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Abstract: Non-alcoholic fatty liver disease is the most common liver disorder worldwide, and its
progressive form non-alcoholic steatohepatitis (NASH) is a growing cause of liver cirrhosis and
hepatocellular carcinoma (HCC). Lifestyle changes, which are capable of improving the prognosis,
are hard to achieve, whereas a pharmacologic therapy able to combine efficacy and safety is still
lacking. Looking at the pathophysiology of various liver diseases, such as NASH, fibrosis, cirrhosis,
and HCC, the process of angiogenesis is a key mechanism influencing the disease progression.
The relationship between the worsening of chronic liver disease and angiogenesis may suggest a
possible use of drugs with antiangiogenic activity as a tool to stop or slow the progression of the
disorder. In this review, we highlight the available preclinical data supporting a role of known
antiangiogenic drugs (e.g., sorafenib), or phytotherapeutic compounds with multiple mechanism of
actions, including also antiangiogenic activities (e.g., berberine), in the treatment of NASH.

Keywords: angiogenesis; NAFLD; NASH; VEGF; PlGF; Ang-2; sorafenib; brivanib; ezetimibe;
berberine; L1-10; Phyllanthus niruri; ALS-L1023; sitagliptin; losartan

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is a progressive liver damage character-
ized by altered lipid metabolism. If untreated, NAFLD may progress to non-alcoholic
steatohepatitis (NASH), cirrhosis, and death [1,2]. Due to the epidemic burden of obe-
sity, type 2 diabetes and metabolic diseases, and NAFLD are likely to become the most
common liver disorder in the world [3,4]. NAFLD is a multifactorial, complex disease; its
incidence in western countries, although largely underestimated, is increasing. Among
predisposing factors, obesity and childhood obesity, sedentary lifestyle, and inadequate
dietary habits play a major role. Both environmental and genetic factors are contributing to
its development and progression. Recently, a new definition was suggested for NAFLD,
namely metabolic dysfunction-associated fatty liver disease (MAFLD) [5]. The prevalence
of MAFLD among obese adults worldwide is estimated to be about 50%, and it is rel-
atively higher in men [6]. Abnormalities in several molecular pathways concur to the
development of the disease: among these, the Peroxisome Proliferator-Activated Receptors,
insulin signaling, Krüppel-Like Factors, p53 signaling, VCAM1, and miRNAs [7]. Insulin
resistance leads to an excess delivery of free fatty acid and triglycerides to the liver and a
reduced excretion, leading to an intracellular accumulation of triglycerides; additionally,
an excess of dietary carbohydrate promotes free fatty acid (FFA) synthesis in the liver.
This abnormal hepatic FFA accumulation makes the liver more vulnerable to injury, as rep-
resented by the oxidative stress and reactive oxygen species (ROS) production from the
mitochondrial respiratory chain, cytochrome P450 FFA metabolism, and hepatic alcohol
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metabolism. This picture is complicated by obesity, with an abnormal inflammatory state
of the adipose tissue and abundant release of inflammatory mediators such as leptin, tumor
necrosis factor (TNF)-alpha, and interleukin (IL)-6, which amplify the hepatocyte damage.
As a consequence, hepatocytes undergo ballooning, cytoskeletal aggregation, apoptosis,
and necrosis. Insulin resistance also accelerates the progression of steatosis to NASH and
progressive fibrosis, via sinusoidal collagen deposition [8].

Angiogenesis is a widely described and studied composite process [9,10] that leads
to the development of new vessels, resulting from various conditions (including hypoxia)
that stimulate the release of angiogenic growth factors, also through the formation of
hypoxia-inducible factors (HIFs) [11]. The angiogenic phenomenon physiologically occurs
during normal wound healing and also in pathological contexts such as liver disease
and tumorigenesis. Thus, numerous antiangiogenic molecules (e.g., the anti-vascular
endothelial growth factor (VEGF) monoclonal antibodies bevacizumab) are currently used
in the treatment of various cancers, including HCC, according to recent guidelines [12].

Multiple factors trigger angiogenesis in NAFLD, including tissue hypoxia, endothelial
dysfunction, hepatic stellate cells (HSC), and inflammation (Figure 1). The role of portal
pressure in the early NAFLD stages is particularly important. Indeed, portal hypertension
has been demonstrated in patients with NAFLD prior to the development of inflammation
or fibrosis and in animal models of steatosis. Recently, van der Graaff et al. [13] hypoth-
esized that structural and dynamic vascular changes in early NAFLD play a role in the
progression of the disease by inducing an increased intrahepatic vascular resistance and
consequently relative hypoxia for the altered hepatic blood supply in the liver. The hypoxia
in the liver tissue causes the capillarization of sinusoids, which are defined by the loss
of their fenestrae and the acquisition of a basal membrane [14], and the beginning of the
angiogenic process leading to the progression of NAFLD. In particular, HSCs are micro-
capillary pericytes present in the perisinusoidal space that can be activated after damage,
undergoing proliferation and becoming myofibroblasts able to modulate angiogenesis [14].
In the context of chronic liver disease, angiogenesis leads to quantitative changes in the
liver vessels with the occurrence of new vessels, but it also involves qualitative changes in
the pre-existing vessels, resulting in a process known as vascular remodeling [14]. These
qualitative vascular changes include the dedifferentiation of the liver sinusoidal endothe-
lial cells (LSEC), which is a phenomenon also called capillarization [14]. In experimental
studies on the angiogenic process during chronic liver disease, it is particularly difficult
to discriminate LSEC from vascular endothelial cells in the liver, primarily because not a
single marker is completely LSEC-specific, and also because LSECs lose the expression of
their canonical markers when they undergo capillarization [14].

In pathological angiogenesis, there is a strong dialogue between different populations
of liver cells. This is supported by the concept that the main pro-angiogenic factors such
as vascular endothelial growth factor (VEGF), placenta growth factor (PlGF), and platelet-
derived growth factor (PDGF) are produced and released by several liver cell types in-
volved in the progression of chronic liver disease (CLD), such as hypoxic hepatocytes,
hypoxia-sensitive macrophages, and hepatic myofibroblasts (MF) [15–17]. Many experi-
mental studies have reported manifestations of angiogenesis in different NAFLD animal
models [18–22]. Indeed, it has been shown that the expression of CD31, the most commonly
used marker of endothelial cells, was increased in the liver of mice fed with a high-fat diet
(HFD) along with an increase in the expression of VEGFR-2 [19]. Others have reported the
induction of CD105 expression, which is a marker of activated endothelial cells acquiring a
pro-angiogenic phenotype, in LSECs of mice fed with a diet deficient in methionine and
choline (MCD) [21]. Increased VEGF protein has been described in the liver of rats supplied
with a choline-depleted amino acid (CDAA) diet [20] and of mice maintained with a MCD
diet. In vitro, it has been observed that steatotic hepatocytes produce pro-angiogenic extra-
cellular vesicles [23]. Steatosis induces hypoxia through an increase in lipid metabolism,
which enhances oxygen consumption, and by mechanical pressure on the sinusoids. Thus,
stellate liver cells, portal myofibroblasts, and macrophages, under these hypoxic conditions,
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stimulate angiogenesis by secreting VEGF [17]. Pro-angiogenic signals also come from the
adipose tissue secreting leptin [24]. Leptin induces an increase in vascular permeability and
potentiates VEGF-mediated angiogenesis dose-dependently [25]. Indeed, leptin induces
the synthesis of VEGF-A by endothelial cells, and thus the growth of new blood vessels,
via the activation of the PI3K/Akt/mTOR/S6 kinase signaling pathway [26].
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while reducing the production of nitric oxide (NO), thus activating hepatic stellate cells (HSCs). At the same time, angio-
genic factors released by LSECs and HSC induce hepatic angiogenesis. 
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Figure 1. This figure summarizes the common pathways of pathological angiogenesis in NAFLD/NASH discussed in this
review. Hepatic steatosis, lipotoxicity, hypoxia, and inflammation induce morphological changes in sinusoidal endothelial
cells (LSECs), resulting in endothelial dysfunction and capillarization. LSECs release fibrogenic and angiogenic mediators,
while reducing the production of nitric oxide (NO), thus activating hepatic stellate cells (HSCs). At the same time, angiogenic
factors released by LSECs and HSC induce hepatic angiogenesis.

Hepatic angiogenesis data in animal models of NAFLD and patients suffering from
NAFLD suggest a role of this process in the pathogenesis of NAFLD. Angiogenesis is a
key step for inflammation and fibrosis [27] in NAFLD. Analyses on hepatic angiogenesis
in NAFLD patients are limited in number if compared to those in animal model studies;
however, the liver of patients with NAFLD showed increased expression of the endothelial
marker von Willebrand factor (vWF), especially in those subjects with advanced fibro-
sis [28]. Furthermore, in NAFLD patients, a correlation has been observed between vWF
and the expression of collagen XV, which is a specific marker of portal myofibroblasts
with pro-angiogenic properties by secreting extracellular vesicles containing VEGF [28].
Moreover, NAFLD patients showed significantly higher serum levels of angiopoietin-2
(Ang-2), which is an important protein capable of supporting the angiogenic process in
pathologic conditions [29], if compared to those without NAFLD or with simple steato-
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sis [22]. In human steatosis and NASH, the hepatic biopsies revealed an increased content
of Ang-2 [22].

This review focuses on the relevance of antiangiogenic agents for the possible treat-
ment of NASH, with specific consideration of different tested drugs, including phytother-
apeutic compounds (Table 1), in preclinical experimental settings of liver angiogenesis
of NASH models, as well as the possible interactions between these pharmacological
approaches to NASH and the prevention of the HCC development.

Table 1. Antiangiogenic treatments in animal models of NASH and NAFLD.

Antiangiogenic Treatment Animal Model Results Reference

Sorafenib 40 mg/kg,
20 mg/kg,

5 mg/kg, and 1 mg/kg,
orally

Male Sprague–Dawley and
Wistar rats

Decreased liver fibrosis, reduced HSC
proliferation, downregulation of cyclin
D1 and cyclin-dependent kinase 4 and

inhibition of the ERK and Akt
phosphorylation.

Wang et al., 2010

Sorafenib 4 mg/kg
intragastrically once a day

for four weeks
C57BL/6 (B6) mice Attenuation of CCl4-induced chronic

liver injury and fibrosis. Deng et al., 2013

Sorafenib 1.25, 5 or
7 mg/kg/day orally Male Sprague–Dawley rats

Significant inhibition of liver fibrosis
when administered concurrently with
TAA. No significant effect on fibrosis
when administered after established

cirrhosis.

Hong et al., 2013

Sorafenib 2.5 mg/kg/day,
orally Adult Sprague–Dawley rats

Restoration of mitochondrial function
and reduction of collagen deposition in a

NASH model. Upregulation of PGC1a
and MMP9; reduction of TIMP1,

TIMP2 mRNA, and IL-6, IL-10 protein.

Stefano et al., 2015

Sorafenib 10, 15,
and 30 mg/kg/ every 2 days Male C57BL/6J mice

Significant reduction of HCC incidence
and size in a model of NASH.

Suppression of the pathological features
of NASH, including hepatic steatosis,

inflammation, and fibrosis.

Jian et al., 2020

Sorafenib 10 mg/kg/day
orally for 2 weeks Male albino rats

Prevention of neoplastic changes in the
liver with a decrease in size of

hepatocellular foci.

El-Ashmawy et al.,
2017

Anti-VEGFR-2 (40 mg/kg
i.p.) and Anti-PlGF

(25mg/kg i.p.) antibodies

Ten-week-old C57BL/6 and
homozygous db/db female

mice

Prevention of NASH progression by
decreasing steatosis and inflammation

(anti-VEGFR-2). No effect of anti-PlGF on
liver histology. Improvement of the liver

vasculature by anti-VEGFR-2.

Coulon et al., 2013

Brivanib (3 mg/kg/day),
sorafenib (5 mg/kg/day),

orally
Male Wistar rats

Significant decrease in plasma VEGF,
FGF, PDGF, hepatic TNFα, IL-1b, IL-6,

IL-17;
decrease in hepatic leucocytes

recruitment, microvascular density and
hydroxyproline

content; increased hepatic blood flow in
NASH-cirrhotic rats.

Yang et al., 2014

Ezetimibe 50 mg/kg orally Pten∆hep mice
(C57BL/6 background)

Blockade of the development of HCC by
inhibiting cholesterol-mediated

angiogenesis in Pten∆hep mice with
hypercholesterolemia. Conversely,

no inhibition of angiogenesis in Pten∆hep

mice fed with the standard diet

Miura et al., 2019

Berberine 250 mg/kg/day
orally C57BL/6J mice

Suppression of genes related to
lipogenesis, inflammation, fibrosis,

and angiogenesis.
Luo et al., 2019
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Table 1. Cont.

Antiangiogenic Treatment Animal Model Results Reference

L1-10 4 mg/kg i.p.
three-times weekly C57BL/6 mice

Reduction of liver inflammation, balloon,
and fibrosis in MCD-fed mice; reduction

of angiogenic signaling in cultured
endothelial cells.

Lefere et al., 2019

50% ME of Phyllanthus
niruri

(1000 mg/kg orally).
Sprague-Dawley rats

Attenuation of NAFLD with a preventive
effect on fibrosis accompanied by the

inhibition of VEGF production.
Al Zarzour et al., 2018

ALS-L1023 (0.8%, w/w;
orally) C57BL/6J mice

Suppression of steatosis, infiltration of
inflammatory cells, and accumulation of
collagen in livers. Fewer CD68-positive

macrophage numbers and lower
expression of inflammatory cytokines.

Kim et al., 2017

Sitagliptin 150 mg/kg/day,
losartan 30 mg/kg/day

orally, alone and in
combination

Fischer 344 rats

Combined treatment suppressed hepatic
fibrogenesis and carcinogenesis, with the

suppression of HSC activation,
neovascularization, and oxidative stress.

Okura et al., 2017

2. Antiangiogenic Drugs and NASH

To date, effective therapeutic strategies have not yet been developed to prevent and
treat NASH-mediated cirrhosis and HCC-mediated liver cirrhosis. Clinical studies have
demonstrated that a high-fat diet is closely related to the development of NASH [30].
Moreover, scientific literature demonstrates that cholesterol levels are closely associated
with VEGF, which is a key factor promoting HCC [31]. NAFLD may result in a variety of
liver diseases such as liver fibrosis, cirrhosis, and HCC [32]. Antifibrotic therapies have
been studied in order to reverse liver fibrosis [33]. Various compounds have been tested for
their antifibrotic mechanism of action, such as the degradation of the extracellular matrix,
the antioxidant activity, the reduction of inflammation, and the inhibition of the activation
of HSCs [34]. Angiogenesis is a key step for the development of fibrosis and, thus, among
the molecules tested for their antifibrotic activity, also the antiangiogenic drugs have been
included.

2.1. Sorafenib

Sorafenib, a tyrosine and serine/threonine kinase inhibitor, is an FDA-approved first-
line therapy for advanced HCC [35,36]. It is active also on other human tumors such as
advanced renal cell carcinoma [37] and differentiated thyroid carcinoma [38], leading to a
reduction in tumor angiogenesis. Indeed, sorafenib inhibits the phosphorylation of various
targets present in the signaling pathways of both tumor cells (i.e., CRAF, BRAF, V600E
BRAF, c-KIT, and FLT-3) and in the tumor-endothelial cells (i.e., CRAF, VEGFR-2, VEGFR-3,
and PDGFR-β) [39–41]. Sorafenib showed antiangiogenic and antifibrotic activity on HSCs
and hepatic endothelial cells in preclinical models [42–45]. Indeed, several experimental
studies have demonstrated that after treatment with sorafenib, the number of activated
HSCs was reduced [46], the intrahepatic fibrosis and inflammation decreased, and the
process of angiogenesis diminished [47]. These effects led to the suppression of collagen
accumulation, with a significant decrease in HSC number [45]. Yang et al. [48] have also
shown that in addition to the decreasing fibrosis, portal hypertension, and angiogenesis,
the anti-VEGFR action of sorafenib improves the hepatic blood flow and inhibits the acti-
vation of leukocytes, the accumulation of splanchnic blood, and the formation ascites in
NASH cirrhotic rats. Moreover, in a preclinical rat model with NASH [44], sorafenib was
able to reduce collagen, increase matrix metalloproteinase (MMP) mRNA levels, and de-
crease the protein expression of tissue metallopeptidase inhibitor-1 (TIMP-1) as well as the
pro-inflammatory interleukins (IL)-6 and 10 [44]. Another in vivo study by Jian et al. [49]
showed that sorafenib administered at low doses decreased hepatic steatosis, inflammation,
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and fibrosis, thanks to the activation of the protein kinase 5’ by adenosine monophosphate
(AMPK). Interestingly, in this study, performed in mice and monkeys, the researchers
evaluated the efficacy of this new low-dose modality of sorafenib treatment to prevent the
early stage of hepatocarcinoma using a mouse model of NASH-HCC [49]. Sorafenib was
able to effectively block the onset of HCC at a dose equivalent to one-tenth of the current
clinical application, greatly improving fatty liver, inflammation, and fibrosis, which are
typical manifestations of NASH without causing any detectable adverse events [49]. Con-
sidering that fibrosis and cirrhosis determine an increased risk of developing HCC [50–52],
the use of sorafenib, as can be seen from the numerous data obtained in vitro and in vivo,
could represent an effective chemopreventive pharmacological tool for the development of
hepatocarcinoma. In fact, the treatment with sorafenib during the evolution of NASH could
block the early stages of hepatocarcinogenesis by decreasing fibrosis or directly blocking
pre-malignant liver lesions, as demonstrated in a rodent model [53].

2.2. Brivanib

Brivanib is a VEGFR-2 and a fibroblastic growth factor (FGFR) tyrosine kinase in-
hibitor with strong antifibrotic [54] and antineoplastic preclinical activity [55]. It specifically
and strongly binds to human VEGFR-2 expressed almost exclusively on vascular endothe-
lial cells. The blockade of VEGFR-2 by brivanib inhibits the migration and proliferation
of VEGF-stimulated endothelial cells, resulting in the arrest of tumor angiogenesis [56].
This compound has shown some antitumor activity when administered to patients with
hepatocellular carcinoma refractory to other antiangiogenic therapies [55]; however, there
are few data on its effects on cirrhosis. In 2014, Nakamura et al. published a report on
brivanib’s ability to decrease the hepatic fibrosis in vivo and the HSC activation in vitro
through the inhibition of FGF, VEGF, and PDGF signaling [57]. Indeed, after in vivo induc-
tion of liver fibrosis with different modalities such as bile duct ligation, or the treatment
with chronic carbon tetrachloride or thioacetamide, the mice administered with brivanib re-
sulted in a decreased liver fibrosis and a reduced expression of collagen Iα1 and α-smooth
muscle actin in the liver [57]. Brivanib also decreased HSC viability and blocked the
PDGFBB-induced phosphorylation of its receptor [57]. In the same year, Yang et al. [48]
studied the effects of a 2-week treatment with brivanib (or sorafenib) on cirrhotic rats with
NASH. Significant decreases in plasma levels of VEGF, FGF, PDGF, liver tumor necro-
sis factor (TNFα), IL-1b, IL-6, and IL-17 were observed in NASH-cirrhotic plus brivanib
and NASH-cirrhotic plus sorafenib rats during the treatment period if compared to those
treated with vehicle alone [48]. Moreover, a general improvement in hepatic blood flow,
as well as a decrease in hepatic neovascularization and portal hypertension, were reported
during the treatment period; the inhibition of the inflammation, portal fibrosis, and ascites
formation was also described [48].

2.3. Anti-VEGFR-2 Antibody

Coulon et al. [21] evaluated the role of angiogenesis in two mouse models affected by
NASH. The effect of preventive and therapeutic antiangiogenic treatment was observed in a
diet-induced mouse model of NASH. This study demonstrated that angiogenesis is induced
during the pathophysiology of NASH. In fact, in this experimental setting, the onset of
NASH was usually accompanied by a significant increase in inflammatory and angiogenic
factors. Among the main factors involved in pathological angiogenesis in various chronic
liver diseases [27], the authors highlighted the role of both VEGF and the placental growth
factor (PlGF) on NASH progression as new targets for treating or preventing the disease [21].
Interestingly, mice with NASH treated with an anti-VEGFR-2 antibody showed a better
and more organized vascularization if compared to untreated mice. Moreover, primary
hepatocytes treated with an anti-VEGFR-2 antibody were also able to incorporate a much
lower amount of lipids [21]. Finally, the researchers showed that a treatment with an
anti-VEGFR-2 antibody had a preventive and therapeutic role in decreasing steatosis and
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inflammation in the liver of mice with NASH. Conversely, an anti-PlGF antibody did not
significantly improve hepatic histology and liver fibrosis [21].

2.4. Ang2–Tie2 Interaction Inhibitors: L1-10

Conditions such as tumor and inflammation lead to pathological angiogenesis, and var-
ious angiogenic factors are involved in this complex process. One such angiogenic factor is
Ang-2 [29]. Indeed, even though Ang-2 physiologically inhibits angiogenesis, it is overex-
pressed in diseases such as cancer, and its ability to induce angiogenesis in this case has
been demonstrated [58]. Both Ang-1 and Ang-2 bind to specific tyrosine kinase receptors
named Tie receptors (Tie1 and Tie2), which are almost exclusively expressed on the surfaces
of endothelial cells [29]. It is believed that Tie1 is an orphan receptor without a ligand that
is able to modulate the angiopoietins signaling via Tie2 [59]. In basal and non-inflammatory
conditions, Ang-1 controls normal vascularization by binding to the Tie1/Tie2 complex.
In inflammatory processes, overexpressed Ang-2 competes for receptor binding, acting
as an antagonist of Ang-1 and leading to a destabilization of blood vessels and to vessel
remodeling [60]. Therefore, in pro-inflammatory conditions, the Ang-2–Tie1/Tie2 receptor
complex association promotes abnormal vascular remodeling [61].

An increase in serum Ang-2 was observed in an animal model of HCC-NASH
(i.e., neonatal streptozotocin, STAM mice) and fed for 16 weeks on a Western diet [62].
Lefere et al. [22] showed that in NASH patients, the serum levels of Ang-2 increased
directly and proportionally to the degree of inflammation, steatosis, swelling, and histo-
logical alteration, but not to the degree of fibrosis. In this paper, the correlation between
Ang-2 and CD34 expression, a marker of neoangiogenesis, in liver histological sections
was also highlighted. Moreover, hepatic vascular endothelial cells under inflammatory
conditions secreted Ang-2. Lefere et al. studied the Tie1/Tie2 receptor complex and its
angiopoietin ligands also in a murine non-alcoholic fatty liver disease model [22], and they
confirmed that in mice fed MCD, serum levels of Ang-2 are increased. L1-10 is a peptide
antibody and an Ang-2 selective inhibitor that showed 1000-fold inhibitory selectivity for
Ang-2 over Ang-1 [63]. L1-10 abolished the in vitro binding affinity between Ang2 and
Tie2 in a dose-dependent manner [64]. Interestingly, the administration of L1-10 reduced
the liver inflammation, ballooning, and fibrosis in MCD-fed mice but did not change
the degree of steatosis. The authors also demonstrated that L1-10 treatment reduced
angiogenic signaling from cultured endothelial cells after LPS stimulation, confirming
their observations that L1-10 reduces neoangiogenesis primarily through endothelial cell
signaling [22]. However, to date, there are no clinical trials that have used L1-10, but tre-
bananib, an Ang-2 neutralizing peptide antibody, has been already tested as an additional
therapy in advanced cancer diseases [65,66], revealing a good toxicity profile in patients,
although the most frequent side effects were edema and ascites [65,66]. Unfortunately,
in patients with advanced HCC, the introduction of trebenanib in addition to the standard
treatment represented by sorafenib did not result in any improvement of progression-free
survival [67].

3. Drugs with Antiangiogenic Activities and NASH
3.1. Ezetimibe

The growth of some tumors, such as breast cancer [68] and prostate cancer [69], may be
favored by excess cholesterol, which promotes angiogenesis. In NASH, an increase in
leptin-mediated angiogenesis was observed [20], and the inhibition of the neovasculariza-
tion process decreases the severity of the disease [21]. Moreover, high cholesterol levels
induced angiogenesis in hepatocyte specific phosphatase and tensin-deficient (Pten) mice
(Pten∆hep mice) following the HF diet [70]. Increased cholesterol not only causes liver
damage but also induces Kupffer cells to express VEGF [71].

Ezetimibe, a specific cholesterol uptake-blocking drug, has been shown to inhibit an-
giogenesis and retard prostate cancer growth [69]. Based on this premises, Miura et al. [72]
evaluated the effects of ezetimibe in the experimental model of Pten∆hep mice, which
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develops HCC after steatohepatitis [73]. Interestingly, in this model of HCC related to
steatohepatitis, mice fed with a high-fat diet showed a concomitant, significant increase in
cholesterol and VEGF serum levels. Ezetimibe was able to block the growth of HCC by
inhibiting cholesterol-mediated angiogenesis in Pten∆hep mice with hypercholesterolemia;
by contrast, it did not affect angiogenesis in Pten∆hep mice fed with a standard diet, in which
cholesterol elevation was low [72].

3.2. Losartan and Sitagliptin

In CLD, the renin–angiotensin system plays a crucial role [74]. In fact, the block
of angiotensin II (AT-II) signal transduction through the AT-II type 1 receptor (AT1R)
is able to inhibit hepatic fibrogenesis and, at the same time, suppress the activation of
hepatic stellate cells [75]. Losartan, by blocking the renin–angiotensin system, inhibited
hepatocarcinogenesis and the growth of HCC [76,77]. Sitagliptin, a selective inhibitor
of dipeptidyl peptidase-4 (DPP-4I), is a drug used to treat type 2 diabetes mellitus that
is suggested to be useful in NAFLD [78]. The expression of DPP-4 is elevated in many
cell populations, including endothelial cells, and it is implicated in inflammation and
tumorigenesis [79].

Okura et al. [80] described the chemopreventive effects of losartan and sitagliptin
combination on hepatic stellate cell activation, angiogenesis, and oxidative stress, which are
key steps in NASH progression, in a rat model of NASH. The authors showed that losartan
plus sitagliptin were able to reduce hepatic fibrogenesis and carcinogenesis caused by the
CDAA diet, almost in parallel with the suppression of neovascularization and oxidative
stress [80]. The inhibitory effect of losartan plus sitagliptin on hepatocarcinogenesis was
mediated by the inhibition of endothelial cell tube formation, not by a direct action on cell
proliferation of endothelial and HCC cells [80]. By suppressing hepatic neoangiogenesis
caused by VEGF, the chemopreventive effect on experimental hepatocarcinogenesis me-
diated by sitagliptin plus losartan could be achieved in synergy, reaching the control of
hepatic fibrogenesis and the inhibition of carcinogenesis [80].

4. Phytotherapeutic Compounds with Antiangiogenic Properties and NASH
4.1. Berberine

Berberine is an isoquinoloin alkaloid present in several plants of the Berberidaceae
family. The therapeutic use of berberine as a remedy for acute gastroenteritis and diseases
of the digestive tract [81] comes from Chinese medicine. Berberine has shown anticancer
properties in preclinical models [82]. In fact, it appears to be effective on liver, colon,
lung, breast cancer, melanoma, neuroblastoma, and other cancer cells [83–85]. Moreover,
berberine has been shown to be an effective antiangiogenic compound by decreasing the
expression of VEGF and HIF-1alpha [86].

A NASH–HCC mouse model has been developed by Fujii et al. [87] using a streptozo-
tocin (STZ) injection associated with a high-fat, high-cholesterol (HFHC) diet. This mouse
model mimics the entire pathological process from fatty liver, steatohepatitis, and fibrosis to
HCC [87]. Luo et al. [88] investigated the mechanism of action and the therapeutic potential
of berberine in this particular model of NASH–HCC. Mice were treated for three months
with berberine (250 mg/kg daily) by gavage, as previously described [89,90]. As expected,
the HFHC diet combined with the STZ injection induced the growth of tumors in the mouse
liver of the control group, whereas in the berberine-treated mice liver, tumorigenesis was at-
tenuated, with the development of very few tumors [88]. Interestingly, in STZ–HFHC mice,
the berberine compound reduced the microvascular density (MVD). Moreover, in STZ–
HFHC mice, the increased expression of CD31 and VEGF was suppressed by berberine,
confirming its potential antiangiogenic characteristic. Even more, berberine significantly
reduced the levels of liver enzymes, glucose, high-density lipoprotein, low-density lipopro-
tein and total cholesterol, as well as the expression of IL-6, IL-1β, MCP-1, and TNF-α
demonstrating its positive metabolic and anti-inflammatory effects [88].
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4.2. Phyllanthus Niruri

Phyllanthus niruri is a small annual herbaceous plant native to the Amazon rainforest
and other tropical areas, including Southeast Asia, South India, and China. It is a medicinal
plant widespread throughout the tropical and subtropical world and widely present in
the coastal areas of India where it has been used in the Ayurvedic medicine for more than
2000 years [91]. Its extract is an excellent antioxidant, a good hepatoprotector, and lowers
blood lipid levels [92,93], at least in preclinical models.

In the study by Zazour et al. [94], the antiangiogenic properties of the standardized
50% methanolic extract of Phyllanthus niruri (50% ME of P. niruri) were investigated in a
model of NAFLD in Sprague–Dawley rats. In vitro and in vivo tests were performed to
evaluate the inhibition of endothelial cell migration, tube formation, and VEGF activity
by 50% ME of P. niruri without any cytotoxic effect. Indeed, a significant antiangiogenic
effect was obtained by inhibiting the development of microvessels in the rat aorta model,
decreasing the migration and the differentiation of endothelial cells [94]. Above all, 50%
ME of P. niruri effectively attenuated NAFLD, with a preventive effect on fibrosis, which
was accompanied by the inhibition of VEGF production [94]. In fact, the block of VEGF,
which activates HSC, is one of the mechanisms of inhibition of fibrosis as previously shown
by Coulon et al. [11].

4.3. ALS-L1023

The growth and increase in adipose tissue, as well as the formation of neoplastic tissue,
are thought to be dependent on the angiogenic process [95]. The onset and progression of
NAFLD is related to the presence of visceral adipose tissue (VAT); thus, Kim et al. [96] ar-
gued that NAFLD caused by obesity could be blocked by inhibiting angiogenesis. The same
authors have previously shown that the antiangiogenic herbal extract Ob-X was able to
significantly reduce adipose tissue and suppress obesity by inhibiting angiogenesis [97].
Indeed, other inhibitors of angiogenesis (such as TNP-470) significantly reduced body
weight and fat mass [98,99] in mice, indicating a role of angiogenesis in the growth of fat
tissue. For these reasons, Kim et al. [96] investigated a new phytotherapic remedy called
ALS-L1023, the active part of an organic extract of lemon balm leaves (Melissa officinalis L.),
which is endowed with antiangiogenic activity and was previously discovered by Park et al.
and Woo et al. [100,101]. The antiangiogenic effects of ALS-L1023 in relation to visceral
obesity and NAFLD were evaluated in high-fat C57BL/6J mice (fed with HFD). ALS-L1023
extract had actually a significant antiangiogenic action because in HFD-ALS-L1023- treated
mice, compared to only HFD mice, there was a decrease in the expression of VEGF and an
increase in thrombospondin-1 (TSP-1) [96], which is a well-known endogenous inhibitor of
angiogenesis [102].

5. Conclusions

Only a small percentage 20–30% of patients with NAFLD develop NASH, fibrosis,
cirrhosis, and hepatocarcinoma [103]. About 7% of cirrhosis associated with NAFLD
will evolve in hepatocellular carcinoma within 10 years [103]. Currently, weight loss and
lifestyle change through diet and exercise is recommended as a first-line therapy [104,105].
However, long-term compliance with lifestyle changes is difficult to achieve and maintain
in the target population, and a standardized drug therapy for these diseases is still lacking.
As a result, a major unmet need for a new drug to treat NASH and reverse liver fibrosis
exists.

In recent years, numerous clinical studies are underway for the evaluation of new
drugs that should act on the pathogenetic mechanisms (insulin resistance, alteration of
lipid metabolism) that lead to NASH. As an example, in the recent review article by
Dehnavi et al. [106], we reported the published data about the peculiar characteristic of
statins to reduce hepatic lipid accumulation and thus to have a therapeutic use in NAFLD.
In particular, atorvastatin and fluvastatin promote the AMPK signaling pathway, inhibiting
the acetyl CoA carboxylase, which is a key enzyme for lipogenesis, and blocking the fat
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accumulation in the hepatocytes. Thus, statins have hepato-protective effects through the
regulation of AMPK signaling [106]. In our review, we analyze the antiangiogenic drugs
that may play a major role in the pathogenetic mechanism that leads to the progression
of liver damage. However, the use of these antiangiogenic molecules does not exclude
therapeutic interventions aimed at blocking the etiopathogenetic mechanisms; indeed,
these drugs could have an adjuvant role in particular in the most advanced forms of
damage, when fibrosis is greater.

Antiangiogenic drugs, and in particular sorafenib, may impact negatively on type 2 di-
abetes. However, Imarisio et al. [107] have published an interesting clinical trial on patients
with advanced HCC or metastatic renal cell carcinoma and comorbid diabetes mellitus or
prediabetes. All these patients were treated with 400 mg sorafenib twice daily for approxi-
mately 8 months (a standard anticancer dosage). The authors concluded that sorafenib has
the potential to be a feasible and safe treatment option for these patients. Moreover, Makol
et al. [108] observed that the percentage of HCC patients responding to sorafenib was
higher in type 2 diabetes group and that after three months of treatment, their glycemia
decreased significantly, which was probably due to the enhancement of glycolysis by
sorafenib [109].

Encouraging results suggest that low-dose sorafenib could be used for the treatment
of NASH and the co-treatment with brivanib may offer the possibility of using these anti-
VEGFR drugs over a long term. Moreover, due to Ang-2 contributing to the progression of
NASH, it emerged that Ang-2 inhibitors, such as L1-10, may be effective in the prevention
and resolution of steatohepatitis by inhibiting pathological vascular growth and endothelial
cell dysfunction. Finally, other commonly used drugs, such as ezetimibe, or phytotherapeu-
tic remedies such as berberine or ALS-L1023, may be effective in inhibiting the progression
of disease through the block of the angiogenic process and the reduced VEGF secretion.

There is increasing evidence that neovascularization is a key element in the progres-
sion of NAFLD (Figure 1). The formation of new blood vessels in chronic liver disease
is linked to the advancement of fibrosis, indicating a close interplay between LSECs and
HSCs. In normal liver, sinusoidal homeostasis depends on low-level release of VEGF by
hepatocytes, helping LSECs to remain differentiated and to generate nitric oxide, which
inhibits the activation of HSCs [110]. Although VEGF is an essential regulator in maintain-
ing LSEC differentiation [111], in NAFLD, hepatocytes and nonparenchymal liver cells
increased VEGF production, mediating both pro-fibrogenic and pro-angiogenic signals,
supported by HIF activation in hypoxic areas [110]. Indeed, serum VEGF levels of patients
with steatosis and steatohepatitis are higher compared to healthy controls [110]. In this per-
spective, low-dose TKIs may help to restore physiologic levels of VEGF signal, maintaining
the physiologic functions on LSECs.

Some antiangiogenic drugs (i.e., sorafenib and brivanib) have been shown important
adverse events at the standard doses administered to cancer patients. Although the
eventual experimental dosages of sorafenib or brivanib in NASH could be lower and safer
compared to the one administered in the oncology field, caution should be used because
these drugs can deteriorate the prognosis of NASH patients with cardiovascular morbidity.
However, severe adverse events due to high plasma concentrations of TKIs may be also
addressed by the application of TDM-guided dosing, ensuring levels within the therapeutic
window [112]. Particularly relevant on this issue is the very recent meta-analysis by
Hou et al. performed to identify the potential cardiotoxicity risks of VEGFR–TKIs in
patients with solid tumors [113]. These authors concluded that among the VEGFR–TKIs,
lenvatinib and vandetanib revealed the highest possibility to provoke cardiovascular events
and hypertension, followed by cabozantinib, axitinib, pazopanib, sorafenib, sunitinib,
regorafenib, and nintedanib. Although sorafenib has been shown to cause these important
adverse reactions, the risk of a cardiovascular event due to this drug is significantly lower
than that of many other VEGFR-TKIs. Interestingly, regorafenib and nintedanib do not
exhibit an increased risk of cardiovascular incidents and therefore may represent a valid
experimental alternative in the treatment of NASH or NAFLD to sorafenib and other
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antiangiogenic drugs. Moreover, data from the randomized phase III BRISK-FL study [114]
showed that in patients with HCC, the most frequent grade 3/4 adverse events related to
the administration of sorafenib and brivanib were hyponatremia, fatigue, hand–foot–skin
reaction, and hypertension (5% and 13%, respectively).

Another important aspect of the eventual use of sorafenib in NASH is the potential
pharmacological interactions with antidiabetic or antihypertensive drugs that are com-
monly prescribed in NASH patients. Recently, Karbownik et al. [115] investigated the
pharmacokinetic interactions between sorafenib and metformin or atorvastatin in a rat
model. The concomitant administration of sorafenib and metformin increases the clear-
ance of sorafenib in rats, which results in a significantly lower sorafenib half-life (16.3 vs.
21.9 h). Moreover, metformin also significantly decreased the area under the curve (AUC)
of sorafenib. On the contrary, sorafenib did not statistically influence the pharmacokinetic
parameters of metformin. Sorafenib is mainly metabolized both via CYP3A4 isoform and
UGT1A9. Felodipine, an anti-hypertensive agent that is exclusively a CYP3A4 substrate,
has been demonstrated to cause changes in sorafenib pharmacokinetic parameters in an
80-year-old HCC patient with hypertension [116]. Indeed, after 30 days of co-treatment,
sorafenib plasma concentration was three-fold greater, and although the hypertension was
well controlled, the patient experienced a grade-3 anorexia. Since hypertension is a possible
adverse drug reaction of sorafenib, oncologists and endocrinologists should be aware of
this possible interaction.

Although there are consistent data on the use of the antiangiogenic approach for the
treatment of NASH with several tested drugs, unfortunately, no dedicated, randomized
phase III clinical trials have been planned and performed to give a clinical answer to the
possible contribution of the antiangiogenic drugs into NASH therapy. Indeed, the “hepato-
logical world” looks at sorafenib and to other antiangiogenic compounds exclusively as
drugs for the patient with advanced cancer (therefore in very advanced clinical contexts).
Therefore, the hypothesis of their use alone or in combination with other drugs in NASH
patients, even if in very small doses, must be introduced in the researcher and clinician
communities, although with caution due to the possible cardiovascular toxicities.
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Karaźniewicz-Łada, M.; Wolc, A.; Główka, F.; et al. Pharmacokinetic Interaction between Sorafenib and Atorvastatin, and So-
rafenib and Metformin in Rats. Pharmaceutics 2020, 12, 600. [CrossRef] [PubMed]

116. Gomo, C.; Coriat, R.; Faivre, L.; Mir, O.; Ropert, S.; Billemont, B.; Dauphin, A.; Tod, M.; Goldwasser, F.; Blanchet, B. Pharma-
cokinetic interaction involving sorafenib and the calcium-channel blocker felodipine in a patient with hepatocellular carcinoma.
Investig. New Drugs 2011, 29, 1511–1514. [CrossRef]

http://doi.org/10.2217/fon.12.74
http://doi.org/10.1177/1535370217744511
http://doi.org/10.1038/srep09149
http://doi.org/10.1007/s10620-017-4903-5
http://doi.org/10.1080/17474124.2020.1815532
http://www.ncbi.nlm.nih.gov/pubmed/32902336
http://doi.org/10.1007/s00228-020-03014-8
http://www.ncbi.nlm.nih.gov/pubmed/33165648
http://doi.org/10.1007/s00432-021-03521-w
http://www.ncbi.nlm.nih.gov/pubmed/33725154
http://doi.org/10.1200/JCO.2012.48.4410
http://www.ncbi.nlm.nih.gov/pubmed/23980084
http://doi.org/10.3390/pharmaceutics12070600
http://www.ncbi.nlm.nih.gov/pubmed/32605304
http://doi.org/10.1007/s10637-010-9514-3

	Introduction 
	Antiangiogenic Drugs and NASH 
	Sorafenib 
	Brivanib 
	Anti-VEGFR-2 Antibody 
	Ang2–Tie2 Interaction Inhibitors: L1-10 

	Drugs with Antiangiogenic Activities and NASH 
	Ezetimibe 
	Losartan and Sitagliptin 

	Phytotherapeutic Compounds with Antiangiogenic Properties and NASH 
	Berberine 
	Phyllanthus Niruri 
	ALS-L1023 

	Conclusions 
	References

