
RESEARCH ARTICLE

HowMany Genes Are Expressed in a
Transcriptome? Estimation and Results for
RNA-Seq
Luis Fernando García-Ortega, Octavio Martínez*

Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios
Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, México

* omartine@langebio.cinvestav.mx

Abstract
RNA-seq experiments estimate the number of genes expressed in a transcriptome as well

as their relative frequencies. However, an undetermined number of genes can remain unde-

tected due to their low expression relative to the sample size (sequence depth). Estimation

of the true number of genes expressed in a transcriptome is essential in order to determine

which genes are exclusively expressed in specific tissues or under particular conditions. A

reliable estimate of the true number of expressed genes is also required to accurately mea-

sure transcriptome changes and to predict the sequencing depth needed to increase the

proportion of detected genes. This problem is analogous to ecological sampling problems

such as estimating the number of species at a given site. Here we present a non-parametric

estimator for the number of undetected genes as well as for the extra sample size needed

to detect a given proportion of the undetected genes. Our estimators are superior to ones

already published by having smaller standard errors and biases. We applied our method to

a set of 32 publicly available RNA-seq experiments, including the evaluation of 311 individu-

ally sequenced libraries. We found that in the majority of the cases more than one thousand

genes are undetected, and that on average approximately 6% of the expressed genes per

accession remain undetected. This figure increases to approximately 10% if individual

sequencing libraries are analyzed. Our method is also applicable to metagenomic experi-

ments. Using our method, the number of undetected genes as well as the sample size

needed to detect them can be calculated, leading to more accurate and complete gene

expression studies.

Introduction

The transcriptome
The transcriptome can be considered as the set of all RNA molecules, including mRNAs,
rRNAs, tRNAs, and other non-coding RNAs such as small RNAs, present in a cell under spe-
cific conditions (see for example [1]). In the present work, we specifically refer to the mRNA
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transcriptome, but the ideas and methods discussed are applicable to other types of RNA or, in
fact, to any situation where a similar sampling scheme is employed. RNA-seq [2] is a method
to explore and quantitate the transcriptome, usually by high-throughput sequencing. In these
experiments, total RNA is isolated from a cell population and then the mRNA fraction is con-
verted to cDNA which is fragmented and sequenced massively in parallel, obtaining a large
number of small gene tags, that are associated with specific gene transcripts. These sequences
are then mapped to a reference (generally a reference genome or a de novo assembled reference
transcriptome), obtaining quantitative data concerning transcript abundance for genes in the
reference. The final result of an RNA-seq experiment performed over a given sample of mRNA
is a vector, such that y = (y1, y2, � � �, yg), where each yi > 0; i = 1, 2, � � �, g is the count of the
number of tags found for the i − th gene and g is the total number of genes detected or esti-
mated in the sample of effective size N = ∑yi. It is important to underline that the number of
genes detected in a given RNA-seq experiment, g, is only an estimate of the true number of
genes that are being expressed in that case, say G; G� g. Thus, after performing an RNA-seq
experiment we can only affirm that there are at least g genes expressed for that case, but we can-
not rule out the possibility that more genes are being expressed, but were missed by our sample
of size N, i.e., the case when G> g. An important goal of transcriptomics research is to obtain
complete transcriptome-level information for each cell type that comprises the organism being
studied. However, what is generally feasible is to extract mRNA from a large number of cells.
Under these conditions sampling is conducted with replacement from a conceptually infinite
population of molecules. In other words, the probability of mapping a tag to a specific gene
does not alter the probabilities of mapping tags for each gene as the sampling proceeds.
Although single-cell RNA-seq is becoming feasible [3], the majority of RNA-seq experiments
performed to date use RNA extracted from heterogeneous mixtures of cells such as tissues,
organs or even complete individuals. This increases the complexity of the population sampled
by increasing the number of distinct transcripts present, for example derived from the set of
genes whose expression is restricted to only a particular cell type(s).

When a gene is not detected by RNA-seq in a particular treatment, it can be due to the fact
that it is not expressed or, alternatively, it was expressed but was not detected because the sam-
ple size was too small. In the former case no error is committed, but the later leads to an incor-
rect conclusion, if the lack of detection is taken as absolute evidence of no expression. RNA-seq
literature is full of cases where the authors claim that some genes are ‘exclusively expressed’ in
a particular condition. For example, in some cancer related studies [4–7] the authors affirm
that a set of genes are exclusively expressed in the malignant tissues, while in many more cases
the same claim is done about exclusive expression at some treatment or condition. We esti-
mated, by searching the literature, that in around 600 papers such claims are made; see [8–18]
for particular examples. To claim that a particular gene is exclusively expressed under a given
condition, the researchers must show that the collection of expressed genes is reasonable com-
plete and thus there is unlikely that the undetected gene was missed as a consequence of a
small sample size.

Sampling genes is analogous to sampling species
The problem studied here, namely the estimation of undetected genes in a transcriptome, is
analogous to the problem of estimating the number of species (in ecology) or classes (in statis-
tics) [19]. Concrete examples include the ecological question of how many species exist in a
delimited area, or to the estimation of the number of words known by a writer [20]. This is a
difficult problem because it involves an estimate of how many things (classes, species, genes)
are missing in a sample, using only the information contained in the sample itself.
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To present the problem, as well as putative solutions in a formal framework, denote as fr the
number of cases in which the counts of the class i, i.e., the yi’s have exactly the value of r; r = 1,
2, � � �. Thus, for example, if 5 of the yi’s are equal to 1, then f1 = 5. In this way, and without los-
ing any relevant information, the original data y can be represented by the vector f = (f1, f2, � � �)
and the sample size, N, can be expressed as

Xr¼1

r¼1

rfr ¼ N

This notation was apparently proposed in [21], in which it was used to estimate the number of
classes in a population of known size. This notation was followed by [22], in which fr was
defined as the frequency of the frequency r. Note that ∑i yi = ∑r rfr = N and in any particular
case the maximum value of r is finite, however we use ‘r =1’ above simply to indicate that the
sum must be performed for all values of r. ‘f0’ can then be used to represent the number of
genes that are not present in a sample, or in more general terms, the number of classes that are
missing in a particular sample (see Section A of S1 File for more details).

Consider a sampling experiment in which a biologist is interested in knowing howmany spe-
cies of fish live in a pond. After catching a fish and noting its species, say i, the frequency corre-
sponding to that species, yi, increases by one. The fish is sent back to the pond (sampling with
replacement considering an ‘infinite’ population) and the procedure is repeated. In this scenario
important variables change asN, the number of times that the procedure is repeated or sample
size, increases. In the first stages the rate of discovery of species is large and g (the number of
detected species) increases rapidly; at the same time the number of species represented by a single
individual, the frequency f1, is large: f1� N. As the process continues, the discovery of new spe-
cies becomes less and less frequent such that g tends to stability converging on the true number
of species in the pond,G. Precisely the same logic applies to the analysis of transcriptome data in
an RNA-seq experiment, where the probability of mapping to a previously unsampled gene is
large whenN is small. AsN increases, the probability of mapping a sequence to a previously
unsampled gene decreases. This process can be plotted as a rarefaction curve, and used to esti-
mate G (see for example [23]). Intuitively, a ‘stopping rule’ can be established for the sampling
procedure; for example, “stop sampling when f1 = 0”, when all of the yi’s are larger than one. This
is a reasonable rule of thumb because when f1 = 0 it is assumed that the sample has covered the
complete population, including all or nearly all of the species present. For increased confidence,
“stop sampling when f1 = 0 and f2 = 0”, etc. In summary, the values of fr when r is small, say r = 1,
2, � � �, 6 contain most of the information about the ‘completeness’ of the sample. In the case of
transcriptome data, note that the total number of genes, G, is equal to the number of genes
detected in the sample, g, plus the number of genes missing, f0,

G ¼ g þ f0

The need for an estimate of the number of missing genes (f0)
To model the frequencies of expression of genes, the number of classes must first be fixed to a
given value G = c. After doing this, a multinomial distribution with c parameters, or a negative
binomial or a set of c independent Poisson distributions, etc. can be assumed. In fact, all cur-
rent RNA-seq analysis algorithms such as edgeR [24] and DEGseq [25] assume that the num-
ber of genes expressed in a sample is equal to the number of genes found in the sample, G = g,
and only then model the frequencies under a specific distribution. This is a rational assump-
tion, given the impossibility of estimating frequencies of expression for genes that are not
detected in the sample. However, there are important statistical and biological repercussions to
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this problem that have been under-appreciated in the literature (see for example [26]). From a
statistical point of view, when the true value of G is unknown, the parameter space is open. In
other words, we do not know how many parameters need to be estimated, and thus the method
of maximum likelihood fails to give proper estimators [22]. On the practical side, if informa-
tion concerning the completeness or richness of a sample is unknown, then it is impossible to
evaluate the possibility that a gene was indeed expressed but was missed during sampling. This
implies that for several classes of genes, particularly those that are only weakly expressed, it is
impossible to determine whether their expression is restricted to a particular cell type, develop-
mental stage, or environmental condition. This is a crucial consideration given that genes with
important regulatory roles, as for example those encoding transcription factors, are usually
expressed at lower frequencies [27] and thus have larger probabilities to remain undetected in
the sample than are other types of genes.

The estimation (using DNA evidence) of the number of microorganism species in metage-
nomics experiments is a problem with the identical sampling and statistical framework as the
one presented here for the estimation of undetected genes, and is amply represented in the lit-
erature [28–35]. A solution to the problem of f0 estimation in RNA-seq is likely to be directly
applicable to metagenomic experiments.

Non-parametric estimators for the number of missing genes (f0)
The estimation of the number of missing or undetected classes, f0, can be performed by differ-
ent methods, depending on the structure of the population and the sampling scheme employed
[19]. RNA-seq employs sampling with replacement, thus assuming a population of infinite size
in which G is unknown. In this case, selecting a discrete distribution, such as multinomial or
negative binomial, is impossible without conditioning to a known value of G, for example G =
g. However, it is important to note that G itself is a random variable in that the realized value G
= g holds only after the sample had been obtained; assuming a priori a particular distribution
for G, as for example log-normal [23], is risky and without empirical foundations given that
RNA-seq samples arise from a wide range of situations (heterogeneous mixtures of distinct cell
types as tissues or organs in distinct environmental conditions or developmental stages, etc.
[26]). For this wide range of possibilities it appears unrealistic to impose a given statistical law
in the form of a distribution for the number of classes. At least for RNA-seq, it appears safer to
use non-parametrical estimation procedures, assuming very little about the distribution, as has
been done for example in [22]. Here we present only the most common non-parametric esti-
mators for f0 proposed in the literature. A more comprehensive list, including different meth-
ods of estimation can be found in [19].

In a seminal work, I. J. Good [22] studied the problem of the estimation of the relative fre-
quency of occurrence of species, which as previously described, is directly applicable to the esti-
mation of the relative frequency of detection of genes in a transcriptome. He showed that the
usual relative frequency in a sample, yi/N or r/N, is a sensible estimator of the corresponding
relative frequencies only when the true number of classes G is known. In that case those are
Maximum Likelihood Estimators (MLE) of the corresponding parameters. However, when G is
unknown, which is the case in all RNA-seq experiments, these estimators are inappropriate for
small r, i.e., for genes only weakly expressed. In [22] Good presented an approximate recurrent
expression for the expected value of r,

r� � ðr þ 1Þfrþ1=fr ð1Þ

This relation was first discovered by Alan M. Turing [36], and has been the basis of estimators
for the coverage of a sample and, in particular, for estimators of the number of classes under
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different frameworks. Anne Chao in [37] used an approximate and asymptotic result to pro-
pose as estimator of f0, the function

f̂ 0 ¼
f 21
2f2

ð2Þ

This estimator is generally called ‘Chao1’ in the literature. This estimator set the foundation for
variants to estimate f0 under distinct sampling schemes in the framework of species richness
estimation, as for example the ‘Chao2’ estimator,

f̂ 0 ¼
f1ðf1 � 1Þ
2ðf2 þ 1Þ

which is bias corrected and is always obtainable [38]. Chao1 is a lower bound and thus a biased
estimator of f0, a fact already noted in [37]. However, resampling procedures, such as Jackknife
or bootstrap [39] can be employed to reduce the bias and obtain non-parametric confidence
intervals, as proposed in [37, 38]. The Chao1 and Chao2 estimators have been used to derive
nonparametric lower bounds for the number of species shared by multiple communities [40],
and evaluated taking into account the influence of rare species [41] as well as in comparisons of
these estimators’ performance [42, 43].

Recently the group of Anne Chao developed an improved estimator for the number of miss-
ing classes in the framework of species estimation [44]. This estimator, also based in the Good–
Turing recurrent expression (Eq 1), is called ‘iChao1’ and given by

f̂ 0 ¼
f 21
2f2

þ f3
4f4

� �
� max f1 �

f2f3
2f4

� �
; 0

� �� �
ð3Þ

The problem of the estimation of the number of expressed genes has been previously stud-
ied for the sampling of ‘Expressed Sequence Tags’ or ‘EST’ libraries [45]. Experiments quantify-
ing the relative expression of genes based on the frequencies of their corresponding ESTs are
similar in this respect to RNA-seq experiments but differ in that EST experiments usually
involve much smaller sample sizes (many fewer ESTs in a sample library) and longer gene tags.
The estimation of species richness in this framework has been treated in [46–48]. The probabil-
ity of discovering a new class (gene) in this framework is presented in [46]. In [47] the concept
of gene capture prediction and overlap estimation is expanded from one to multiple libraries
and [48] gives a penalized non-parametric maximum likelihood estimator for species richness
while [49] discusses which sequencing depth might be sufficient to interrogate gene expression
profiling in chicken libraries by RNA-Seq.

In the context of uniquely expressed genes (or mRNAs) in specific cells and tissues, [50]
presents an estimator for f0. This estimator, named the ‘Medial’ estimator is given by

f̂ 0 ¼
N � 1

N

� �
f1ðf1 � 1Þ
f2 þ 1

� �
� f1ðf1 � 1Þ

f2 þ 1
ð4Þ

Note that the factor (N − 1)/N, is not relevant in the context of RNA-seq where the sample
sizes, N, are in the order of millions. Asymptotic expression for the variances of the Chao1 (Eq
2) and Medial (Eq 4) estimators are presented in [51] and [50], respectively. However, we con-
sider that the bootstrap approach [39] gives a more robust approach for the estimation of the
variance of these estimators than the asymptotic approximations. The uncorrected forms of
the Chao1, iChao1 and Medial estimators (Eqs 2, 3 and 4) do not have a finite expectation.
This is due to the fact that the denominators of the equations can take a value of zero with
non-zero probabilities, and thus the sum that defines the corresponding expectations diverges.
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Here we propose and evaluate a set of new non-parametric estimators for f0. We present an
estimator of f0 that is superior to the Chao1, iChao1 and Medial estimators in the framework of
RNA-seq. We use the selected function to estimate the number of missing genes in a set of
RNA-seq experiments, demonstrating that, in many cases, a substantial number of genes is not
represented in these studies. We also propose and test estimators for the extra sample size
needed to complete the estimated gene set to include an arbitrary large proportion of the genes
expressed.

Results and Discussion
A possible answer to the question that titles this paper ‘How many genes are expressed in a
transcriptome?’ is simply the number of genes detected in the sample(s). This naive answer

generates an estimator (the naive estimator f̂ 0 � 0 for any sample) that will almost always
underestimate the true value of the parameter, because the probability of missing one or more
genes can be very large, approaching 100% in almost all real cases (see Section B of S1 File). We
sought to identify more robust estimators for f0 than the Chao and Medial estimators, at least
for the framework of RNA-seq studies.

Better estimators of f0 for RNA-seq
As noted among others by Good [22] and Chao [37, 38], the frequencies of rare classes (f1, f2,
� � �, fr with r small) carry most of the information about the number of missing classes, f0. This
leads to the Chao1 estimator (Eq 2), which uses only the singletons (f1) and doubletons (f2) to
estimate the number of missing classes [37], and very recently to the iChao1 estimator (Eq 3),
which apart from f1 and f2 uses the information from f3 and f4[44]. In the ecological framework
of species estimation, there is no point in exploring estimators that use the information of fre-
quencies of frequencies with larger order, say, fr with r> 4, because in that context the sample
sizes are limited to relatively small values, say N	 1000, and thus the observed values of fr,
r> 4 are very frequently equal to zero. In contrast, in RNA-seq experiments the sample sizes
are much larger; from hundreds of thousands to tens of millions of mapped gene tags. As a
consequence, in RNA-seq datasets the observed values of fr, r = 4, 5, � � �, 10 are, in most of the
cases, larger than zero and thus can be used for the estimation of f0. We heuristically explored
the use of functions that employ, apart from the observed values of f1 and f2, the values of f3, f4,
� � �, f10. We reasoned that these small frequencies carry information about f0. In particular we
explored, among others, functions of the form

f̂ 0 ¼ u
f 21

cðf2; f3; � � � ; f10Þ
ð5Þ

where the constant u is an scalar to be determined and the function c() is a measure of central
tendency for f2, f3, � � �, f10 or a subset of these quantities. As putative functions of central ten-
dency, c(), we used the Pythagorean means, i.e., the arithmetic mean or average as well as the
geometric and harmonic means.

To evaluate putative estimators of f0 we required to have an RNA-seq dataset that could be
considered ‘complete’ in the sense that every gene expressed was detected by one or more tags,
i.e., a sample with not missing genes. As evidence that a dataset could be considered complete,
we employed a rule that all genes must be represented by at least two tags, such that f1 = 0. This
criterion has been proposed as a ‘stopping rule’ for sampling in various studies, for example in
[52]. Note that in such cases the Chao1, Medial and iChao1 estimators (Eqs 2, 3 and 4, respec-
tively), as well as any estimator defined by (5) return values of zero as estimates of the number
of missing genes.

Estimating the Number of Undetected Genes in RNA-Seq
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Accepting a given sample as complete is equivalent to assuming that the true value for the
number of expressed genes is equal to the number of genes observed in that sample, say, G = g,
and this implies that f0 = 0 because G = g + f0. A complete sample can be used to take sub-sam-
ples of smaller size in which we know the true value of the number of missing genes, f0, and
this implies that we can test different estimators of the parameter and study their statistical
properties by repeating the process of sub-sampling.

Many RNA-seq datasets are deposited in the GEO [53] and ArrayExpress [54] public data-
bases of gene expression profiles. We explored these datasets by downloading the auxiliary files
that include the counts for each sequenced library in the accession, i.e., the vectors of gene tag
counts y. The accession with identifier GSE1581, corresponding to the ‘MPSS mouse transcrip-
tome analysis project’ has been used in several studies (see [55–59]). For our purposes, this
dataset fulfilled the criterion f1 = 0 when adding 35 libraries from different organs, and thus
was considered a complete sampling of the mouse transcriptome (see Analysis). This accession
comprises data for a total of g = 23332 expressed genes with a total sample size of
N = 160552086 mapped gene tags.

Selection of an f0 estimator
Having a complete sample, we evaluated distinct estimators of f0 by resampling the original dis-
tribution via the bootstrap procedure and measuring the standard error of each estimator in
each pseudo replicate. The formula for the estimated standard error is given by

seðf̂ 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B

Xi¼B

i¼1

ðf̂ 0i � f0iÞ2
s

ð6Þ

where B is the number of pseudo-replicates and f̂ 0i; f0i are the estimated and true values of f0 in
the i − th, replicate, i = 1, 2, � � �, B. We considered the best estimator to be the one with the
smallest standard error over a large number of pseudo replicates obtained, assuming a wide
range of sample sizes. This procedure mimics what happens in reality when sampling the tran-
scriptome, due to the fact that a complete sample allows for the probabilities of expression to

be properly estimated by maximum likelihood. To obtain pairs ff̂ 0i; f0ig we used the parametric
bootstrap procedure under the multinomial (equivalent to non-parametric bootstrap) or Pois-
son distributions. We assumed a random sample size, Ni, uniformly distributed in the interval
[mN,N], whereN was the sample size in the complete sample, i.e.,N = 160552086 and the con-
stantm was set tom = 1/160.552086� 0.006228508, in such a way that the minimum sample
size tested wasmN� 1e6, or one million. This minimum sample size was decided after pilot
tests indicated that the behavior of the estimators was erratic for smaller samples. A large num-
ber, B = 100000, bootstrap samples was used to test all putative estimators, including varying
the functions c() and empirically estimating the best value of the constant u. The statistical

behavior of the error, f̂ 0 � f0, as well as correlations between the sample size, estimated values,
errors etc. for all estimators were tested (see details in Section C of S1 File).

The best estimator of f0, obtained by the procedure outlined above, and presented in detail
in Section C of S1 File, was

h6 ¼
6

10

f 21
Hðf2; f3; � � � ; f6Þ

ð7Þ

Estimating the Number of Undetected Genes in RNA-Seq

PLOSONE | DOI:10.1371/journal.pone.0130262 June 24, 2015 7 / 22



where the function H(f2,f3, � � �, f6) is the harmonic mean of f2 up to f6, i.e.,

Hðf2; f3; � � � ; f6Þ ¼
5Pr¼6

r¼2ð1=frÞ

thus we call this estimator h6 or harmonic estimator of degree 6 of f0.
As for the the Chao1, Medial and iChao1 estimators, the expectation of h6 do not exist,

because the harmonic mean, H(f2, f3, � � �, f6), can take a value of zero with non-zero probability
and a value of zero in the denominator leads to indeterminacy. However, for large sample sizes,
the probability P[H(f2, f3, � � �, f6) = 0] is negligible, and thus we can approximate the expecta-
tion by the mean of a large number of bootstrap replicates.

Table 1 presents a numerical comparison of the Chao1, iChao1, Medial and h6 estimators of
f0 (Eqs 2, 3, 4 and 7, respectively), evaluated in B = 100000 bootstrap replicates of the complete
dataset (GSE1581). Details of the comparisons evaluated in an independent set of replicates
can be consulted in Section C of S1 File.

From Table 1 we can see that h6 exhibits better behavior than the other three estimators in
an ample interval of sample sizes, going from 1 to 160.5 million tags (this last figure is the sam-
ple size of the complete RNA-seq dataset). The h6 estimator is superior to Chao1, iChao1 and
Medial in having an estimated standard error much smaller than either of the three, a raw
value of 85 representing only 22%, 28% and 60% of the standard errors of the Chao1, iChao1
and Medial estimators, respectively. The value of Pearson’s determination coefficient between

f̂ 0 and f0, r
2, is� 0.99 for h6, while it is smaller,� 0.97, for the Chao1 and Medial estimators.

This means that, on average, h6 explains a larger proportion of the variance of f̂ 0 as a linear
function of f0 than either the Chao1, iChao1 or Medial estimators. Importantly, the statistics

for the estimated errors of the estimators, ðf̂ 0 � f0Þ, are better centered around zero for h6 than
for Chao1, iChao1 or the Medial, having values of 3 and -3 for the median and mean in the
case of h6 and values much farther from zero for Chao1, iChao1 and the Medial estimators.
The minimum and maximum of the estimated errors are also both smaller for the h6 than for
Chao1 and Medial estimators.

To appreciate the behavior of the estimators, Fig 1 presents a scatter plot of the true value of

f0 versus the estimated values, f̂ 0, using the four estimators in a random subset of 10000 of the
100000 points analyzed. Panel A presents the full range of true f0 values, while panel B presents

Table 1. Comparison of estimators.

Estimator of f0 (f̂ 0) Standard Error r2 Error ðf̂ 0 � f0Þ

seðf̂ 0Þ %se(Ch1) (f̂ 0; f0) Min. Median Mean Max.

Chao1 384 100.00 0.9664 -3723 -22 -140 57

iChao1 306 79.57 0.9651 -3268 -7 -91 111

Medial 141 36.59 0.9665 -1857 54 61 551

h6 85 22.04 0.9897 -1563 3 -3 438

Comparison of Chao1, iChao1, Medial and h6 estimators of f0 evaluated in B = 100000 bootstrap replicates of the complete dataset (accession GSE1581)

using random sample sizes uniformly distributed between 1 and 160.5 million tags. Estimated standard error, seðf̂ 0Þ, percentage of standard error

compared with the standard error of Chao1, %se(Ch1), estimated coefficient of determination between f̂ 0 and f0 (r
2), and statistics for the errors f̂ 0 � f0

(minimum, median, mean and maximum) are presented for each one of the four estimators.

doi:10.1371/journal.pone.0130262.t001
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only values up to 1000 for the pairs ff0; f̂ 0g. All four estimators tend to underestimate the value
of f0 when this value is large, say, when the number of missing genes is larger than approxi-
mately 3000 (value of 3000 in the X-axis of Fig 1). This happens when the sample size, say, Ni,
is relatively small in comparison to the size of the complete sample,N = 160552086. For exam-
ple, values of f0 � 3000 were obtained by sample sizes Ni ranging from a minimum of approxi-
mately one million (0.6% ofN) up to 3.5 million (2% of N) and a mean of 2.3 million (1.4% of
N). The complete range of variation in Ni extends from up to 160.5 million, with a mean of 81
million. Even in such small sample sizes, for example between 0.6 and 2% of the complete sam-
ple, the least biased estimator is h6 when comparing (Fig 1). In Panel B of Fig 1 we examine the
behavior of the estimators in large sample sizes, when the true value of f0 	 1000. These points
correspond to cases where the sample size Ni is between 14 and 160.5 million, representing
between 9% and 100% of the original sample size N. In these cases, h6 behaves consistently bet-
ter than the Chao1, iChao1 and Medial estimators, by having estimated values closer to the

value f̂ 0 ¼ f0 which is indicated in both panels of Fig 1 by a grey line. In summary, from
Table 1 and Fig 1 we conclude that the h6 estimator is more effective than the Chao1, iChao1
and Medial estimators. More detailed analyses, including comparisons with other putative esti-
mators, are found in Sections C and F of S1 File.

Validation of the h6 estimator in independent datasets
It could be argued that the estimator h6 was tailored for a specific (complete) dataset, and thus
a priori there is no guarantee that the behavior of h6 will be preserved in different RNA-seq

Fig 1. Scatterplot of true (f0;X axis) and estimated (f̂ 0;Y axis) values for four estimators. Values of 10000 true and estimated values, (f0; f̂ 0) using four
estimators (harmonic of degree 6, h6 in red, Medial in dark green Chao1 in blue and iChao1 in brown), in random samples of the complete dataset (accession
GSE1581). Sample sizes vary uniformly between 1 and 160.5 million tags. Panel A presents the plot in the complete intervals, while panelB presents a

close-up including only the values f0 	 1;000; f̂ 0 	 1; 000.

doi:10.1371/journal.pone.0130262.g001
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datasets. Although the sequencing depth (N) of RNA-seq experiments has been growing due to
advances in high throughput sequencing technologies, we were unable to discover additional
examples of complete RNA-seq samples in the public databases in order to further test the esti-
mators. In other words, we did not find other publicly available data in which the criterion f1 =
0 was fulfilled. However, we found three datasets near completion in which f1 was small, and

consequently the estimated number of missing genes, f̂ 0, is likely to be small by any of the esti-
mators proposed. We repeated the evaluation of the Chao1, Medial and all putative f0 estima-
tors -including h6, in these three datasets.

The three almost complete datasets selected to verify the behavior of the h6 estimator were a
comprehensive study of the human transcriptome by MPSS [60] which has been also re-ana-
lyzed by us when defining parameters including transcriptome diversity and specialization
[61], and the accessions E-GEOD-38298 (using the fungus Candida albicans) and E-GEOD-
46953 (usingMus musculus). In each case the datasets were subjected to the same procedure as
the one explained above with the complete sample; details of the procedure as well as extra
analyses can be consulted in Section C of S1 File.

Table 2 presents the main characteristics of the almost complete accessions employed to val-
idate the h6 estimator.

We also examined the standard error of the estimators, evaluated in each case using
B = 100000 bootstrap samples, exploring a range of uniformly distributed sample sizes going
from approximately one million up to the corresponding values of the sample sizes, N, in the
original accessions. The sample sizes employed in the three studies are heterogeneous in that
the first two (human MPSS and E-GEOD-38298) employed from 31 to 36 million tags, while
the mouse accession E-GEOD-46953 employed a sample more than 12 times larger, of approx-
imately 415 million tags. Conversely, the number of genes detected, g, is approximately 23000
and 19000 in the human MPSS and mouse accessions (E-GEOD-46953) respectively, while g is
approximately 6000 for the fungus Candida albicans (accession E-GEOD-38298). The values
of the numbers of singletons, f1, in the accessions are relatively small: 3, 9 and 40 for each acces-

sion. The estimated values for the number of missing genes in Table 2, f̂ 0, vary depending of
the estimator employed. For the human MPSS accession, we have f1 = 9, f2 = 27, f3 = 15, f4 = 23,
f5 = 439, f6 = 346, which result in the values 32/(2 × 9) = 0.5� 0, 32/9 = 1 and (6/10)32/H(9, 27,
15, 23, 439, 346) = 0.2814167� 0 for the Chao1, Medial and h6 estimates respectively. In
general, we confirm that the three accessions are near completion, in that they fail to report on

Table 2. Statistics for three RNA-seq datasets.

Accession (dataset) N g f1 f̂ 0 Estimates Standard Errors of f̂ 0

Chao1 Medial ĥ6
Chao1 Medial ĥ6

Human MPSS 31,411,949 22,935 3 0 1 0 929 498 358

E-GEOD-38298 35,973,307 6,096 9 1 2 7 41 27 25

E-GEOD-46953 415,562,392 18,752 40 8 16 25 248 111 95

Statistics for three RNA-seq datasets including estimated standard errors, seðf̂ 0Þ for the Chao1, Medial and h6 estimators. Table presents sample sizes, N;

observed number of genes, g; values of f1 as well as values of f0 estimated in the datasets (columns 5 to 7; f̂ 0 for each estimator, rounded figures) and

values of the standard errors of f̂ for Chao1, Medial and h6, obtained from B = 100,000 bootstrap replicates (columns 8 to 10); see text and details in S1

Table.

doi:10.1371/journal.pone.0130262.t002
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the expression of only a small number of genes: 0, 7 and 25 for the human MPSS, E-GEOD-
38298 and E-GEOD-46953 respectively, using the h6 estimate (column 7). In Table 2 the

estimated standard errors of the estimators, seðf̂ 0Þ, are consistently smaller for the h6 estimator
when compared with the Chao1 and Medial estimators in the same accession. In the human

MPSS accession the seðf̂ 0Þ of the Chao1 and Medial estimators are 929/358� 2.59 and 498/
358� 1.39 larger than the one for h6, while for the accession E-GEOD-38298 these figures are
41/25� 1.64 and 27/25� 1.08 and in the E-GEOD-46953 accession we have 248/95� 2.61
and 111/95� 1.17. The reductions in standard error when employing h6 instead of the Chao1
or Medial estimators imply that the h6 estimator results in a less biased and more robust
estimation of the parameter of interest over a large range of sample sizes and conditions (see
Section C in S1 File for more details of the comparisons). Our estimator, h6, also resulted
better than the iChao1 estimator in all comparisons performed; see details in Section F of S1
File.

Discussing the validity and optimality of h6
A possible objection to the h6 estimator is that the procedure to obtain it was purely heuristic,
i.e., without employing analytical statistical theory either exact or asymptotic. Our modeling
approach can be justified by the intractability of the exact moments for fr; r> 0 without making
assumptions about the distribution or even under any reasonable assumed distribution. Tech-
nical difficulties arise from the impossibility of deciding on a single reasonable distribution for
G, the number of expressed genes, in each and every RNA-seq experiment that can be per-
formed. From the pioneering work of Fisher [62], who proposed the Poisson series and nega-
tive binomial distributions, to modern approaches [47] that use the log normal distribution or
even [23] which proposes mixtures of distributions, particular samples do not always follow a
specific parametric model, and thus the non-parametric framework appears more sensible.
Within transcriptomes, as well as in ecological communities, a few transcripts (or species) are
particularly abundant, whereas most are rare. In large assemblages such as the complete sam-
ples used here, there are more rare species than the log normal model predicts (see [23] for an
ecological example). Another interesting model is presented in [63], where the authors postu-
late a Pareto-like probability function for gene expression, which appears to be invariant
among eukaryotic cell types. However, this model predicts an unlimited increase in the number
of species (i.e. distinct genes) as the sample size approaches infinity, and thus this empirical
parametric approach is not useful for the estimation of f0.

Our approach to obtain the estimator h6 explored a limited number of functional forms,
given in (Eq 5) and motivated by the Chao1 estimator (Eq 2). We demonstrate that the har-
monic mean of f2, f3, � � �, f6 includes valuable additional information that is not used by the
Chao1, iChao1 or Medial estimators, giving a less biased and more robust estimator. Logically,
we cannot guarantee that h6 is the best of all putative estimators for all possible RNA-seq sam-
ples; its optimality is naturally restricted to the functions explored, and was validated with
independent RNA-seq datasets.

Estimation of the number of undetected expressed genes in public
datasets
The problem of estimating the number of expressed genes that remain undetected in RNA-seq
experiments is largely irrelevant if this figure is either zero or very small in most RNA-seq
experiments. This is an intuitive possibility, given that the number of gene tags obtained with
current high-throughput sequencing technologies is large, ranging from hundreds of
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thousands up to hundreds of millions. However, the estimated number of missing genes in
public RNA-seq experiments can be in the order of thousands, even when large sample sizes
are employed. This source of uncertainty can lead researchers to falsely conclude that some
genes are not expressed in a given tissue or condition.

We explored RNA-seq experiments deposited in the GEO [53] and ArrayExpress [54] pub-
lic databases, and downloaded a total of 31 accessions which consisted of files with counts of
reads per gene. Additionally, we included files from a sunflower experiment conducted in our
laboratory [64]. Each accession included a variable number of libraries that in total yielded 311
vectors of gene counts (see Methods). In RNA-seq experiments there exists no homogeneous
criterion for what constitutes a ‘gene’; i.e., what is to be taken as the unit of expression. For
example, some studies take different splicing variants of transcripts derived from the same
locus as different ‘genes’ for measuring expression, while in other cases all splicing variants are
taken as a single ‘gene’. Alternatively, all close paralogs can be grouped as the same ‘gene’ [1]. It
is important to take into account that when we are estimating undetected genes we are doing
so in the particular framework of a given RNA-seq experiment and that it is difficult to make a
general inference, even for the same species, using different datasets. Given the different defini-
tions of ‘gene’ in different studies, it could be more precise to talk about the estimation of
‘undetected classes’; however, for consistency, we will keep discussing the concept as ‘unde-
tected genes’.

To study the number of undetected genes not only in each one of the individual libraries,
but also in the full accession or total library, we collapsed the data for all libraries in each acces-
sion in a single sample, adding the tags by gene; i.e., the count for gene i in the total library, yti ,
was calculated as

yti ¼
Xj¼v

j¼1

yij

where yij; i = 1, 2, � � �, g; j = 1, 2, � � �, v are the counts for gene i in library j and v is the total num-
ber of libraries for the accession. This procedure was possible for 31 of the 32 accessions, given
that one of the accessions had not the same genes identifiers in the library files, and thus these
libraries were analyzed only independently. By collapsing all libraries of one accession in a sin-
gle total library, we are analyzing all genes that were detected in such a collection, some of
which could be present only in some of the individual libraries. This total library is not usually
analyzed by the researchers, given that the aim of many experiments is to detect differential
gene expression between treatments (sets of libraries). However the total library contains all
genes detected in the experiment, and by estimating the number of undetected genes in this
library we can estimate the total number of relevant entities that were missing.

Table 3 presents the results of the analysis of undetected genes for 31 total libraries in the
same number of accessions.

Representatives were included from a wide range of living organisms, from protozoa (Tetra-
hymena thermophila), fungi (Candida albicans, Neurospora crassa), slime molds (Physarum
polycephalum), a brown alga (Saccharina japonica, Table 4), plants (Zea mays, Glycine max,
Capsicum annuum, Helianthus annuus), insects (Drosophila melanogaster) up to mammals
(Homo sapiens,Mus musculus, Sus scrofa and Bos taurus). The sample size, N, varied in the
range of 2.39 to 579.73 million tags, with a median of approximately 100 million tags. The
number of detected genes, g, varied from approximately 6 thousand in the fungus Candida
albicans to a very large value of more than 54 thousand in soybean (accession E-GEOD-
29163). This wide variation in the number of genes estimated can be explained not only by dif-
ferences between the genome sizes of the organisms, but also by the lack of homogeneity in the
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Table 3. Statistics for the ‘total’ libraries for 31 accessions from different organisms.

95% Conf. Int. h6

Row Accession Organism N g ĥ6 seðĥ6Þ Lower Upper %h6/G

1 GSE1581 Mus musculus 160.6 23,332 0 5 0 9 0

2 HumanMPSS Homo sapiens 31.4 22,935 1 2 0 5 0

3 E-GEOD-38298 Candida albicans 36.0 6,096 7 6 0 20 0

4 Sunflower Helianthus annuus 579.7 36,314 23 5 13 33 0

5 E-GEOD-46953 Mus musculus 415.6 18,752 25 8 9 41 0

6 E-GEOD-48862 Sus scrofa 404.8 22,534 38 17 5 71 0

7 E-GEOD-38435 Drosophila melanogaster 150.5 24,293 39 8 23 55 0

8 E-GEOD-43667 Sus scrofa 258.0 22,419 53 23 8 98 0

9 E-MTAB-1178 Mus musculus 496.9 27,982 137 12 113 161 0

10 E-GEOD-51091 Neurospora crassa 101.4 9,269 289 21 248 331 3

11 E-GEOD-34914 Homo sapiens 314.0 20,422 291 25 242 340 1

12 E-GEOD-27971 Tetrahymena thermophila 64.6 23,770 383 24 336 429 2

13 E-GEOD-44171 Sus scrofa 228.5 20,857 521 31 460 583 2

14 E-GEOD-48147 Bos taurus 108.8 17,677 1,250 44 1,163 1,337 7

15 E-GEOD-40285 Mus musculus 30.8 19,885 1,576 53 1,471 1,680 7

16 E-GEOD-45474 Mus musculus 371.0 20,998 1,613 52 1,511 1,715 7

17 E-GEOD-37544 Bos taurus 38.2 16,920 1,680 57 1,569 1,791 9

18 E-GEOD-53024 Homo sapiens 141.9 32,471 1,760 56 1,651 1,870 5

19 E-GEOD-56890 Mus musculus 53.2 17,424 1,761 54 1,656 1,867 9

20 E-GEOD-42960 Homo sapiens 89.9 18,593 1,881 56 1,772 1,991 9

21 E-GEOD-47735 Mus musculus 54.4 21,370 1,914 61 1,794 2,034 8

22 E-MTAB-651 Homo sapiens 191.6 18,429 2,050 61 1,931 2,168 10

23 E-GEOD-29992 Mus musculus 28.1 21,446 2,429 63 2,305 2,553 10

24 E-GEOD-29162 Glycine max 31.9 39,013 2,752 66 2,624 2,881 7

25 E-GEOD-16868 Zea mays 10.0 21,602 3,421 76 3,272 3,571 14

26 E-GEOD-16789 Zea mays 5.4 24,743 4,270 83 4,107 4,433 15

27 E-GEOD-29163 Glycine max 257.3 54,644 4,295 84 4,130 4,460 7

28 GSE54123 Capsicum annuum 8.0 34,066 4,786 113 4,565 5,008 12

29 E-GEOD-29134 Glycine max 103.8 48,306 5,403 95 5,217 5,588 10

30 E-GEOD-33793 Physarum polycephalum 2.4 16,331 5,588 111 5,370 5,807 25

31 E-GEOD-44384 Homo sapiens 546.2 31,375 7,131 111 6,913 7,349 19

95%h6 Conf. Int.

Statistic N g ĥ6 seðĥ6Þ Lower Upper %h6/G

Minimum 2.39 6,096 0 2 0 5 0

Median 103.84 21,602 1,613 53 1,511 1,715 7

Average 171.44 24,331 1,851 48 1,757 1,944 6

Maximum 579.73 54,644 7,131 113 6,913 7,349 25

Standard deviation 172.31 10,065 1,980 34 1,915 2,043 6

N—Sample size in millions, g—Number of genes detected, ĥ6—Estimated number of missing genes, seðĥ6Þ—Estimated standard error for ĥ6, 95%

approximated confidence intervals for ĥ6 (lower and upper bounds) and estimated percentage of missing genes, %h6/G.

doi:10.1371/journal.pone.0130262.t003
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definition of the unit of measure for expression, as commented above. For the accessions
GSE1581, HumanMPSS and E-GEOD-38298 (rows 1 to 3), where the number of undetected

genes, ĥ6, is estimated as 0, 1 and 7 respectively, 95% confidence intervals for ĥ6 include zero.
These were the accessions used to test and validate the h6 estimator. In contrast, for the major-
ity of the accessions (rows 14 to 31) the estimated number of undetected genes is larger than
one thousand, indicating that a substantial proportion of the expressed genes, ranging from 7%
to 25% of the total number of expressed genes, remained undetected by RNA-seq. The last col-
umn of Table 3 (%h6/G) presents the percentage of undetected genes with reference to the

total, say 100� ĥ6=Ĝ ¼ 100� ĥ6=ðg þ ĥ6Þ. This percentage ranges from approximately zero
for nine accessions (rows 1 to 9) up to 25% for the accession E-GEOD-33793 (row 30), and has
an estimated median and average of 7% and 6%, respectively. From these analyses we can infer
that, on average, existing RNA-seq experiments fail to detect approximately 7% of the genes
expressed in the organisms studied with the sample sizes usually employed. Note that there is
no positive correlation between the sample size, N, and the estimated number of undetected

genes, ĥ6, the estimated value being r = −0.1721. For example, one of the accessions with a
large sample size (N> 546 million, row 31) is one with a large number of undetected genes

(ĥ6 ¼ 7; 131). Conversely, two of the samples considered to be complete (rows 2 and 3) were
obtained with small samples, N = 31.4 and 35 million, respectively. The discordance between
the number of undetected genes estimated in the two human accessions, HumanMPSS and
E-GEOD-44384, (rows 2 and 31 in Table 3) can be explained by the fact that different units of
measure were taken as ‘genes’. In the first case (HumanMPSS, row 2, [60]) canonical human
genes were used as units of expression, while in the second (E-GEOD-44384, row 31, [65]), a
study of RNAmethylation targets, small RNAs are the units of measure, i.e., the ‘genes’. Finally,

Table 4. Statistics for individual libraries of 32 accessions group by organism.

Row Organism #Acc. #Lib. avg(g) h6 Estimates %h6/G Estimates

min. avg. max. min. avg. max.

1 Heliantdus annuus 1 7 32,735 524 775 1,235 2 2 4

2 Saccharina japonica 1 2 65,645 336 1,430 2,523 2 2 4

3 Candida albicans 1 4 6,059 108 136 158 2 2 3

4 Capsicum annuum 1 8 21,168 19,809 21,482 23,145 50 50 52

5 Tetrahymena thermophila 1 6 20,518 559 1,291 1,510 6 6 7

6 Drosophila melanogaster 1 8 23,639 3,056 3,680 4,020 13 13 15

7 Neurospora crassa 1 5 8,868 247 396 474 4 4 5

8 Physarum polycephalum 1 3 7,747 265 3,115 6,887 22 22 38

9 Bos taurus 2 35 12,733 1,360 1,804 3,817 13 13 33

10 Zea mays 2 4 21,492 3,086 4,063 4,863 16 16 18

11 Sus scrofa 3 36 18,876 44 1,108 2,619 6 6 15

12 Glycine max 3 17 40,901 2,663 5,136 7,280 11 11 15

13 Homo sapiens 6 77 15,391 0 1,747 10,247 7 7 29

14 Mus musculus 8 99 14,317 14 1,871 11,466 10 10 50

Total 32 311 17,501 0 2,433 23,145 10 10 52

#Acc.—Number of accessions, #Lib.—Number of libraries, avg(g)—Average number of detected genes per library, and minimum (min.), average (avg.)

and maximum (max.) for the values of missing genes, ĥ6, and estimated percentage of missing genes, %h6/G.

doi:10.1371/journal.pone.0130262.t004
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from Table 3 we note that the standard errors of ĥ6 (column seðĥ6Þ), estimated by the bootstrap

procedure are relatively small, 2 	 seðĥ6Þ 	 34, leading to small 95% approximate confidence
intervals for this parameter (but see Analysis and Section D in S1 File).

Table 4 presents a summary of the statistics for undetected genes in the individual libraries
of each accession, grouped by organism.

This table includes data derived from 14 organisms, 8 of them (rows 1 to 8) represented by a
single accession and the remaining represented by a minimum of 2 and up to 8 accessions. The
number of libraries analyzed by organism ranges from 2 for Saccharina japonica (a brown
algae, row 2), up to 99 for mouse (Mus musculus, row 14). The minimum, average and maxi-
mum values for h6 and %h6/G represent the variation within an organism. For the cases where
more than one accession was analyzed (rows 9 to 14), the variation between accessions can be
very large, as discussed above. From the sets of libraries representing a single accession (rows 1
to 8), the one with the largest average number of undetected genes is the one corresponding to
chili pepper (Capsicum annuum, row 4, [1]), having an average of 21482 missing genes that
represent approximately 50% of the total number of estimated genes. However, the number of
genes detected in this accession when the individual libraries were amalgamated (total; row 28
of Table 3) was 34066 and the estimated number of undetected genes in that total library was
4786, representing only 12% of the total genes. This large difference between analyses of total
and individual libraries regarding undetected genes is explained by the presence of specific
genes that are expressed only in one of the libraries or conditions studied within an accession.

Estimation of the extra sample needed for a comprehensive coverage

Having an estimation of the number of genes that remain undetected in a given sample, say f̂ 0,
we can calculate the extra sample size (increased sequencing depth), saymψ (given in gene
tags), needed to increase the number of observed genes from the value of g in the current sam-

ple up to g þ cf̂ 0, where ψ is a proportion 0< ψ< 1. In [52] the authors propose that the size
of the extra sample,mψ, can be obtained by a numerical procedure including bootstrap, and
yields as approximate solutions to the formula

mc � N
f1
2f2

log
f̂ 0

Ĝð1� cÞ

 !
ð8Þ

where f1, f2 are, as before, the estimated numbers of singletons and doubletons in the sample,

f̂ 0 is the estimated number of undetected genes (Chao1, iChao1 or Chao2 in this context), and

Ĝ ¼ g þ f̂ 0 represents the estimated total number of genes or classes.
We found that a more realistic value formψ in the case of RNA-seq is given by

m0
c ¼ N

h6

f1
log

h6

Ĝð1� cÞ

 !
ð9Þ

where h6 is our harmonic estimator of degree 6 for f0 and consistently, Ĝ ¼ g þ h6, is the esti-
mate of the total number of genes using the estimator h6. Eqs 8 and 9 are subjected to the con-

dition f̂ 0=ðĜð1� cÞÞ > 1 to give positive values of the extra sample size. In general the
researcher will be interested in values of ψ near 1, for example ψ = 0.95, 0.99, etc.

Note that Eqs 8 and 9 return a value ofmψ = 0 when the sample is complete, i.e., when f1 = 0

and thus f̂ 0 ¼ 0, and diverge to infinity when ψ = 1, indicating the impossibility to obtain a
sample in which can be assured that there will be no undetected genes. Section B in S1 File
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presents a derivation of the probability of non-missing genes for samples of different sizes
under different conditions.

To compare the performance ofmψ andm0
c (Eqs 8 and 9), we obtained a large set of boot-

strap replicates from the complete sample (accession GSE1581), with sample sizes ranking
from 0.5 to 10 million tags and calculated the predicted and realized gain in number of extra
genes observed. We found thatm0

c is much more accurate and precise thanmψ to calculate the

extra sample size needed. The weighted square error form0
c was approximately 50% smaller

that the one formψ in the same samples, thus we conclude thatm0
c must be preferred overmψ

for the estimation of the extra sample size. Details of the process to compare these estimators
are presented in Section E of S1 File.

S1 Table presents the extra sample needed to obtain 95% of the number of undetected genes
employingmψ andm0

c (columns “m_Chao” and “m_h6”, respectively) for the cases where

f̂ 0=ð0:05� ĜÞ > 1, i.e., when the condition to use the functions is fulfilled. In all comparable
cases the estimation of undetected genes by Chao1 (column “Chao1”) is smaller than the esti-

mation using ĥ6 (column “h6”) and consequently the estimation of the extra sample size using
the Chao1 estimator (column “m_Chao”) is always smaller that the estimation of extra sample
size usingm0

c (column “m_h6”). On average, the ratio of extra sample sizes,m0
c=mc is approxi-

mately 18, while the ratio of estimated undetected genes ĥ6/Chao1 is around 2. Given that the
Chao1 estimator of undetected genes frequently underestimates the target parameter, our esti-
mator of extra sample size needed to complete the sample,m0

c, returns a more realistic value

(see Section E of S1 File).
Current methods of RNA-seq analysis allow researchers to carry out one or more sequenc-

ing runs for the same library. A reliable estimate of the number of undetected genes and extra
sample needed to observe a given proportion of the undetected genes can be employed to
decide, in an informed way, whether additional sequencing runs of existent libraries are needed
or not. The first sequencing run of a RNA-seq library can be used as a ‘pilot’ test to decide if
more sequencing runs are needed. For example, in our laboratory we performed an RNA-seq
experiment exploring changes in the transcriptome of chili pepper fruit during development
[1]. In that case we estimated that there are between 4565 and 5008 genes that remained unde-
tected in the sequencing libraries (Accession GSE54123, see Table 3). We calculated that, to
observe 95% of those undetected genes, approximately 9 million additional sequences (see S1
Table) would be required. In contrast, for a gene expression study in sunflower that was also
performed in our laboratory [64], only a small number of genes remained undetected (between

13 and 33 by a 95% confidence interval for ĥ6 in row “Sunflower” in Table 3).
The analyses presented in S1 Table and summarized in tables 3 and 4 can be used as a guide

for sequencing depths required by RNA-seq experiments. In particular, if the experimental
aims and design, as well as sequencing technology and bioinformatic pipeline are similar to the
ones used in the datasets we analyzed, our results provide guidelines for the sample size needed
in future studies.

Conclusions
The problem studied here is to decide if the genes observed in an RNA-seq library are in fact all
the ones expressed, or if there is certain number of expressed genes that were not observed in
the sample (missing or undetected genes). The estimation of the number of undetected genes is
an essential question, both, to conclude that an unobserved gene is in fact not expressed in a
given condition, as well as to predict the sample size (sequencing depth) needed for an RNA--
Seq experiment.
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We present a non-parametric estimator, h6, of the number of genes that remain undetected
in RNA-seq experiments that is superior to the estimators previously reported. We demon-
strate that h6 is less biased and consequently has a smaller standard error than the Chao1,
iChao1 and Medial estimators for a wide range of sample sizes in the context of RNA-seq. We
also present a function to estimate the extra sample size needed to observe a given proportion
of the undetected genes that is more precise and accurate than the function presented in [52].

By analyzing a total of 342 vectors of gene counts from 32 accessions (311 individually
sequenced libraries plus the total vectors for each one of 31 accessions) we conclude that there
are very few RNA-seq studies that can be considered as complete, defined as experiments in
which all genes are detected. On average we estimate that, given the sequencing depths cur-
rently employed in most RNA-seq studies, approximately 6% of genes per accession and 10%
of the genes per library within an accession are undetected.

The statistical tools presented here will help to evaluate the inferences of RNA-seq analyses
by estimating the completeness of the samples obtained and helping to decide if extra sampling
is needed.

Analysis

Datasets
The RNA-seq data analyzed here was downloaded from the NCBI GEO [53, 66] and EMBL
ArrayExpress [54, 67] repositories. The inclusion criterion for the data consisted of raw data
for gene tag counts ordered by ‘gene’ (where ‘gene’ was an identifier). Accessions found with
count data for sequences (instead of ‘genes’) or in which the counts were normalized were
rejected. This resulted in the selection of 30 accessions from 14 different organisms with a total
of 272 gene count vectors. Additionally we included two more RNA-seq experiments, the pre-
viously reported set of human MPSS data [60, 61] comprising gene counts for 32 human tis-
sues, and a study of the sunflower transcriptome, which comprised 7 libraries [64]. The full
dataset therefore included 32 RNA-seq experiments with a total of 311 individual libraries (see
Tables 3 and 4 and S1 Table). All these data were input into a relational database and processed
with R [68] to form ‘data frame’ objects in which genes are presented in rows and columns rep-
resent individual libraries.

Design and selection of the f0 estimators
The functional form of the putative f0 estimators, presented in Eq 5, was motivated by the esti-
mator Chao1, presented in [37], which uses information contained in only f1 and f2. We rea-
soned that additional information about undetected genes exist in the frequencies of
frequencies fr where r = 3, 4, � � �, 10. To specify putative estimators we systematically substi-
tuted the function c() in Eq 5 by the arithmetic, geometric or harmonic means of f2 to fr; r = 3,
4, � � �, 10. This yielded a set of 3 × 8 = 24 putative estimators to be evaluated (see Section C in
S1 File). Other functional forms were also evaluated, but the results were unfavorable, and thus
they are not presented.

To test the putative estimators of f0 we employed the total count of the accession GSE1581
[55–59], which has a sample size N = 160, 552, 086 gene tags. In this experiment, the number
of expressed genes detected was 23332 and can be considered complete by having f1 = 0; i.e., all
genes were represented by at least two gene tags. In this complete sample we set G = 23332 and
thus if we take a subsample and observe the number of genes obtained, g, the true number of
missing genes in that subsample, say, f0 = G − g = 23332 − g, and using the observable frequen-

cies f1, f2, � � �,, we can try all putative estimators, f̂ 0, calculating in each case the error of each
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estimator, f̂ 0 � f0 and, by repeating this process a large number of times, estimate the standard
error of each estimator using Eq 6. The process of resampling was carried out in B = 100,000
subsamples obtained by assuming the multinomial distribution and sample sizes, N, uniformly
distributed between 1 and 160.5 million tags. The estimator with better statistical properties,
including a smaller standard error, was the harmonic estimator of degree 6, h6 (Eq 7). The use
of h6 was validated using other nearly complete datasets. Details of the selection and validation
process, including extra tables and figures, are presented in Sections C of S1 File. All analyses
were performed in R [68].

Design and testing of the estimator of extra sample size m0
c

To design an estimator for the extra sample size,m0
c, required to observe a proportion ψ of the

estimated missing genes, cf̂ 0, we first tried substituting the estimator of f0 (Chao1) in Eq 8 by
our estimator h6. However, by trying other functional forms of the quotient f1/2f2 in Eq 6 we
obtained the quotient h6/f1 which is part of Eq 9 and yielded better results than the original
equation presented in [52]. To test different functional forms of the estimator of extra sample
size we used the weighted squared error, defined as

seðmcÞ ¼
g þ cf̂ 0jN � E½GjN þmc


f̂ 0

 !2

where g þ cf̂ 0 j N is the number of genes predicted by the estimator and E[GjN+mψ] is the
expected number under the distribution of the data. se(mψ) was evaluated for a large set of
bootstrap samples with sample sizes, N, uniformly distributed between 0.5 and 10 million tags.
Section E in S1 File presents the details of the results obtained.

Analyzes of public RNA-seq datasets
All R datasets containing the gene counts (see ‘Data’ above) were processed in R [68] to obtain
the basic statistics of the samples, punctual estimations of missing genes by the Chao1, iChao1,
Medial and h6 estimators, as well as standard error and 95% approximate confidence limits for

ĥ6 (see Section D of S1 File for details of the method to obtain the approximate confidence lim-
its). S1 Table presents the full results.

Software to calculate h6 and related statistics
An R [68] function, ‘h6’, included here as S1 Text, was programed and tested, implementing

the estimation of f̂ 0 by our estimator h6, as well as related statistics, including approximate

standard error, bias and confidence intervals for f̂ 0, as well as the estimate of the extra sample
size needed to estimate a proportion, ψ, of the undetected genes,m0

c. The R package ‘Unde-

tectedGenes’, containing the function ‘h6’ as well as examples of analysis is available at
Computational Biology, Langebio. To install the package in R type ‘R CMD install file_-
name’ (where ‘file_name’ is the name of the downloaded file) at the command line and in
the directory where ‘file_name’ is located. After installation, to use the package in R type
‘library(UndetectedGenes);? UndetectedGenes’ at the R prompt (>). See also
Section G of S1 File.
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