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N6-methyladenosine demethylase FTO impairs
hepatic ischemia-reperfusion injury via inhibiting
Drp1-mediated mitochondrial fragmentation

Ying Dong Du', Wen Yuan Guo? Cong Hui Han®, Ying Wang', Xiao Song Chen?, Da Wei Li°, Jin Long Liu@®®,
Ming Zhang®, Nan Zhu’ and Xin Wang®

Abstract

Despite N6-methyladenosine (m6A) is functionally important in various biological processes, its role and the
underlying regulatory mechanism in the liver remain largely unexplored. In the present study, we showed that fat
mass and obesity-associated protein (FTO, an m6A demethylase) was involved in mitochondrial function during
hepatic ischemia—reperfusion injury (HIRI). We found that the expression of m6A demethylase FTO was decreased
during HIRL. In contrast, the level of m6A methylated RNA was enhanced. Adeno-associated virus-mediated liver-
specific overexpression of FTO (AAV8-TBG-FTO) ameliorated the HIRI, repressed the elevated level of m6A methylated
RNA, and alleviated liver oxidative stress and mitochondrial fragmentation in vivo and in vitro. Moreover, dynamin-
related protein 1 (Drp1) was a downstream target of FTO in the progression of HIRI. FTO contributed to the hepatic
protective effect via demethylating the mRNA of Drp1 and impairing the Drp1-mediated mitochondrial fragmentation.
Collectively, our findings demonstrated the functional importance of FTO-dependent hepatic m6A methylation during

HIRI and provided valuable insights into the therapeutic mechanisms of FTO.

Introduction

Hepatic ischemia—reperfusion injury (HIRI) is a com-
plication observed during liver resection and transplan-
tation'. Inevitable ~HIRI mostly occurs with
transplantation surgery during harvest, organ resection,
and graft implant. It can also be accompanied by
hemorrhagic shock and trauma®’. Up to 10% of acute
graft dysfunction exists in liver transplantation, although
the surgical techniques and allograft preservation have
been greatly improved®. This persistent damage to
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transplanted organs leads to significant graft loss in the
first year after transplantation, resulting in the necessity of
repeat transplantation and contributing to a serious
shortage of donor organs available for transplantation®.
Therefore, a good understanding of the underlying
mechanism and effective intervention measures to mini-
mize the adverse reactions of HIRI can significantly
increase the cure rate of liver transplant recipients and
extend their lifespan.

Various epigenetic studies have focused on histone
modifications, DNA methylation, and chromatin remo-
deling. Similarly, coding RNAs have a series of covalent
modifications that manage gene expression by affecting
RNA stability and translation®. As a type of most abun-
dant mRNA modification, N6-methyladenosine (m6A) is
transcriptome-wide presented in most RNAs and nor-
mally enriched near the 5' UTRs’~°. Emerging evidence
shows that mammalian m6A is dynamically regulated and
involved in various biological progress'®'’. Especially,
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m6A has been reported to be involved in several IRIs,
including myocardial'?, renal'®, and neuronal*°® IRIs.
However, the pathological role and regulatory mechanism
of this newly emerging RNA modification in the pro-
gression of HIRI have not been illustrated yet. Therefore,
it is urgently necessary to unveil its particular role in HIRI
to develop new therapeutic strategies for liver transplant
recipients.

The reversible m6A RNA modification is coordinated
by a methyltransferase (m6A “writers”), m6A reader
proteins, and demethylase (m6A “erasers”). These mem-
bers cover more than 13 enzymes. The m6A “writers”
complex consists of METTL3, METTL14, WTAP,
CBLL1, RBM15, ZC3H13, and VIRMA, which are
responsible for the methylation of target RNA tran-
scripts“’”’lg, Moreover, m6A readers, including
YTHDF1-3, YTHDC1, IGF2BPs, and elF3, recognize
these m6A modifications to direct RNA alternative spli-
cing, translation, localization, and RNA stability among
other processesl6. However, as the m6A “erasers”, fat
mass and obesity-associated protein (FTO) and ALKBH5
remove m6A from the aforementioned target tran-
scripts'®~!, FTO, the first identified m6A demethylase,
belongs to the ALKB family of Fe (II)/a-ketoglutarate-
dependent dioxygenases'>. FTO mediates multiple RNA
modifications, including m6A and m6Am in mRNA and
snRNA as well as m1A in tRNA. Recent studies have
demonstrated that the demethylase activity of FTO
selectively demethylates cardiac contractile transcripts,
preventing their degradation and improving their protein
expressions in ischemic injury'>*?, However, the under-
lying epigenetic mechanism of FTO in HIRI remains
largely unexplored.

In the present study, we investigated the pathological
role, the underlying mechanism of the m6A-methylated
RNA level, and its demethylase FTO in the progression
of HIRI. We found that the level of m6A-methylated
RNA was gradually and significantly elevated at 3, 6, and
12 h after IRI in a murine HIRI model. Conversely, the
expression of FTO was suppressed during IRI. Func-
tionally, adeno-associated virus-mediated liver-specific
overexpression of FTO (AAV-TBG-FTO) attenuated the
cellular damage in hepatic cells in vitro and protected
against IRl in a murine model in vivo. Moreover, the
enhanced expression of FTO attenuated the IRI-induced
mitochondrial fragmentation. Furthermore, we identi-
fied dynamin-related protein 1 (Drpl) as a downstream
target of FTO in the progression of HIRI. Besides, liver-
specific overexpression of Drpl abrogated the protective
effect of FTO against IRI. Collectively, these results
demonstrated that the m6A demethylase FTO amelio-
rated HIRI via inhibiting Drpl-mediated mitochondrial
fragmentation.
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Method and materials
Animals

The experimental protocols for C57BL/6 mice (male,
6—8 weeks, Shanghai Slac Laboratory Animal Co., Ltd.,
China) were approved by the Institutional Animal Care
and Use Committee of Ren Ji Hospital.

Murine model of HIRI

The murine model of HIRI was established as previously
described®®. Briefly, male C57BL/6 mice were anesthe-
tized by intraperitoneal injection of chloral hydrate (4 mL/
kg), followed by midline laparotomy. Noninvasive arterial
clamps were inserted between the left lobe and the base of
the median hepatic lobe to block the blood supply. After
60min of ischemia, the forceps were removed, and
reperfusion was conducted. Mice were sacrificed at 3, 6,
and 12 h after reperfusion.

Serum aminotransferase activities

The serum levels of ALT and AST were determined to
estimate the degree of hepatocyte damage after HIRI as
previously described®® using a Hitachi 7600 automatic
analyzer (Hitachi, Ltd., Tokyo, Japan).

Histology
Histology was performed as previously described?®.

Global m6A measurements

The level of global m6A in total RNA was quantified by
EpiQuik m6A RNA Methylation Quantification Kit (Epi-
gentek Group, Farmingdale, NY) as previously
described®*.

m6A dot blotting analysis

m6A dot blotting analysis was used to detect the qua-
litative m6A modifications as previously described™.
Briefly, poly-A RNA was purified by Dynabeads mRNA
Purification Kit (Thermo Fisher, Carlsbad, CA, USA) and
spotted on an Amersham Hybond-XL membrane. After
incubation with the anti-m6A primary antibody and the
mouse-HRP secondary antibody, the membrane was
incubated with Pierce ECL2 Western Blotting Substrate,
and exposed to X-Ray Super RX Films.

Hepatocyte isolation
Hepatocytes were isolated from mice and cultured as
previously described™.

Quantitative real-time PCR (qRT-PCR)

Briefly, 1 pg purified RNA was reversely transcribed into
¢DNA, and qRT-PCR was performed using the ABI ViiA
7 Real-Time PCR System (Applied Biosystems) as pre-
viously described®*. GAPDH was selected as a
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housekeeping gene. The specific primer sequences were
as follows:

Gene name  Forward primer (5°-3") Reverse primer (5-3")
Mouse FTO GGCGGCTTTAGTAGCAGCAT  CCAAGTGTCTTCAAGCTCCTC
Mouse Drp1  TCAGATCGTCGTAGTGGGAA TCTTCTGGTGAAACGTGGAC
Mouse GAPDH AATCCCATCACCATCTTCCAG AAATGAGCCCCAGCCTTC

Western blotting analysis

The western blotting analysis was performed as pre-
viously described®. Briefly, total proteins were isolated
from liver tissues or hepatocytes, separated by 12%
sodium dodecyl sulfate polyacrylamide gel electrophor-
esis, and transferred onto polyvinylidene difluoride
membranes. Membranes were then incubated with the
primary antibodies as follows: anti-FTO (Abcam, Cam-
bridge, UK), anti-Drpl (Abcam), and anti-GAPDH (Santa
Cruz Biotechnology).

Assays for glutathione (GSH), glutathione peroxidase
(GSH-Px), superoxide dismutase (SOD), and
malondialdehyde (MDA) in liver tissue

The activities of GSH, GSH-Px, SOD, and MDA in liver
tissues were determined using SOD, GSH, GSH-Px,
MDA, and MPO detection kits (Simo Biomedical Tech-
nology, Shanghai, China), respectively, following the
manufacturer’s instructions.

Electron microscopy

Liver tissue samples were fixed in 2.5% glutaraldehyde
solution, followed by dehydration, embedding, and sec-
tioning. Finally, tissue sections were photographed using a
Hitachi 7500 transmission electron microscope (Hitachi,
Tokyo, Japan).

Detection of mitochondrial fragmentation

After incubation with MitoTracker Red (75nmol/L,
20 min, Thermo Fisher, Carlsbad, CA, USA), primary
hepatocytes were labeled with MitoTracker Red CMXRos
(Thermo Fisher, Carlsbad, CA, USA) and photographed
using an LSM900 Zeiss confocal laser scanning
microscope.

Cell viability assay

The cell viability of primary hepatocytes was detected by
Cell Counting Kit-8 (Simo Biomedical Technology,
Shanghai, China) as previously described®.

Me-RIP assay

The methylated m6A RNA immunoprecipitation (me-
RIP) was performed to analyze the level of methylated
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Drpl mRNA using the anti-m°A antibody (Abcam,
ab151230) as previously described®*.

Statistical analysis

Data were expressed as means + SEM. A two-tailed ¢
test (unpaired) was used for comparisons between two
groups. ANOVA followed by the post hoc Bonferroni test
was adopted for multiple comparisons using GraphPad
Prism® version 6.0 software (GraphPad Software, Inc., La
Jolla, CA, USA). A p value less than 0.05 was considered
statistically significant.

Results
The expression of m6A demethylase FTO is decreased in
the liver tissue upon IRI

To evaluate the role of m6A methylated RNA in IRI, we
established a murine model of HIRI. The liver histo-
pathological changes in the IRI group were confirmed.
Figure 1A shows that there was extensive necrosis in IRI
liver samples accompanied by sinusoidal congestion and
cell swelling, which was never appeared in the sham
group. The damage degree was also evaluated by blinded
pathologists based on Suzuki criterion scores, and the
results suggested a higher score in the IRI group com-
pared with the sham group (Fig. 1A). At 3, 6, and 12h
after the IRI procedure, the levels of serum ALT and AST
(two indices of hepatocellular injury) were also sig-
nificantly increased in the IRI group (Fig. 1B). The level of
m6A methylated RNA was consistently induced at 3, 6,
and 12h after IRI (Fig. 1C, D). We then analyzed the
expressions of major m6A methyltransferases (METTL3,
METTLI14, RBM15, WTAP, and VIRMA) and demethy-
lases (FTO and ALKBHS5) at the mRNA level in the liver
tissue of the sham group and 12-h IRI group. Figure 1E
shows that the expressions of METTL14 and FTO were
decreased in the IRI group, which was opposite with the
m6A accumulation. Therefore, we hypothesized that FTO
downregulation contributed to the m6A accumulation in
the liver tissue of the IRI group. The downregulation of
FTO at both the mRNA and protein levels at 3, 6, and 12 h
after IRI was further verified by qRT-PCR (Fig. 1F),
Western blotting analysis (Fig. 1G), and immunohis-
tochemistry (IHC) (Fig. 1H). These results indicated that
FTO-mediated m6A demethylation might contribute to
the development of HIRL

Adeno-associated virus-mediated liver-specific
overexpression of FTO (AAV8-TBG-FTO) attenuates the
HIRI and represses the elevated level of m6A methylated
RNA in vivo

To further explore the potential role of FTO-mediated
m6A demethylation in the progression of HIRI, an adeno-
associated virus serotype 8 (AAV8) was adopted to
hepatocyte-specifically express FTO recombinase under
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Fig. 1 The expression of m6A demethylase FTO is decreased by HIRI. A Representative histopathologic images of liver sections harvested at 24 h
after reperfusion (H&E staining; scale bars, 100 um). The damage degree was graded using Suzuki criteria. B Blood samples were collected to
determine the ALT and AST levels (U/L). C The total level of methylated RNA (m6A) in hepatic tissues was detected by EpiQuik méA RNA Methylation
Quantification Kit. D The total level of methylated RNA (m6A) in hepatic tissues was detected by dot blotting analysis. E The expressions of major
m6A methyltransferases (METTL3, METTL14, RBM15, WTAP, and VIRMA) and demethylases (FTO and ALKBH5) at the mRNA level were examined by
gRT-PCR. F The expression of FTO at the mRNA level was examined by qRT-PCR. G The expression of FTO at the protein level was verified by Western
blotting analysis. H The expression of FTO at the protein level was verified by IHC. N=5; *P <0.05 and **P <0.01, ***P <0.001 vs. sham group.
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Fig. 2 Adeno-associated virus-mediated liver-specific overexpression of FTO (AAV8-TBG-FTO) attenuates the HIRI and represses the
elevated level of m6A methylated RNA in vivo. A Representative histopathologic images of liver sections harvested at 24 h after reperfusion (H&E
staining; scale bars, 100 um). The damage degree was graded using Suzuki criteria. B Blood samples were collected to determine the ALT and AST
levels (U/L). C The total level of methylated RNA (m6A) in hepatic tissues was detected by EpiQuik m6A RNA Methylation Quantification Kit. N = 5; *P
<0.05 vs. AAV8-TBG-NC group.

the trigger of the thyroxin-binding globulin (TBG) pro-
moter (AAVS8-TBG-FTO). Compared with the vector
control group (AAVS8-TBG-null), the liver histopatho-
logical changes, including the area of necrosis, sinusoidal
congestion, and cell swelling, were dramatically atte-
nuated, evidenced by the reduced Suzuki criterion scores
(Fig. 2A). Moreover, the levels of serum ALT and AST
were also significantly reduced in the AAV8-TBG-FTO
group at 3, 6, and 12 h after IRI (Fig. 2B), whereas the
IRI-elevated m6A methylated RNA level was reversed
and became stable at 3, 6, and 12 h after IRI (Fig. 2C).
The results indicated that FTO played a critical role in
HIRIL.

Liver-specific overexpression of FTO alleviates liver
oxidative stress and mitochondrial fragmentation in vivo
To explore the effect of FTO on oxidative stress during
IRI, we determined the activities of oxidative relative
enzymes (GSH, GSHPx, SOD, and MDA). The levels of
GSH, GSH-Px, and SOD were dramatically decreased in
liver cells after IRI compared with the sham group. FTO
overexpression (AAV8-TBG-FTO) significantly increased
the activities of GSH, GSH-Px, and SOD compared with
the vector control group (AAV8-TBG-null) after IRI (Fig.
3A-C). Accordingly, the increased MDA activity after IRI
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was attenuated by FTO overexpression (Fig. 3D). Taken
together, these results indicated that liver-specific over-
expression of FTO ameliorated the oxidative stress in
HIRL

The mitochondrial dysfunction and fragmentation have
been implicated in the induction of oxidative stress, which
greatly contributes to the pathogenesis of several IRIs. To
explore the effect of FTO overexpression on mitochondria
in HIRI, electron microscopy was adopted to assess the
fragmented mitochondria during IRI (Fig. 3E). Notably,
the restoration of FTO diminished the number of frag-
mented mitochondria in HIRI (Fig. 3E). These results
indicated that FTO improved the mitochondrial quality
and alleviated the oxidative stress in the hepatocytes
upon IRIL

FTO overexpression alleviates the IRI-impaired cell viability
and attenuates mitochondrial fragmentation

To further confirm the role of FTO-mediated m6A
demethylation in the progression of HIRI, FTO was
overexpressed in the isolated primary hepatocytes, fol-
lowed by IRI. Figure 4A shows that the cell viability was
gradually decreased after IRI compared with the sham
group, whereas these reductions were diminished by FTO
overexpression. Moreover, the elevated m6A methylated
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RNA level during IRI was disappeared in FTO-
overexpressing primary hepatocytes (Fig. 4B). Next, con-
focal laser scanning microscopy showed that FTO over-
expression increased the ratio of filamentous mitochondria
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and decreased globular mitochondria during IRI (Fig. 4C).
These data further suggested that FTO improved the
mitochondrial quality and alleviated the damage in hepa-
tocytes upon IRL
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Liver-specific FTO overexpression suppresses the IRI-
induced expression of Drp1 in hepatocytes upon IRl in vivo
and in vitro

As Drpl activation is critical for mitochondrial frag-
mentation, we further investigated whether FTO over-
expression regulated the m6A methylation of Drpl
mRNA. Firstly, we predicted the potential methylation
sites (Supplementary Fig. 1A) by a sequence-based m6A
modification site predictor (SRAMPA, http://www.
cuilab.cn/sramp/). Based on this prediction, we
designed five pairs of specific primers for Drpl mRNA
(Supplementary Fig. 1B) and validated that the m6A
methylation region of Drpl mRNA in normal hepato-
cytes relied on very high confidence m6A site (Supple-
mentary Fig. 1C, 2086 bp, AGACU). Figure 5A shows
that the level of methylated Drpl mRNA was elevated in
liver and hepatocytes upon IRI, whereas it was sup-
pressed in FTO-overexpressing hepatic tissues and
hepatocytes. Furthermore, the expression of Drp1 at the
mRNA level was increased in hepatocytes (in vitro) and
hepatic tissues (in vivo), whereas it was suppressed by
FTO overexpression (Fig. 5B). The expressions of total
and activated Drpl (pSer616) at the protein level in the
liver upon IRI were further confirmed by Western
blotting analysis (Fig. 5C). These results suggested that
Drpl was a potential downstream target of FTO in the
progression of HIRI.
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Drp1 is a downstream target of FTO in the progression of
HIRI

To further illustrate the molecular downstream of FTO
and identify whether Drpl was a direct target of FTO in
the progression of HIRI, we generated an R96Q-mutated
FTO construct with disordered enzymatic activity as
previously described. The results showed that the
expression of Drpl at the mRNA (Fig. 6A) and protein
levels (Fig. 6B) was elevated by FTO depletion, while it
was suppressed by the overexpression of wild-type FTO.
However, the expression of Drpl was not affected when
the mutated FTO (R96Q) was overexpressed in primary
hepatocytes (Fig. 6A, B). Meanwhile, the level of methy-
lated Drpl mRNA was increased by FTO depletion,
whereas overexpression of wild-type FTO but not muta-
ted FTO decreased the level of methylated Drpl mRNA
(Fig. 6C). Similarly, after transcriptional inhibition, the
mRNA decay rate of Drpl was increased, while it was not
affected by overexpression of mutated FTO (Fig. 6D).
Taken together, these findings suggested that FTO
repressed the expression of Drpl through its m6A
demethylase activity.

Drp1 is critical for the protective effect of FTO against HIRI

To investigate whether Drpl down-regulation was cri-
tical for the liver protective effect triggered by FTO
overexpression, we restored the expression of Drpl with
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adeno-associated virus-mediated liver-specific over-
expression of Drpl (AAV8-TBG-Drpl). Figure 7A shows
that overexpression of Drpl induced a larger area of
necrosis along with sinusoidal congestion and cell swel-
ling, which was even found in the sham group. Moreover,
the reduced kidney histopathological lesions in FTO-
overexpressing hepatic tissues were disappeared by Drpl
overexpression. Importantly, the reduced Suzuki criterion
scores in FTO-overexpressing hepatic tissues were also
significantly increased again by Drpl overexpression (Fig.

A). The attenuated levels of serum ALT and AST in
AAVS8-TBG-FTO mice at 3, 6, and 12 h after IRI were also
markedly elevated by Drpl overexpression (Fig. 7B).
Moreover, the preserved levels of GSH, GSHPx, SOD, and
MDA in AAV8-TBG-FTO hepatic tissues were reversed

Official journal of the Cell Death Differentiation Association

by Drpl overexpression (Fig. 7C—F). These data collec-
tively demonstrated that Drpl overexpression effectively
abrogated the protective effect of FTO against IRL

Discussion

The m6A mRNA methylation plays an important role in
the recovery and regeneration of variant cells after IRI"*
'*, However, only very few studies have reported whether
m6A methylation contributes to cell survival and recovery
during HIRI. As the first m6A demethylase, FTO catalyzes
m6A demethylation in a ferrous iron-dependent man-
ner”®?”. However, the roles of FTO in the progression of
HIRI remain largely unexplored. In the present study, we
found that FTO attenuated HIRI via inhibiting Drpl-
mediated mitochondrial fragmentation. Our findings
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Fig. 6 Drp1 is a downstream target of FTO in the progression of HIRI. A gRT-PCR analysis showed that overexpression of wild-type but not
demethylase- mutated FTO decreased the Drp1 mRNA level in isolated hepatocytes. B Western blotting analysis showed that overexpression of wild-
type but not demethylase-mutated FTO decreased the Drp1 protein level in isolated hepatocytes. C Me-RIP gRT-PCR analysis showed that
overexpression of wild-type but not demethylase-mutated FTO decreased the methylated Drp1 level in isolated hepatocytes. D The curve and
statistical analysis of Drp1 mRNA decay slope on the transfection of FTO siRNA, FTO-WT, FTO-Mut (R96Q), or the negative control after transcriptional
inhibition (TI) were shown. N = 3; *P < 0.05 versus indicated group.

initially unveiled the role of FTO in the regulation of
oxidative stress and the mitochondrial fragmentation of
hepatocytes during IRI. Theoretically, it suggested that
FTO was a potential therapeutic target for liver
transplantation.

Here, we found that the expression of m6A demethylase
FTO was decreased in hepatocytes (in vitro) and hepatic
tissues (in vivo) after IRI, while the level of m6A methy-
lated RNA was elevated during IRI. Functionally, we
demonstrated that the elevated m6A methylated RNA
level and FTO suppression contributed to the progression
of IRI in hepatocytes. Moreover, liver-specific over-
expression of FTO protected the hepatocytes against IRI-
induced oxidative stress and mitochondrial fragmenta-
tion. This effect was further confirmed using the IRI
model in FTO-overexpressing hepatocytes. Therefore,
these data collectively suggested a protective role of FTO
in hepatocytes upon IRIL

In the present study, we illustrated that Drpl was a
downstream target of FTO in the progression of HIRL
The morphology, distribution, and function of
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mitochondria are sustained by the mitochondrial fission
and fusion hemostasis. Once the balance between these
processes is disturbed, cell or organ dysfunction and
abnormal mitochondrial redistribution will result in sev-
eral diseases®®. Drpl plays a critical role in cell survival
through mediating the mitochondrial fission process®
and regulating both cellular and organ dynamics, such as
apoptosis, acute organ injury, development, and so on”.
In the present study, we illustrated that FTO repressed the
expression of Drpl through its m6A demethylase activity.
The methylated mRNA level of Drpl was reduced in both
FTO-overexpressing hepatic tissues and isolated primary
hepatocytes. Our study further suggested that over-
expression of wild-type FTO, but not mutant FTO,
decreased the levels of methylated Drpl mRNA and
translated Drpl protein. Finally, adeno-associated virus-
mediated liver-specific overexpression of Drpl effectively
abolished the protective effect of FTO against IRI.
Collectively, our findings demonstrated that the m6A
demethylase FTO ameliorated HIRI via inhibiting Drpl-
mediated mitochondrial fragmentation. These results
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Fig. 7 Drp1 contributes to the protective effect of FTO against HIRI. A Representative histopathologic images of liver sections harvested at 24 h
after reperfusion (H&E staining; scale bars, 100 um). The damage degree was graded using Suzuki criteria. B Blood samples were collected to
determine the ALT and AST levels (U/L). C-F Tissue levels of GSH, GSH-Px, SOD, and MDA were detected using ELISA at indicated time points after
reperfusion. N=5; *P < 0.05 vs. indicated group.

provided valuable insights into the understanding of HIRI
and helped reveal new therapeutic targets for liver
transplantation.
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