of
the class C due to the knowledge about the genotype of G
(figure 1A), defined as

1(G1:C) = H(C) — H(CIGy).
Intuitively, I(Gq; C) can be used as a measure of the main effect
of the genetic attribute G; on the class C.

Mutual information can also be extended to measure the epi-
static interaction effect between two attributes. Given two
genetic attributes Gy and G, the mutual information

[(G1,G2; C) = H(C) — H(C|Gy, G2)
measures how much of the phenotypic class joining Gy and G,
together can explain (figure 1B). By subtracting the individual main
effects of G and G, from their joint effect I(G1,Gz; C), that is,

IG(G1; Gz; C) = I(Gl,Gz; C) — I(Gl; C) — I(Gz; C)7

the information gain IG(Gy; Gy; C) is the gain of mutual informa-
tion of knowing both Gy and G, with respect to the class C. A
positive value of IG(Gy; G;;C) indicates the synergy between Gy
and G;, while a negative value indicates the redundancy or correl-
ation between them. The synergy can be well explained using the
epistatic interactions between two genetic attributes. As discussed
previously, this pairwise information-gain measure has been suc-
cessfully applied in many epistasis studies thanks to its model-free,
non-parametric, and fast implementation.

Further extension of the information-gain measure on more
than two genetic attributes is non-trivial for epistasis studies
because many complex human diseases could very likely involve
genetic interactions of orders higher than two way. There is no
widely accepted formal definition of information gain including
genetic attributes higher than two. Here, we make an effort meas-
uring three-way synergistic interactions using information gain.

In a previous attempt, Anastassiou'* and Varadan et al** pro-
posed to define the three-way information gain by comparing
the integrated joint mutual information to the best-achieved
subsets mutual information after breaking the whole into parti-
tions, mathematically written as

IGpartition(Gl B GZ; G3 ) C) = I(Gl ) G27 G3; C)
[(G1,G2;C) +1(G3;C)

I(G1,G3;C) +1(Gy;C)
N (G, GyiC) +1(Gr: )
1(G11C) +1(Ga:C) +1(Go:C).

The partition of the set {Gy,G;,G3} chosen in this formula
is the one that maximizes the sum of the amounts of mutual
information connecting the subsets with the phenotypic class.
This is referred to as ‘maximum-information partition’ of the
set {Gy,G,,G;} with respect to the class C. This three-way
IGpariition (G1; G2; G3; C) quantifies the information that can be
gained by combining Gi,G; and Gj together comparing to its
maximum-information partition. Although technically sound,
this formula might include false-positive errors of pure three-
way epistasis. For instance, assuming 1(Gy,G,;C) and I(G3;C) is
the maximum-information partition, after combining G; with
{G1,G,}, the gained information could be the result of either
the pure three-way epistasis, or the pairwise epistasis between
G;3 and one (or both) of {G{,G,}, or the mixture of all above.

A more strict alternative measure*® was proposed as follows

[Gaternative (G1; G25 G3; C) = 1(G1,G2,G3; C)
—IG(Gy; Gy; C) — IG(Gy; G3; C)
=1G(Gz; G3; C) = 1(Gy; C) = 1(Gy; C)
-1(G3;C),

where all the lower-order effects are subtracted. However, as
reviewed and pointed out in Anastassiou,'* this formula fails in the
extreme redundancy case where all G;, G,, and G3 provide the

same full amount of information on C, that s,
Gi=G,=G;=C. In this case,
I(Gi; C) = (G, Gj; C) = I(Gi, Gj, Gi; C) = H(C), where i,j, k are
different values taken from {1,2,3}. Therefore

IGa]temative (Gl; GZ; G3; C)
ory extreme synergy.

= H(C), which indicates the contradict-
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Figure 1 Venn diagrams showing the A
entropy and mutual information of

genetic attributes G and the

phenotypic class C. (A) For one H(C)

attribute G; and the phenotypic class
C, their entropies H(Gq) and H(C) are
indicated as the two colored sets. The
mutual information 1(Gy; C) is defined
as the intersection of the two sets, and
the joint entropy H(G;,C) is the reunion
of the two sets. (B) For two genetic
attributes Gy, G, and the phenotypic
class C, the mutual information
1(Gq, Gy; C) is the intersection of
entropy H(C) and joint entropy

H(Gy, Gy).

In our study, we propose a new strict measure by modifying

IGalternative as
aX{

IGurice (G13G23 G35 C) =1(G1, G2, G3;C)

7maX{IG(G1;G2;C) 7maX{IG(G1;G3;C) _
0 0

—I(G1;C) —1(G2;C) - [(G3;C).

We only subtract pairwise synergies, that is, positive infor-
mation gain, because the failure of IGyjernaive 1S due to the fact
that it adds back information by subtracting negative informa-
tion gain. By subtracting all lower-order effects and synergies,
IGyicc measures the pure three-way synergy that is observable
only by considering three attributes together.

Also note that, when applying to genetics data, the above
mutual-information and information-gain measures can be nor-
malized by dividing the class entropy H(C). The normalized
measures range from [—1,1], and provide the percentage of
explaining the phenotypic class C by giving the knowledge of
one or multiple genetic attributes.

0

Datasets
We applied both three-way synergy measures IGpariton and
IGgice to synthetic datasets and a real dataset on pulmonary

>

Figure 2 Information-theoretic

IG(Gz;G3;C)

B
1(G1,G5;C)

H(C)

G1 H(GQ)

tuberculosis from a West African population. The synthetic data-
sets were generated using genetic architecture model emulator
for testing and evaluating software (GAMETES),?® *7 a direct
approach to simulating bi-allelic n-locus epistatic models. In
GAMETES, an n-locus epistasis model is generated determinis-
tically with specified genetic constraints such as heritability and
minor allele frequencies, and then a population of samples can
be generated for that model. Using GAMETES, we can have
synthetic data of models with epistasis at desired orders, which
are ideal for testing and comparing the two three-way synergy
measures. We first generated a pure three-way epistasis model
{Py,P,, P53}, where the association to phenotypic status was only
observable when all three SNPs were considered together, that
is, no main effects and no pairwise interactions. The total herit-
ability of combining three SNPs was set to 0.27, and the minor
allele frequencies of all three SNPs were set to 0.2. A corre-
sponding dataset was generated by including 100 SNPs in total
with 97 randomized SNPs, {N{,N;,N3,...,No7}, to provide a
null distribution. This synthetic dataset had 400 cases and 400
controls. Then we used GAMETES to generate a collective pair-
wise epistasis model {P;,PIZ, P’3}, in which any two of the three
attributes had strong pairwise interactions but there was no epis-
tasis at the three-way level. Again there was no main effect for
each attribute. The heritability of combining three SNPs was set

w

measures (normalized information gain 80% 7

and mutual information representing
the genetic associations to the case—
control status) of the synthetic datasets
generated by GAMETES. (A) The first
synthetic dataset that has a pure
three-way epistasis model {P, P,, P3}
with no main effects and no pairwise
epistasis. (B) The second synthetic

25% —
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15% —

10% —

5% —

Association to phenotypic status
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——
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L
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dataset with a coIIectjve pairwise ‘

epistasis model {P;, P,, P5}, in which
there are no main effects and no
three-way epistasis but all the
pairs {P;, P,}, {P,,P5}, and {P,, P}
have interaction effects. Points in red
represent the observed values of the
mpde/l {P,1 ,P2,P3}in (A) and

{P;, P,, P;} in (B). Box plots in black
show the null distributions of
randomized single nucleotide
polymorphisms.

IGpartition  |Gstrict PAIr synergy  main effect

T T T T T
Gpartition 1Gstict Pair synergy  main effect
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to 0.32, and the heritability of combining any two SNPs, that is,
{P/17 P,Z}, {P,17 P;}, and {P,Z, P;}, was about 0.1. The minor allele
frequencies for all three SNPs were again set to 0.2. The second
synthetic dataset also included 100 SNPs in total with 97 rando-
mized SNPs and had 400 cases and 400 controls.

The pulmonary tuberculosis data are from a case—control
study®® conducted at the Bandim Health Project in Bissau, the
capital city of Guinea-Bissau. This area has a high prevalence of
pulmonary  tuberculosis and  tuberculosis symptoms.*®
Tuberculosis is one of the highest mortality diseases due to the
infection of Mycobacterium tuberculosis. However, the majority
of infected individuals keep the bacterium under control and
never develop a clinical disease. Genetic variation among indivi-
duals is a promising direction to look into the factors that could
influence the susceptibility to develop tuberculosis. Tuberculosis
patients included in this study were residents or long-term
guests of Bissau aged 15 years or older. From November 2003
to November 2005, 438 tuberculosis patients were screened at
local health centers. A total of 344 subjects met the inclusion
criteria and accepted participation, and DNA samples were suc-
cessfully collected from 321 of them. Healthy controls were
recruited from the study area with certain exclusion criteria,
such as history of tuberculosis and household tuberculosis
records within the past 2 years. Three hundred and forty-seven
DNA samples were obtained from the healthy control group.
All DNA samples were extracted using a standard salting-out
procedure. DNA purities were estimated spectrophotometrically,
and final concentrations were determined by PicoGreen.
Samples (4 ng of DNA) were genotyped by TagMan SNP assays
(ABI; Applera International Inc, Foster City, California, USA) in
10 ul reaction volume, using the Rotor-Gene 3000 (Corbett
Robotics Pty Ltd, Brisbane, Queensland, Australia) and the ABI
7500 real-time PCR systems. Fluorescence curves were analyzed
with the Rotor-Gene Software V6 and the 7500 Sequence
Detection Software V1.2.1 for allelic discrimination. The data
include 19 SNPs from innate immunity genes, DC-SIGN
(CD209), long pentraxin 3 (PTX3), toll-like receptors (TLRs),
and vitamin D receptor (VDR), which are relevant to the defense
against M tuberculosis. The missing genotypes (<5%) were
imputed using a frequency-based method. The missing value of a

Figure 3 The pairwise statistical DCSIEiex6T

epistasis network of the tuberculosis
data. The network has 32 edges
(pairwise interactions) and 19 vertices
(single nucleotide polymorphisms;
SNPs). The size of a vertex indicates its
main effect, and edge width indicates
the pairwise synergy. The color of a
vertex denotes the gene that a SNP
belongs to, with blue representing
(D209, green representing VDR, pink
representing PTX3, and yellow
representing TLRs. The network was
built by incrementally adding pairwise
interactions, ranked by their strength
(pairwise information gain), and their
two end SNPs. This network
construction process completed when
all 19 SNPs were included. It thus
shows the strongest pairwise
interactions and the neighborhood
structures for all 19 SNPs.

rs490

rs5743836

rs4g04803

rs36X4

sample was filled using the most common genotype of the corre-
sponding SNP in the population.

RESULTS

Information-gain measurements on synthetic data

Figure 2A shows the results of applying information-theoretic
measures to the first synthetic dataset that had a pure three-way
epistasis model. The points in red represent the observed values
of the model {Py,P,,P3}, and the box plots in black show the
measures for the randomized SNPs {Nj,N;,N3,...,No}.
Neither main effect nor pairwise synergy was found using the
information-theoretic measures as the observed data points do
not distinguish from the null distributions. In addition, both
three-way synergy measurements IGparition and IGggice successfully
captured the pure three-way epistasis in the model.

The results of the second synthetic dataset with the collective
pairwise epistasis model are shown in figure 2B. Again, the points
in red represent the observed values of the model {P},P,,P;},
and the box plots in black show the null distributions of 97 ran-
domized SNPs. As we can see, all three pairwise synergies were
detected. No three-way epistasis was detected by IGgyi, but
IGparition reported a strong three-way epistasis among Pll, P,Z, and
P, by including some portions of their pairwise synergies.

Information-gain measurements on real data

We used information-theoretic measures to quantify the main
effects, two-way and three-way synergies on all possible combi-
nations of attributes in the tuberculosis data. In addition, to
show the collective and neighborhood structures of strong syn-
ergistic pairs, we built a pairwise epistasis network'® (figure 3,
rendered by software Cytoscape®”). The network was con-
structed through an incrementing process as follows. An edge
and its two end vertices were added to the network only if their
pairwise epistasis strength was greater than a given threshold.
When we gradually decreased the threshold from its maximal
observed value to its minimal value, the network started from a
single edge with two vertices and eventually became a complete
graph, that is, every single vertex is directly connected to every
other vertex. We chose the highest pairwise synergy threshold,
that is, 0.71%, when all 19 attributes were included in the

7815644410
rs3845978
rs 2 rs327
rs2287886
rs10735810
rsi 1
15147084
rs2 @ 9

rs8105483 rs11489391

1741236 rsTT{Ed413
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network. Therefore, we can have a map of the strongest pair-
wise interactions showing the neighborhood structure of every
attribute.

Figure 3 has 19 vertices and 32 edges that represent the top
19
2
Using this network, we can easily identify three-way models that
have strong collective pairwise synergies. In graph theory,’® the
distance d(v1,v2) of a pair of vertices vi and v, is defined as the
minimal number of edges for one vertex to reach the other.
Given three vertices vy, v, and v3, we define their trio distance
duio(v1,v2,v3) as the sum of all pairwise distances, that is,
durio(v1, v2,v3) = d(v1,v2) + d(vy,v3) + d(v2,v3). Therefore, for
trios with dejo = 3, any two of them are directly joined by an
edge, which indicates three strong collective pairwise interac-
tions in a three-way model. If a trio has dgj, =4, one vertex is
directly connected to the other two but the other two are not
joined by an edge. A trio with dy;j, >4 does not have strong col-
lective pairwise epistasis.

Figure 4 shows the comparison of the results of both three-way
synergy measures. In general, IGparion and IGggiee are positively
correlated (Spearman’s rank correlation  p=0.8448,
p<<2.2 x 10716), All the data points, that is, three-way models, are
positioned on one side of the x=y line, which indicates that the
IGgricc measure is always less than or equal to the IGparidon
measure. This is intuitive because IGgyi; subtracts more terms than
IGpariton does from I(Gq, Gy, G3; C). Colors indicate whether a
trio has strong collective pairwise epistasis. As seen in the figure,
the discrepancies (away from the x=y line) between IGpariton and
IGyice are the most distinguishing for red data points, that is, trios
that have either two or three strong collective pairwise interactions.
These results also verify our previous discussion on these two three-
way synergy measures using synthetic data. That is, IGparion prob-
ably includes pairwise synergies into its three-way epistasis measure
when there are more than one pairwise synergies in a three-way

32 strongest pairwise interactions out of all ):171 pairs.

7
e distance > 4 trios ///
0.03 - | ® distance <4 trios e
L]
0.02 — .
S 0.01
0.00
0.01 —

T I I I I
0.01 0.00 0.01 0.02 0.03

IGpartition

Figure 4 Comparison of two three-way synergy measurements in the
tuberculosis data. Each data point represents a three-way model and its
color indicates whether the three-way model has strong collective
pairwise epistasis. If a trio’s distance is less than or equal to 4 in the
pairwise epistasis network (figure 3), this three-way model has strong
collective pairwise interactions among its three attributes (in red).
Otherwise a trio does not possess strong collective pairwise epistasis
(in black). The dashed curve represents the x=y line.

Table 1 Spearman’s rank correlation of association synergies or
effects at different model orders in the tuberculosis dataset

Three-way 1G4 rtition Three-way |Ggyict

Main effect p=0.0588 p=0.0508
p = 0.0015 p=0.0062
Pairwise synergy p=0.3278 p=0.0565
p=<22x10""6 p=0.0023

model, and IGyyi only captures the pure three-way epistasis that
are beyond any lower-order synergies or effects.

We also looked into the correlations between the three-way
synergies and lower-order synergies or effects (table 1). Both
three-way synergy measures do not correlate with individual
main effects. However, the three-way IGparition shows a correl-
ation with pairwise synergy but IGyyix does not. This further
confirms our previous discussion on the differences between
these two three-way synergy measures.

The best three-way models using those two synergy measures are
reported in figure 5. The figure shows all the individual main
effects, pairwise synergies, three-way synergies, and the total
mutual information for a three-way model. The best IGparition
model (figure 5A) includes SNPs rs11465421 from CD209,
751544410 from VDR, and 757975232 from VDR. It has the total
mutual information 6.695% and three-way IGparition 3.668%. This
model is clearly a mixed epistasis model by possessing both strong
collective pairwise interactions and a pure three-way interaction.
The best IGyyie model (figure 5B) involves SNPs from three differ-
ent genes, 755743836 from TLRY, 752305619 from PTX3, and
754804803 from CD209. All three SNPs have very limited main
effects and pairwise synergies. However, the strict three-way infor-
mation gain is stronger than all other lower-order effects combined

. [Gyiric .
together, and contributes (%) =54.23% to the total associ-

ation. An explicit test of epistasis®! was used to assess the statistical
significance of those observations. Instead of shuffling the case-
control class in a standard permutation test, the explicit test ran-
domly shuffled genotypes of samples within each class. Therefore,
the genotype frequencies within each class remained fixed. This
preserved the independent main effects while randomizing any
non-linear interactions, and provided the null hypothesis that the
only genetic effects in the data were linear and additive. We per-
formed the explicit test 1000 times for each observation, and both
best models were statistically significant (p=0.001 for the best
IGparition and p=0.008 for the best IGict).

DISCUSSION

Epistasis is recognized as playing an important role in the
genetic architecture of complex traits such as common human
diseases. Quantifying interaction effects among multiple loci
throughout the human genome has become the major focus of
current research for understanding the complex relationship
between genetic variations and phenotypic traits.® ° 1> However,
this task is challenging due to the fact that first enumerating all
possible combinations of genetic variants in a dataset of moder-
ate size is computationally infeasible, and second it is difficult to
separate the additive effects and the synergistic effects among
multiple genetic factors. The majority of epistasis studies focus
on pairwise interactions and rarely look beyond interactions of
orders higher than two. It is computationally intensive to enu-
merate three-way combinations in human genome data and,
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Figure 5 The models with the
highest three-way information gain in
the tuberculosis data. (A) The best
model of 1Gpariton With permutation
testing significance p=0.001, and (B) 0.493%

the best model of |Gyt With
rs1544410
0.010%

permutation testing significance
p=0.008. Each circle is a single
nucleotide polymorphism (SNP) with
its name and main effect strength. An
edge represents a pairwise epistasis
with its strength labeled. I is the total
mutual information between
combining three SNPs and the
case—control status, and IG is the
three-way information gain. All
measures are normalized by dividing
the entropy of the case—control status
H(C), and thus give the percentage of
predicting information on the
phenotype status.

furthermore, not many good methods of quantifying three-way
epistasis are proposed in the literature.*

In the present study, we proposed a fast, model-free, and non-
parametric measure to detect and characterize three-way epi-
static interactions. It is a natural extension of the pairwise
synergy measure using information gain by measuring the total
three-way mutual information and then subtracting three main
effects and three pairwise synergies. Our approach was shown
to be able to detect pure three-way epistasis, that is, no observ-
able effect at either the two-way or one-way level, in both syn-
thetic and real population-based genetics data. Our study is not
the first attempt to quantify three-way epistasis using
information-theoretic measures. We compared our measure
IGqyicr to a previously published one IGpamﬁon.32 Both measures
exclude main effects. However, IGpariton is biased towards
three-way models that possess strong pairwise interactions. Our
IGgyice excludes all one-way and two-way effects and is able to
detect pure three-way synergy that is only observable when all
three attributes are considered together.

Both three-way synergy measures were applied to a pulmon-
ary tuberculosis dataset from a West African population.
Several potentially relevant innate immunity genes, CD209,
PTX3, TLRs, and VDR, were included in these data to investi-
gate their role in pulmonary tuberculosis susceptibility. The
dendritic  cell-specific intercellular adhesion molecule-3-
grabbing non-integrin (DC-SIGN or CD209) is a crucial M
tuberculosis receptor expressed on the surface of dendritic
cells, and is involved in the initiation of innate immune
response through identification of potential infectious agents.
CD209 has previously been found to be associated with tuber-
culosis.>® ** Long pentraxin 3 (PTX3) is produced by innate
immunity cells and vascular cells in response to proinflamma-
tory signals and TLR engagement.>® PTX3 levels have been
shown to be correlated to the degree of infection in lungs, and
PTX3 plasma levels can be monitored to measure treatment
efficacy because PTX3 concentration decreases as an infection
is mitigated.>® TLRs are a family of receptors that are a key
component in the innate immune system. TLRs recognize
pathogenic molecules and control host immune response
against them, and have been extensively proved to impact sus-
ceptibility to infectious and inflammatory diseases.>” *® The
VDR has been shown to be linked to TLRs. It was found that

rs11465421
0.888%
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B
1=6.695% 1=4516%
1Gparition = 3.668% rs5743836 1Gpaniion = 2.978%
IGyyiy = 2.078% 0.104% IGgyioe = 2.449%
1.098% 0.421% 0.120%

rs7975232 rs2305619 rs4804803
0.773% 0.644% 0.368%

TLR activation of human macrophages upregulated expression
of the VDR and the vitamin D;-hydroxylase genes.>® This link
suggests that the difference among human populations’ ability
in producing vitamin D may contribute to susceptibility to
microbial infection. Furthermore, a case—control and family
study reported the association between VDR polymorphisms
and susceptibility to tuberculosis.*°

The strongest three-way epistasis models we found (figure 5)
could further extend and strengthen the understanding of how
those relevant genes might work in a synergistic way. Although
the synergistic effects were captured in a statistical manner, they
may indicate either direct or indirect biological relationships
among those genetic factors. In particular, the strongest IGparition
model shows a ‘nested’ epistasis hierarchy with both strong pair-
wise interactions and a strong pure three-way interaction. These
three SNPs are from VDR and CD209, which indicates a poten-
tial correlation between these two genes. More interestingly, the
strongest IGyyice model shows a three-way synergy among TLR9,
PTX3, and CD209. There have been studies reporting correla-
tions and molecular interactions between TLRs and CD209.*!
However, no published research has indicated the three-way bio-
logical synergy among all three genes. Our findings may suggest
that multiple pathways interweave in the innate immune system
to defend the human body against M tuberculosis, and the defi-
ciencies in all those three genetic factors greatly increase the risk
of developing tuberculosis. We believe that with further biological
validations, our findings could be very helpful in predicting high-
risk M tuberculosis-infected individuals and preventing their
tuberculosis clinical developments.

Investigating high-order genetic interactions is an arduous task,
and yet essential for understanding the complex genetic architec-
ture of human diseases. The effectiveness of our information-gain
approach in detecting three-way interactions was verified using
both synthetic and real genetics data. Note that our measurement
is scalable regardless of the size of genetics data. However, when
large-scale genome-wide data are considered and exhaustive enu-
meration of all possible three-way genetic attribute combinations is
infeasible, data pre-screening using intelligent data-mining techni-
ques or biology knowledge will be required. There are some inter-
esting venues to extend our approach in future studies. First, it is
important to study the genetic interactions on continuous traits. In
that case, the probability density functions for continuous random
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variables will be used to replace the probability mass function in
current discrete information-theoretic measures. Second, it will be
interesting to extend the measures on synergies higher than three
way. However, as more attributes are involved, the interaction hier-
archy gets more complicated. More carefully designed mathemat-
ical measures are required. We anticipate that designing powerful
and efficient methods to quantify high-order epistasis has the great
potential in improving disease treatment and healthcare by reveal-
ing the genetic complexity of common human diseases.

Correction notice This paper has been corrected since it was published Online
First. A number of equations have been corrected, and the funding statement has
been reworded.
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