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Application of a Genetic Risk Score 
to Racially Diverse Type 1 Diabetes 
Populations Demonstrates the 
Need for Diversity in Risk-Modeling
Daniel J. Perry1, Clive H. Wasserfall1, Richard A. Oram2,3, MacKenzie D. Williams1, Amanda 
Posgai  1, Andrew B. Muir  4, Michael J. Haller5, Desmond A. Schatz5, Mark A. Wallet1, 
Clayton E. Mathews1, Mark A. Atkinson1,5 & Todd M. Brusko  1

Prior studies identified HLA class-II and 57 additional loci as contributors to genetic susceptibility for 
type 1 diabetes (T1D). We hypothesized that race and/or ethnicity would be contextually important for 
evaluating genetic risk markers previously identified from Caucasian/European cohorts. We determined 
the capacity for a combined genetic risk score (GRS) to discriminate disease-risk subgroups in a racially 
and ethnically diverse cohort from the southeastern U.S. including 637 T1D patients, 46 at-risk relatives 
having two or more T1D-related autoantibodies (≥2AAb+), 790 first-degree relatives (≤1AAb+), 68 
second-degree relatives (≤1 AAb+), and 405 controls. GRS was higher among Caucasian T1D and at-
risk subjects versus ≤ 1AAb+ relatives or controls (P < 0.001). GRS receiver operating characteristic 
AUC (AUROC) for T1D versus controls was 0.86 (P < 0.001, specificity = 73.9%, sensitivity = 83.3%) 
among all Caucasian subjects and 0.90 for Hispanic Caucasians (P < 0.001, specificity = 86.5%, 
sensitivity = 84.4%). Age-at-diagnosis negatively correlated with GRS (P < 0.001) and associated with 
HLA-DR3/DR4 diplotype. Conversely, GRS was less robust (AUROC = 0.75) and did not correlate with 
age-of-diagnosis for African Americans. Our findings confirm GRS should be further used in Caucasian 
populations to assign T1D risk for clinical trials designed for biomarker identification and development 
of personalized treatment strategies. We also highlight the need to develop a GRS model that 
accommodates racial diversity.

Type 1 diabetes susceptibility is largely controlled by HLA class-II genotype1, with modest contributions from at 
least 57 additional loci that confer varying degrees of disease protection or susceptibility2. Combinations of these 
alleles are thought to collectively determine an individual’s overall genetic risk, potentially resulting in heteroge-
neous disease presentation and etiology. The major role of HLA has been known for decades and is used as inclu-
sion criteria for most studies of the disorder’s natural history. However, since HLA class-II is generally deemed to 
confer approximately half of the overall genetic risk3–5, it is likely that non-HLA risk loci could also be utilized to 
improve at-risk cohort stratification. Such measures of “total genetic risk” may be more effective at stratifying het-
erogeneous etiologies, for example, older progressors, who are less likely to develop multiple pre-clinical AAb and 
tend to have slower decline in C-peptide versus individuals with latent autoimmune diabetes in adults (LADA)6,7.

Large consortiums, such as the NIH-sponsored TrialNet, follow subjects at risk for type 1 diabetes and con-
duct intervention trials using composite scores that have factored in the presence of islet autoantibodies, family 
history, HLA risk haplotypes, as well as metabolic response markers8. These interventional efforts often aim to 
interdict the disease process at stage one, when there are already multiple autoantibodies present and a high 
likelihood of disease progression9. However, primary prevention trials aiming to avert the initiation of islet auto-
immunity will likely require safe interventional efforts targeted to large population-based cohorts. Such cohorts 
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can only be identified by genetics-based risk modeling near birth, given that autoantibody biomarkers that cor-
respond to ongoing autoimmunity often occur early in life10,11. Consequently, the type 1 diabetes research com-
munity has developed increasingly informative genetic risk models based on genome wide association studies 
(GWAS) for risk prediction12.

The first attempts calculating overall type 1 diabetes genetic risk demonstrated that increased cumulative 
non-HLA risk alleles were associated with islet autoreactivity and disease onset, especially in the context of 
high-risk HLA13,14. These simple additive models only achieved area under the receiver operating characteristic 
curve (AUROC) of 0.66 for disease outcome. A major improvement was reported by Winkler et al. with their 
development of a multivariable logistic regression model to compute a type 1 diabetes genetic risk score (GRS)15. 
Using this model, they were able to discern patients from controls with AUROC of 0.87 to more accurately pre-
dict disease progression. In more recent works, Oram et al.16 and Patel et al.17 utilized a log-additive model18 to 
discriminate type 1 diabetes from type 2 diabetes patients (AUROC of 0.88) and subjects with monogenic forms 
of diabetes (AUROC of 0.87) from the Wellcome Trust Case Control Consortium (WTCCC) of British subjects 
with European Caucasian ancestry. Given the alarming increase in diabetes prevalence, particularly of type 2 
diabetes in youth19 that may be difficult to discern from type 1 diabetes, there is a need to develop the GRS as a 
diagnostic tool. This requires examination of GRS in geographically distinct and demographically diverse patient 
populations with the potential for varying allele frequencies.

Our efforts reported herein expand previous analyses to southeastern United States populations, include con-
siderations of race and ethnicity, and support the differential diagnostic utility of a GRS for clinical applications 
in type 1 diabetes. Such studies in distinct cohorts offer the potential to further refine the stratification of at-risk 
subjects and potentially elucidate type 1 diabetes subtypes. We examined several key features of the GRS, includ-
ing its relationship with age of onset and the contribution of HLA class-II to that relationship, its utility in the 
context of subject race/ethnicity, and its capacity to aid in risk stratification.

Results
GRS effectively discerns type 1 diabetes patients and AAb+ individuals from controls and rela-
tives within a Caucasian cohort. Until now, type 1 diabetes GRS regression models put forth by Oram et al.  
and Patel et al.16,17 have only been tested and validated in European Caucasian cohorts15–17. We sought to determine 
the efficacy of a similar GRS, calculated as previously described16,17, in our regional southeastern U.S. cohort com-
prised of type 1 diabetes patients [n = 637, age (years) median (interquartile range) 15.50 (11.67–19.75)], first-de-
gree relatives [≤1AAb+, n = 790, age 20.75 (11.29–40.42)], second-degree relatives [≤1AAb+, n = 68, age 26.79 
(12.33–45.02)], at-risk relatives (≥2AAb+, n = 46, age 15.33 (10.33–33.83)], and controls [n = 405, age 23.92 (16.42–
33.25)] of various racial and ethnic backgrounds, including Caucasian, African, and Asian Americans (Fig. 1A  
top and 1B; Supplemental Tables 1 and 2). A genotyping panel composed of HLA imputing SNPs (Fig. 1C)  

Figure 1. The University of Florida Diabetes Institute (UFDI) cohort demographics and loci used to calculate 
the Genetic Risk Score (GRS). (A) Top panel- Proportion of Caucasian (CAU), African American (AFR), 
Asian (ASN), Other (includes 0.26% Native American, 0.26 Pacific Islander, and 2.52% multiple races), and no 
data/not reported (ND). Bottom panel- Proportion of CAU that also self-reported as Hispanic (HSP) or non-
Hispanic (NHS). (B) Age of diagnosis of the total, CAU, and AFR UFDI type 1 diabetes subjects. (C) Odds 
ratios (OR) for HLA diplotypes (DR3/4, DR4/4, DR3/3, DR4/X, and DR3/X) and haplotypes (non-DQ6, A24, 
and non-B57) used to compute the GRS. (D) OR for non-HLA loci.
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and putatively identified non-HLA SNPs associated with disease risk (Fig. 1D) was utilized to compute a log-ad-
ditive type 1 diabetes GRS. Since the HLA locus does not fit this log-additive model1,20, we used published ORs 
for imputed HLA diplotypes (Supplemental Table 3).

We began with the Caucasian subject set from the UFDI cohort, which may be genetically distinct from the 
European cohorts. Notably, 13.49% the Caucasian subjects reported Hispanic/Latino ethnicity (Fig. 1A bottom). 
The GRS was significantly higher for type 1 diabetes patients (n = 478, mean ± SD 0.277 ± 0.03, P < 0.0001 for 
all comparisons) compared to controls (n = 290, 0.231 ± 0.03), second-degree relatives (n = 33, 0.244 ± 0.03) and 
first-degree relatives (n = 611, 0.253 ± 0.03) (Fig. 2A). Anticipated dilution of risk in first- and second-degree 
relatives was also evident. Notably, at-risk relatives (≥2 AAb+) had a GRS (0.274 ± 0.03, P > 0.9999) similar to 
type 1 diabetes patients (Fig. 2A). ROC analysis demonstrated the GRS significantly discriminated between type 
1 diabetes patients and control subjects, providing 73.9% specificity with 83.3% sensitivity for accurately detecting 
type 1 diabetes by GRS alone (AUROC = 0.86, Fig. 2B). As expected, it was less effective at discriminating type 
1 diabetes from first-degree relatives (65.0% specificity, 67.4% sensitivity, AUROC = 0.72, Fig. 2B). To examine 
the utility of this model in classifying individuals as type 1 diabetes subjects, controls, or relatives, we calculated 
the balanced accuracy across the distribution of the GRS range. We found that 0.251 was the optimal threshold 
to classify type 1 diabetes and control subjects in this GRS model, with accuracy of 79.0% (Fig. 2C) and that a 
GRS threshold of 0.267 yielded accuracy of 66.7% for classifying type 1 diabetes subjects from relatives (Fig. 2D).

Multiple AAb+ subjects under 20 years of age have the highest probability of progressing to disease and may 
already have subclinical type 1 diabetes21. It is less clear whether older multiple AAb+ individuals will progress to 
disease. Consistent with this, at-risk subjects under 20 years of age in our cohort had a GRS (0.277 ± 0.03) identi-
cal to the type 1 diabetes patients’ GRS. We observed that 56.5% of at-risk subjects under 20 years of age had GRS 
above the UFDI type 1 diabetes patient cohort 50th centile (Fig. 2E, solid horizontal line) compared to only 22.2% 
of the at-risk subjects above 20 years of age. Further, for subjects <20 years of age, GRS of at-risk subjects was sig-
nificantly higher than relatives, while for >20 year olds, GRS of at-risk subjects was similar to relatives (Fig. 2F).

In addition to reporting race, subjects also reported ethnicity as Hispanic/Latino or non-Hispanic/Latino. 
Hispanic individuals represent a genetically diverse population with mostly European, Native American, and 
African admixtures22,23. Since this GRS was modeled from Caucasian American and European genetic frequen-
cies, we sought to investigate its accuracy on this diverse population. 12.9% (n = 252) of the total UFDI cohort (all 
races) self-reported as Hispanic/Latino. Within these, 77.38% (n = 195) reported as Caucasian, 3.57% (n = 9) as 
African American, and 19.05% (n = 48) as Other (multiple race or not reported, Fig. 3A; Supplemental Table 2). 
We found that the GRS discriminated Hispanic/Latino Caucasian patients (n = 45, 0.281 ± 0.02) from Hispanic/
Latino Caucasian controls (n = 37, 0.232 ± 0.03; AUROC = 0.90) with efficacy comparable to non-Hispanic/
Latino Caucasian patients (n = 433, 0.275 ± 0.03) from non-Hispanic/Latino Caucasian controls (n = 253, 
0.230 ± 0.04; AUROC = 0.85) (Fig. 3B). Among Caucasian controls, mean GRS was similar for Hispanic/Latino 
and non-Hispanic/Latino cohorts (Mann-Whitney P = 0.981). Moreover, the GRS of this U.S.-derived Caucasian 
cohort, which includes Hispanic/Latino Caucasian subjects, was comparable to the GRS of a European-derived 
Caucasian cohort (Supplemental Table 4)16,17,24. The Hispanic African American and Hispanic Other cohorts are 
shown for comparison, but were not sufficiently powered for analysis (Fig. 3B).

Higher GRS associates with a younger age at diagnosis in Caucasian subjects. We next addressed 
whether GRS was associated with type 1 diabetes age of onset. Indeed, among Caucasian type 1 diabetes sub-
jects, we observed a significant negative correlation between GRS and age of diagnosis (Pearson’s correlation 
r = −0.23, P < 0.0001, Fig. 4A). Subjects diagnosed after age 16 had lower GRS than those diagnosed from 8–16 
years of age and those diagnosed under age 8 (Fig. 4B), suggesting that a higher GRS may predict earlier disease 
onset. Prior studies noted the HLA association with earlier onset of disease; however, the contribution of the 
non-HLA component of risk was not clear25–27. Our data clearly demonstrated the majority, if not all, of this neg-
ative age association was conferred by the HLA risk component. When the non-HLA loci were removed from the 
GRS calculation, the negative correlation with age (r = −0.25, P < 0.0001) was virtually the same as the full GRS 
(Fig. 4C,D). Conversely, when HLA was removed from the calculation, no association with age at diagnosis was 
observed (Fig. 4E,F).

We next sought to determine which HLA diplotypes may be affecting the age at diagnosis. High-risk 
HLA-DR3-DQ2 (simplified to DR3) and HLA-DR4-DQ8 (simplified to DR4) were imputed and subjects were 
categorized into six diplotypes in combination with lower-risk HLA (collectively denoted as DRX): DR3/DR4, 
DR4/DR4, DR3/DR3, DR4/DRX, DR3/DRX, and DRX/DRX. We observed the known contribution of HLA-DR3/
DR4 to earlier clinical onset28, as well as a significant difference in age of diagnosis between HLA-DR3/DR4 and 
HLA-DR4/DR4 subjects (Fig. 5A). Distributions of numbers (Fig. 5B) and percentages (Fig. 5C) of age of diag-
nosis stacked by HLA risk diplotypes illustrate the skewing of HLA-DR3/DR4 individuals to earlier diagnoses. 
To quantify this observation, we calculated the proportion of patients diagnosed prior to 8 years of age, from 
8–16 years of age, and older than 16 years of age for each of the six HLA categories (Table 1). We found that the 
proportion of patients with HLA-DR3/DR4 diagnosed before age 8 (44.4%) was 5.6 times greater (P < 0.01) than 
those diagnosed after age 16 (7.9%), while the proportion for the other five HLA categories diagnosed before 
age 8 (28.9%) was only 1.5 times greater than those diagnosed after age 16 (19.1%). Conversely, significantly 
more patients with HLA-DR4/DR4 (P < 0.01) and DRX/DRX (P < 0.05) diplotypes were diagnosed after age 16. 
Interestingly, HLA-DR3/DR3 patients were more likely to be diagnosed between age 8 and 16 (P < 0.01, Table 1). 
These results suggest that contribution of high-risk HLA-DR3 and HLA-DR4 haplotypes to age of clinical onset 
may be more nuanced than previously reported25–28.

Oram and Patel initially used a similar GRS model as a tool to assist in the differential diagnoses of early 
onset type 2 diabetes and monogenic forms of diabetes from type 1 diabetes16,17. Within the UFDI cohort, we 
identified five type 1 diabetes subjects with GRS values below the 99th percentile prediction band of GRS versus 
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Figure 2. The Genetic Risk Score (GRS) can discriminate Caucasian subjects with type 1 diabetes and high-
risk relatives from controls and lower-risk relatives. (A) GRS was significantly higher among Caucasian type 
1 diabetes patients (T1D, n = 478) and at-risk relatives (n = 35) compared to controls (n = 290), second-
degree relatives (2° Relatives, n = 33), and first-degree relatives (1° Relatives, n = 611). (B) Receiver operating 
characteristic (ROC) curve shows that the GRS significantly discriminates type 1 diabetes patients from control 
subjects (T1D vs Controls) with 83.3% sensitivity yielding 73.9% specificity (area under curve (AUC) = 0.8598) 
and, to a lesser degree, type 1 diabetes patients from first-degree relatives (T1D vs Relatives) with 67.4% 
sensitivity yielding 65.0% specificity (AUC = 0.7163). (C) Classifying subjects as T1D or control. Peak balanced 
accuracy was determined to be 78.95% at a GRS of 0.251. (D) Classifying subjects as T1D or relatives. Peak 
balanced accuracy was 66.70% at a GRS of 0.267. (E) GRS of At-risk subjects (≥2AAb+) vs age at donation. The 
75th (upper dotted), 50th (solid), and 25th (lower dotted) centile lines of the T1D GRS are shown for reference. 
(F) Comparison of GRS of young (<20 years old) At-risk subjects to aged (>20) At-risk, young first-degree 
relatives, aged first-degree relatives. Kruskal-Wallis ANOVA with Dunn’s posttest *P < 0.05, **P < 0.01, 
****P < 0.0001.
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age at diagnosis (Fig. 4A). Initially, we observed 3 additional type 1 diabetes subjects with exceptionally low GRS 
that were all AAb- at onset (data not shown). Clinical follow-up revealed that two of these subjects (subject 1: 
age at diagnosis (yrs) = 10, BMI = 28.0, GRS = 0.118; subject 2: age at diagnosis = 15, BMI = 19.3, GRS = 0.153) 
were undergoing MODY testing (awaiting patient compliance), and the third (age at diagnosis = 16, BMI = 42.0, 
GRS = 0.184) has been re-diagnosed as having type 2 diabetes. These results support the utility of GRS in aiding 
in the differential diagnosis of diabetes forms when used in combination with standard clinical assessments and 
AAb detection.

Current GRS models are less robust for assessing type 1 diabetes risk in U.S. racial minority 
groups. We next examined the utility of GRS to discriminate type 1 diabetes subjects from controls or relatives 
within the Asian American and African American (includes Hispanic/Latino African Americans, Supplemental 
Table 2) subsets of the UFDI cohort. This notion emanates from previous HLA associations in African American 
type 1 diabetes subjects29, in addition to clear alterations in the allele frequencies of racial groups for the putative 
risk loci reported in the 1000 Genomes project30. Similar to Caucasian subjects (Fig. 2), GRS was significantly 
higher in Asian American type 1 diabetes subjects compared to controls (Fig. S1A). GRS appeared to accu-
rately discriminate type 1 diabetes patients from controls (AUROC = 0.92; P = 0.0002) and from relatives with 
(AUROC = 0.86; P = 0.04) (Fig. S1B), although this cohort is insufficiently powered to draw conclusive results at 
a population scale (Supplemental Table 1). Additionally, no multiple AAb+ at-risk Asian American subjects were 
enrolled in this study; hence, there is a need to validate these findings in a larger cohort.

Once again, GRS was significantly higher in African American type 1 diabetes patients (n = 84) compared 
to controls (n = 63) as well as relatives (n = 118), but the study was not sufficiently powered to detect significant 
differences from multiple AAb+ at-risk African American subjects (n = 6, Fig. 6A; Supplemental Table 1). Within 
the African American cohort, we found GRS was less robust in discerning type 1 diabetes patients from con-
trols (63.0% sensitivity, 85.3% specificity, AUROC = 0.75) or from first-degree relatives (63.0% sensitivity, 61.5% 
specificity, AUROC = 0.63) (Fig. 6B). Peak balanced accuracy was 68.98% at GRS = 0.233 for classifying African 
American subjects as type 1 diabetes patients or controls and 60.30% at GRS = 0.233 for classifying subjects as 
patients or relatives (Fig. 6C,D). Additionally, the HLA-mediated association between GRS and age of diagnosis 
observed in Caucasian patients was lost in the African American cohort (Figs S2–S3; Supplemental Table 5). 
HLA associated with the highest risk in Caucasians were detected in lower frequencies in African Americans, 
where the three highest risk HLA (HLA-DR3/DR4, -DR4/DR4, and -DR3/DR3) were only detected in African 
American patients and not in controls (Fig. S3; Table 2). Importantly, the SNP array utilized herein did not impute 
the African American-derived HLA haplotypes shown to confer type 1 diabetes risk or protection29. Though 
only modestly powered, several non-HLA alleles tested for GRS did not confer risk in African Americans to 
the same degree as in Caucasians (Table 2). Notable risk differences were observed for three SNPs tested herein: 
SH2B3 conferred higher risk in UFDI African Americans (OR = 2.93 [95% CI, 1.22–7.03], P = 0.013) than UFDI 
Caucasians (OR = 1.30 [1.06–1.59], P = 0.014); CTRB1/2 was protective in African Americans, though it did 
not achieve significance (OR = 0.55 [0.97–3.44], P = 0.08) in contrast to Caucasians where CTRB1/2 was clearly 
associated with risk (OR = 1.56 [95% CI, 1.12–2.17], P = 0.008); GAB3 only conferred risk in African Americans 
(OR = 1.82 [1.09–3.04], P = 0.028) and not in Caucasians (OR = 0.89 [0.88–1.44], P > 0.1) (Table 2).

Figure 3. GRS assessment of Hispanic ethnicity by race. (A) Proportion of CAU, AFR and Other (multiple 
or not reported) in subjects that self-reported as Hispanic (HSP) ethnicity. (B) Comparison of HSP ethnicity 
subjects by race to CAU non-Hispanic (NHS) subjects indicates that GRS discriminates patients from control 
HSP CAU subjects as well as it does for NHS CAU.
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Figure 4. HLA risk imparts a genetic association with age of disease onset. (A) The genetic risk score (GRS) 
was significantly and inversely correlated with age at diagnosis (linear regression analysis and Pearson 
correlation coefficient, P < 0.001, r = −0.227). (B) GRS was significantly different in patients when grouped 
into under 8, 8–16, and over 16 years old at diagnosis (Kruskal-Wallis ANOVA with Dunn’s posttest **P < 0.01, 
****P < 0.0001). (C, D) The HLA-only GRS imparted a similar association with age at diagnosis as the full 
score (C: linear regression analysis and Pearson correlation coefficient, P < 0.001, r = −0.245; D: Kruskal-Wallis 
ANOVA with Dunn’s posttest *** P < 0.001, ****P < 0.0001). (E, F) The non-HLA GRS did not correlate 
with age at diagnosis (E: linear regression analysis and Pearson correlation coefficient, P > 0.05, r = −0.010; F: 
Kruskal-Wallis ANOVA with Dunn’s posttest P > 0.05). The 99% probability bands for linear regressions are 
depicted as dotted lines.
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Discussion
Focused genetic testing is relatively inexpensive, non-invasive, and may be scaled for population screening efforts. 
The implementation of such tests may be useful for refining efforts to identify subjects who would benefit from 
more costly AAb and interventional screening efforts that may need to be repeated over time. Given that type 1 
diabetes has known genetic components conferring susceptibility, several models designed to stratify subjects 
as high- and low-risk have been developed in recent years. One model was recently shown to assist in the dif-
ferential diagnosis of type 1 diabetes from early-onset type 2 diabetes and from monogenic diabetes16,17. We 
emulated this model to assess its capacity to stratify subgroups (i.e., controls, low- and high-risk relatives, type 
1 diabetes patients) using cumulative genetic risk in our regional cross-sectional cohort. While the Oram et al. 
and the Winkler et al. models both report similar AUROC, we chose to use the Oram et al. model because it 
employs published, accessible OR to set weights for T1D risk loci. Using this approach, we were able to segregate 

Figure 5. HLA versus Age at Diagnosis. (A) Patients with the highest risk HLA-DR3/DR4 had a lower age 
at diagnosis. Kruskal-Wallis ANOVA with Dunn’s posttest **P < 0.01, ***P < 0.001. (B) Stacked histogram 
depicting the cumulative number of patients grouped by HLA type versus their ages at diagnosis (4 year 
binned). (C) Stacked histogram depicting the cumulative percent of patients grouped by HLA type versus their 
ages at diagnosis (4 year binned). (B,C) HLA-type is indicated by color as shown within the figure, and 8-year 
and 16-year age cutoffs are indicated by dashed lines.

Age at 
Diagnosis

DRX/DRX DR3/DRX DR4/DRX DR3/DR3 DR4/DR4 DR3/DR4

N (OR) N (OR) N (OR) N (OR) N (OR) N (OR)

<8 15 (0.59) 24 (1.06) 39 (0.97) 10 (0.62) 6 (0.44) 56 (1.97‡)

8–16 30 (0.86) 33 (0.84) 62 (1.07) 29 (2.54‡) 15 (0.85) 60 (0.84)

>16 18 (2.47‡) 13 (1.24) 18 (0.92) 2 (0.25†) 11 (3.07‡) 10 (0.37‡)

Table 1. HLA versus Age at Diagnosis. The proportion of type 1 diabetes subjects diagnosed at age <8, age ≥8 
to <16, and age ≥16 years within each HLA category is reported as number (N) and as odds ratio (OR). The 
OR is calculated for age groups within each HLA diplotype (i.e., the OR of DR3/DR4 patients being diagnosed 
under 8 years of age is 1.97 as compared to DR3/DR4 patients diagnosed over 8 years of age). Fisher’s exact test 
was used to determine if age at diagnosis was significantly different for each HLA type. †P < 0.05, ‡P < 0.01.
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Caucasian type 1 diabetes subjects from controls with 79.0% accuracy and an AUROC = 0.86. As a compar-
ison, in a European Caucasian cohort roughly 7 times larger, Winkler et al. reported a patient versus control 
ROC AUC = 0.8731. Of note, GRS of our UFDI cohort were comparable to those previously scored for the 
WTCCC16,17,24 (Supplemental Table 5). As expected, the GRS was higher in subjects with type 1 diabetes com-
pared to first-degree relatives, second-degree relatives, and controls. Most importantly, the GRS was also signif-
icantly higher in relatives at the highest-risk for disease development (≥2 AAb+) compared lower-risk relatives 
(≤1 AAb+); this was the case even in subjects under 20 years of age (0.277 ± 0.03). We note that this current study 
did not measure anti-insulin autoantibodies, which may have affected subject assignment as ≤1 AAb+ relatives 
and ≥2AAb+ at-risk relatives. These data support the notion that genotyping a limited number of selected SNPs 
allows for the identification of subjects at elevated-risk for developing disease. This notion has important impli-
cations for GRS use for subject enrollment into mechanistic and natural history studies of type 1 diabetes. It also 
highlights potential for large-scale population screening efforts for clinical diagnostics, particularly as per sample 
genotyping costs decline over time. We acknowledge that our genotyping is by no means comprehensive, and 
the potential may exist to improve prediction and ROC values as additional validated loci and causative SNPs 
are defined. This may be particularly true regarding ROC for type 1 diabetes subjects versus relatives sharing an 
appreciable portion of the genome. Ultimately, long-term longitudinal studies such as TEDDY, DAISY, TrialNet 
Natural History Study, and BABYDIAB will be most informative for such analyses14,15,32.

Genetic screening may not only identify high-risk individuals, but may also indicate appropriate ages to 
implement other screening regimens, such as AAb testing. We found a significant negative correlation between 
GRS and age of type 1 diabetes diagnosis, which was nearly completely accounted for by HLA diplotype. While 
the highest-risk HLA-DR3/DR4 diplotype was associated with the earliest age of diagnosis, as has been previously 
shown25–27, diagnosis occurred significantly later and coincided with puberty in subjects carrying the HLA-DR3/
DR3 diplotype. The genes that comprise GRS account for a major proportion of the heritability of type 1 diabetes 
but explain much less of the variation of the heterogeneity of age of diagnosis. Improvements in this latter capacity 

Figure 6. GRS poorly discriminates African American (AFR) subjects with type 1 diabetes and high-risk 
relatives from controls and lower-risk relatives. (A) GRS was higher among type 1 diabetes patients (T1D, 
n = 84) and at-risk relatives (n = 6) compared to controls (n = 63), second-degree relatives (2° Relatives, 
n = 28), and first-degree relatives (1° Relatives, n = 118). Kruskal-Wallis ANOVA with Dunn’s posttest 
*P < 0.05, **P < 0.01, ****P < 0.0001. (B) Receiver operating characteristic (ROC) curve shows that the GRS 
discriminates type 1 diabetes patients from control subjects (T1D vs Controls) with 62.96% sensitivity yielding 
85.25% specificity (area under curve (AUC) = 0.7522) and type 1 diabetes patients from first-degree relatives 
(T1D vs Relatives) with 62.96% sensitivity yielding 61.54% specificity (AUC = 0.6327). (C) Classifying subjects 
as T1D or Control. Peak balanced accuracy was determined to be 68.98% at a GRS of 0.233. (D) Classifying 
subjects as T1D or relatives. Peak balanced accuracy was 60.39% at a GRS of 0.233.
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may require better powered approaches or GWAS designed to identify genetic associations of type 1 diabetes 
characteristics (such as diagnosis age33 and rate of β-cell decline), which may be distinct from the variants asso-
ciated with disease development.

SNP Locus
Candidate 
Gene(s)

Genotype 
Measured

UFDI CAU Cohort UFDI AFR Cohort

T1D 
Frequency

Control 
Frequency OR 95% CI p-value

T1D 
Frequency

Control 
Frequency OR 95% CI p-value

rs2187668 
rs7454108 6p21.32

HLA DR3-
DQ2 HLA 
DR4-DQ8

DR3/4 0.2636 0.0347 9.95 5.13–19.31 2.72 × 10-18 0.0833 0.0000 — — 2.00 × 10-2

DR4/4 0.0690 0.0313 2.30 1.08–4.88 3.21 × 10-2 0.0238 0.0000 — — 0.51

DR3/3 0.0962 0.0035 30.56 4.19–
222.85 3.61 × 10-9 0.0595 0.0000 — — 0.07

DR4/X 0.2573 0.1701 1.69 1.17–2.45 5.52 × 10-3 0.1905 0.0635 3.47 1.1–10.96 2.97 × 10-2

DR3/X 0.1569 0.1979 0.75 0.52–1.1 0.17 0.2262 0.1587 1.55 0.66–3.61 0.40

DRX/X 0.1569 0.5625 0.14 0.1–0.2 1.90 × 10-31 0.4167 0.7778 0.20 0.1–0.43 1.15 × 10-5

rs3129889 6p21.32 HLA DR15-
DQ6† X† 0.9822 0.8802 7.52 4.37–12.92 1.35 × 10−16 0.9940 0.9921 1.32 0.08–21.31 1.00

rs1264813 6p21.32 HLA A24 A24 0.8800 0.9100 0.72 0.51–1.02 7.54 × 10–2 0.9464 0.9524 0.88 0.31 − 2.55 1.00

rs2395029 6p21.32 HLA B57† X† 0.9927 0.9790 2.91 1.14–7.42 2.93 × 10−2 1.0000 0.9921 — — 0.43

rs2476601 1p13.2 PTPN22 A 0.1542 0.0734 2.30 1.61–3.28 1.72 × 10−6 0.0179 0.0154 1.16 0.19–7.07 1.00

rs3024505 1q32.1 IL10 G 0.8724 0.8616 1.10 0.81–1.49 0.54 0.9458 0.9385 1.14 0.43–3.05 0.81

rs1990760 2q24.2 IFIH1 T 0.6330 0.6211 1.05 0.85–1.3 0.66 0.2143 0.2109 1.02 0.58–1.81 1.00

rs3087243 2q33.2 CTLA4 G 0.5866 0.5533 1.15 0.93–1.41 0.20 0.7927 0.7000 1.64 0.96–2.79 0.08

rs11711054 3p21.31 CCR5 A 0.6542 0.6862 0.86 0.93–1.44 0.20 0.8095 0.7846 1.17 0.66–2.06 0.66

rs17388568 4q27 ADAD1 IL2 
IL21 A 0.2587 0.2491 1.05 0.83–1.33 0.72 0.0783 0.0769 1.02 0.43–2.41 1.00

rs11755527 6q15 BACH2 G 0.4508 0.4659 0.94 0.87–1.3 0.56 0.2262 0.2000 1.17 0.67–2.05 0.67

rs1738074 6q25.3 TAGAP C 0.5806 0.5531 1.12 0.91–1.38 0.29 0.3095 0.2769 1.17 0.71–1.94 0.61

rs1574285 9p24.2 GLIS3 G 0.4775 0.4539 1.10 0.9–1.35 0.37 0.5361 0.5625 0.90 0.7–1.77 0.72

rs12722495 10p15.1 IL2RA T 0.9146 0.8716 1.58 1.13–2.2 9.01 × 10−3 0.9819 0.9692 1.72 0.38–7.85 0.70

rs2104286 10p15.1 IL2RA T 0.8031 0.6962 1.78 1.4–2.25 2.12 × 10−6 0.9583 0.9231 1.92 0.71–5.18 0.22

rs689 11p15.5 INS INS-
IGF2 TH T 0.8357 0.6843 2.35 1.84–2.99 5.23 × 10−12 0.3598 0.2698 1.52 0.92–2.52 0.13

rs2292239 12q13.2 ERBB3 T 0.3792 0.3287 1.25 1–1.55 4.84 × 10−2 0.4286 0.3889 1.18 0.74–1.89 0.55

rs10877012 12q14.1 CYP27B1 G 0.7118 0.6980 1.07 0.85–1.34 0.57 0.8750 0.8462 1.27 0.66–2.46 0.50

rs653178 12q24.12
ATXN2 
SH2B3 
NAA25

C 0.5254 0.4608 1.30 1.06–1.59 1.42 × 10−2 0.1429 0.0538 2.93 1.22–7.03 1.30 × 10−2

rs3825932 15q25.1 CTSH C 0.6697 0.6695 1.00 0.8–1.24 1.00 0.1964 0.2231 0.85 0.67–2.06 0.67

rs4788084 16p11.2 NUPR1 IL27 C 0.6392 0.5773 1.30 1.05–1.6 1.56 × 10−2 0.7711 0.7462 1.15 0.67–1.96 0.68

rs7202877 16q23.1 CTRB2 
CTRB1 G 0.1395 0.0942 1.56 1.12–2.17 8.48 × 10−3 0.1205 0.2000 0.55 0.97–3.44 0.08

rs2290400 17q12 GSDMB 
ORMDL3 C 0.5071 0.4846 1.09 0.89–1.34 0.40 0.4643 0.5078 0.84 0.75–1.89 0.48

rs7221109 17q21.2 CCR7 
SMARCE1 T 0.3686 0.3564 1.05 0.85–1.31 0.66 0.1488 0.1587 0.93 0.57–2.05 0.87

rs1893217 18p11.21 PTPN2 G 0.1955 0.1598 1.28 0.97–1.68 0.08 0.1098 0.1077 1.02 0.49–2.14 1.00

rs763361 18q22.2 CD226 T 0.5346 0.4691 1.30 1.06–1.6 1.39 × 10−2 0.6905 0.7540 0.73 0.82–2.31 0.24

rs2304256 19p13.2 TYK2 C 0.7127 0.6986 1.07 0.85–1.34 0.56 0.8855 0.8516 1.35 0.68–2.67 0.48

rs602662 19q13.33 FUT2 A 0.5010 0.5034 0.99 0.82–1.24 0.96 0.5714 0.5000 1.33 0.84–2.11 0.24

rs2281808 20p13 SIRPG 
SIRPB1 C 0.6870 0.6901 0.99 0.81–1.27 0.91 0.8012 0.7538 1.32 0.76–2.29 0.40

rs11203203 21q22.3 UBASH3A A 0.3699 0.3265 1.21 0.98–1.5 0.09 0.1627 0.1385 1.21 0.63–2.31 0.63

rs229541 22q12.3 RAC2 G 0.5645 0.5295 1.15 0.94–1.42 0.19 0.3512 0.3385 1.06 0.65–1.71 0.90

rs2664170 Xq28 GAB3 G 0.3426 0.3695 0.89 0.88–1.44 0.37 0.5882 0.4393 1.82 1.09–3.04 2.77 × 10−2

Table 2. Comparison of the genetic risk score (GRS) loci within the University of Florida Diabetes Institute 
(UFDI) Caucasian (CAU) and African American (AFR) cohorts. For each single nucleotide polymorphism 
(SNP) examined, the locus in the human genome, associated candidate gene(s), and allele, haplotype, or 
diplotype measured are listed along with frequency and odds ratios (OR) in the type 1 diabetes (T1D) and 
control cohorts from the UFDI CAU and AFR subject cohorts. The statistics shown are for the published risk 
alleles (as opposed to the minor alleles) as referenced in Supplemental Table 3. †Statistics for protective HLA 
DR15-DQ6 and B57 are shown for the non-DR15-DQ6 and non-B57 risk haplotypes.
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The SEARCH for Diabetes in Youth Study recently reported that type 1 diabetes prevalence was 1 in 392 
for Caucasian Americans under 20 years of age, 1 in 617 for African Americans, and 1 in 1667 for Asian 
Americans34,35. Currently, the vast majority of type 1 diabetes genetics studies are limited to Caucasian cohorts. 
However, the figures above imply that for African Americans, type 1 diabetes prevalence is almost 2/3 that of 
Caucasian Americans, while for Asian Americans it is almost 1/4. Thus, closer examinations of type 1 diabetes 
genetics within these underrepresented racial minorities in the U.S. must be performed. A limitation of the cur-
rent study was our reliance on self-reported race and ethnicity, as our SNP array lacked informative ancestral 
markers commonly utilized in high density genome-wide arrays for imputing and assigning race and ethnicity. 
Nevertheless, our analysis indicated that GRS could discriminate type 1 diabetes subjects from controls in a small 
cohort of subjects identifying as Asian American, but larger studies are need to validate and extend these findings. 
For African Americans however, GRS was less effective in discerning type 1 diabetes subjects from controls, and 
the association between a higher GRS with early disease onset was lost. These observations are likely related to 
known differences in HLA-conferred disease risk or protection in the context of race27,29,36. Thus, GRS models 
suitable for African Americans would likely need to impute these haplotypes. Additionally, the current set of type 
1 diabetes risk loci, which were identified in predominantly Caucasian cohorts, may be less effective for assessing 
risk in non-Caucasian individuals. These findings underscore the need to perform type 1 diabetes incidence stud-
ies and GWAS in non-Caucasian groups, enabling development of a GRS model that accounts for heterogeneity 
in populations.

Type 1 diabetes risk-loci that significantly predict disease in African Americans but not Caucasian Americans 
may underlie pathophysiologic differences in disease processes between races and may explain how African 
Americans accrue risk without the classical high-risk HLA types originally defined in Caucasians. Here we found 
that risk variants of two genes, SH2B3 and GAB3, were more predictive of type 1 diabetes in African American 
subjects. Interestingly, both of these genes encode proteins that affect myeloid cell development and activation. 
SH2B3 encodes the protein LNK, which modules cytokine signaling in myeloid cells via the signaling adapter, 
JAK237–41. Indeed, the risk variant of SH2B3/Lnk (rs3184504) is associated with altered expression of key ele-
ments of IFNγ signaling42. Thus, it is likely that SH2B3/Lnk variants modulate myeloid innate immune cells 
through altered sensitivity to various cytokines. The GAB3 protein product interacts with the M-CSF receptor 
and drives macrophage differentiation43. How the risk variant of GAB3 affects this process remains unknown. As 
these functional studies advance, it will be critical that investigators consider the race of study subjects as well as 
the presence of additional gene variations that may affect the same cells/pathways.

An important aspect of our study assessed the effect of Hispanic/Latino ethnicity within southeastern U.S. 
Caucasians on GRS. We found that the GRS robustly discriminates type 1 diabetes patients from controls in 
Hispanic/Latino Caucasian to the same degree as non-Hispanic/Latino Caucasian cohorts. The prevalence of 
type 1 diabetes in Hispanic/Latino American youth is roughly half that of non-Hispanic/Latino Caucasians34, yet 
is increasing at a greater annual rate (4.2%) versus non-Hispanic/Latino Caucasian populations (1.2%)44. Given 
the concurrent increase in type 2 diabetes in non-Caucasian American youth44, our findings may have significant 
implications for utilization of GRS in both research and clinical settings in these understudied populations.

Although our cross-sectional cohort does not include routine follow-up, we were able to utilize GRS to iden-
tify type 1 diabetes subjects whose diagnoses were questionable or have been changed subsequent to their enroll-
ment, which further demonstrates the clinical utility of GRS as a tool to improve differential diagnoses of type 1 
diabetes from early-onset type 2 and monogenic diabetes16,17. This may justify the use of GRS as a screening tool 
at diagnosis in order to promote the concept of precision medicine when determining which therapies may be 
best suited for a particular patient. Notwithstanding, since GRS only modestly discerns type 1 diabetes patients 
from first-degree relatives, there may be a capacity to improve the current model. The log-additive model for 
non-HLA risk may not be the most accurate method for computing GRS, possibly resulting in decreased specific-
ity or loss of age-associated non-HLA risk45. Additionally, there may be more comprehensive methods to capture 
all HLA-associated type 1 diabetes-risk with more HLA variants (reviewed in1). Since several loci contain genes 
that are predicted to confer overlapping functional effects (e.g., CD25, IL2, PTPN2 in the IL-2 signaling path-
way), one may expect a GRS model to include computations that account for such genetic synergies. However, 
this level of genetic risk modeling remains elusive, as Winkler et al. were unable to identify genetic interactions 
using a more extensive genotyping panel on a much larger cohort15. Moreover, models using genetics alone are 
not expected to predict type 1 diabetes with 100% accuracy since environmental, epigenetic, and stochastic fac-
tors (e.g., immunoreceptor V(D)J gene recombination) are also thought to impact overall risk. Perhaps even 
more confounding is the notion that genetic and environmental risk interactions may not be static phenomena. 
This may be most evident by the concomitant trends of decreasing proportion of high risk HLA in type 1 dia-
betes patients and increasing overall type 1 diabetes prevalence46,47. All of these aforementioned factors that are 
missing from this GRS model may contribute an unknown amount of bias negatively impacting GRS selectivity. 
Ultimately, improved accuracy of diabetes prediction models will likely require a better understanding of epistatic 
genetic and environmental risk interactions.

The results of this and other studies imply GRS could represent a low-cost means to assist in general population 
screening to identify patients who have increased risk of developing type 1 diabetes. We therefore envision the uti-
lization of GRS to guide future trial recruitment and cohort stratification efforts. These observations strengthen the 
argument for focused genetic screening to monitor progression in the clinic, improve functional studies, facilitate 
biomarker identification, and optimize subject selection for interventional and natural history trials.

Methods
Subject enrollment and sample collection. Informed consent was obtained from subjects enrolled 
from outpatient clinics of the University of Florida, Gainesville, Florida; Nemours Children’s Hospital, Orlando, 
Florida; and Emory University, Atlanta, Georgia, under Institutional Review Board (IRB)-approval at each facility 
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(IRB #201400709). All experiments were performed in accordance with relevant guidelines and regulations. 
Genomic DNA and serum samples were collected and stored at −20 °C from 1,946 research participants together 
termed the University of Florida Diabetes Institute (UFDI) cohort. This collection included control subjects [type 
1 diabetes-unaffected and non-first- or -second-degree relatives of type 1 diabetes patients] (n = 405), first-degree 
relatives with ≤1 type 1 diabetes-relevant autoantibody (AAb) (n = 790), second-degree relatives with ≤1 AAb 
(n = 68), multiple AAb positive at-risk relatives (≥2AAb + , n = 46), and type 1 diabetes patients (n = 637). Type 
1 diabetes status was assigned according to clinician diagnosis. Subjects self-reported race as Caucasian/White, 
African American/Black, Asian, Pacific Islander/Hawaiian, Native American/Alaskan, or Multiple/Other and 
separately indicated ethnicity as Hispanic/Latino or non-Hispanic/Latino (Supplemental Tables 1 and 2; Fig. 1A). 
The geometric mean ± SD for the type 1 diabetes diagnosis age was 8.94 ± 2.18 years (Fig. 1B).

AAb measurement. AAbs against type 1 diabetes-related autoantigens [i.e., glutamic acid decarboxylase 
(GAD), insulinoma-associated protein 2 (IA-2), and zinc transporter 8 (ZnT8)] were measured from serum sam-
ples via ELISA kits (KRONUS Inc., Star, ID) according to the manufacturer’s instructions48.

DNA preparation. DNA was prepared via QiaCube high-throughput nucleic acid purification sys-
tem according to manufacturer’s recommendations (Qiagen, Hilden, Germany). Purified DNA was gen-
otyped on either the custom array or manually, as described below. Samples missing HLA SNP calls or with 
<90% of non-HLA risk measured were excluded. The OR of the type 1 diabetes-risk alleles were derived from 
Immunobase.org (Supplemental Table 3, Fig. 1D).

Imputing HLA-DR-DQ diplotypes. HLA was imputed and odds ratios (OR) were computed as pre-
viously described16,17 (Fig. 1C; Supplemental Table 3). Following HLA imputation, samples were assigned 
one of six HLA diplotype categories: DR3-DQ2/DR4-DQ8, DR4-DQ8/DR4-DQ8, DR3-DQ2/DR3-DQ2, 
DR4-DQ8/X, DR3-DQ2/X, X/X, where X = non-DR3-DQ2 or non-DR4-DQ8. In addition, the highly protective 
HLA-DR15DQ6 haplotype was imputed, as well as HLA class-I A24 and B57, which were shown to confer sus-
ceptibility and protection, respectively, when conditioned on HLA class-II1,49.

Single nucleotide polymorphism (SNP) selection and genotyping. The HLA-DR and HLA-DQ 
region plus additional loci with known associations for type 1 diabetes-risk2 were considered for inclusion in a 
custom Taqman SNP genotyping array (ThermoFisher, Carlsbad, CA). Since the list of risk loci changes as more 
GWAS and meta-analyses are completed, the loci in this study are limited to those that are curated on immunob-
ase.org as of October 2017. SNP assays passed quality control (QC) when they generated >95% successful call 
rates and <5% intra-sample discordance. SNPs that failed QC were excluded. Some key SNPs that either failed 
QC on the array or were not included on the array (rs2187668, rs7454108, rs3129889, rs1264813, rs2395029, and 
rs2292239) were manually genotyped using validated Taqman assays (ThermoFisher, Carlsbad, CA)16. 32 SNPs 
passed QC (Supplemental Table 3). The Taqman genotyping array and individual taqman assays were performed 
according to manufacturer instructions.

Calculating GRS. The GRS calculation emulates a previously reported multivariate logistic regression model 
employed by Oram et al. and Patel et al.16,17:

β
= ∑ +

+ ×
= s H

n
GRS ( )

( 1) 2
i
n

i i l1

where β is the natural log of the OR and s is the number of risk alleles (0, 1, or 2) carried for SNP i of n loci tested. 
Chromosome X SNPs in male subjects were counted as 0 or 2, which assumes a dominant risk effect in the hem-
izygous state. Hl is the HLA diplotype risk for combinations of DR3-DQ2, DR4-DQ8, and X. The summed risk 
was then divided by the number of alleles tested. This method used identical SNP imputing for class I and class 
II HLA as Oram et al. and Patel et al., and a partially overlapping set SNPs to compute non-HLA risk (compare 
Supplemental Table 3 to Oram et al.16).

Statistics. Data were graphed and analyses performed using GraphPad Prism software version 7 (San Diego, 
CA). Data are presented as ROC curve with AUC, as Tukey box and whisker plots or mean ± SD bar graphs 
compared via Kruskal-Wallis with Dunn’s multiple comparisons testing, scatter plots with linear regression and 
Pearson Correlation, or in tabular form and compared via Fisher’s exact test. Fisher’s exact test was performed 
using the Scipy package (version 0.18.1, https://scipy.org/) in Python3. Balanced accuracy was calculated for 
thresholds across the GRS range as [(predicted T1D/actual T1D) + (predicted non-T1D/actual non-T1D)]/2. 
Significance was defined as P < 0.05.
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