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ABSTRACT: AlphaFold has burst into our lives. A powerful algorithm that
underscores the strength of biological sequence data and artificial
intelligence (AI). AlphaFold has appended projects and research directions.
The database it has been creating promises an untold number of
applications with vast potential impacts that are still difficult to surmise.
AI approaches can revolutionize personalized treatments and usher in
better-informed clinical trials. They promise to make giant leaps toward
reshaping and revamping drug discovery strategies, selecting and prioritizing
combinations of drug targets. Here, we briefly overview AI in structural
biology, including in molecular dynamics simulations and prediction of
microbiota−human protein−protein interactions. We highlight the
advancements accomplished by the deep-learning-powered AlphaFold in protein structure prediction and their powerful impact
on the life sciences. At the same time, AlphaFold does not resolve the decades-long protein folding challenge, nor does it identify the
folding pathways. The models that AlphaFold provides do not capture conformational mechanisms like frustration and allostery,
which are rooted in ensembles, and controlled by their dynamic distributions. Allostery and signaling are properties of populations.
AlphaFold also does not generate ensembles of intrinsically disordered proteins and regions, instead describing them by their low
structural probabilities. Since AlphaFold generates single ranked structures, rather than conformational ensembles, it cannot
elucidate the mechanisms of allosteric activating driver hotspot mutations nor of allosteric drug resistance. However, by capturing
key features, deep learning techniques can use the single predicted conformation as the basis for generating a diverse ensemble.

■ INTRODUCTION
AlphaFold has overcome age-long bottlenecks and forcefully
bared the power of artificial intelligence (AI) in biological
research.1−3 AlphaFold has combined numerous deep learning
innovations to predict the three-dimensional (3D) structures
of proteins at or near experimental scale resolution, inspiring
the community (including us) to rethink studies of function,
evolution, and disease (e.g., refs 4−13). The sheer volume of
the rapidly generated accurate structures argues that new,
ambitious, frontier-pushing studies will emerge. It also points
to research projects that should be reconsidered. The richness
of high quality data that are being compiled in databases (e.g.,
refs 5 and 14−25) is already strengthening studies that require
protein structures, such as mapping binding sites and
interactions in signaling pathways, and identification of hot
spots, including latent and rare cancer driver mutations.26−34

The most profound impact will likely be in accelerating and
improving production of new medications (e.g., ref 35), and in
generating data that can be used toward this vital aim (e.g., refs
5, 17, 18, and 36−39). AI developments and applications40

may further help foretell whether the signal propagating
downstream will be strong enough to reach its genomic target

to activate (suppress) gene expression,41 and predict path-
ways.42−49 Altogether, these powerful approaches and the
databases that they create revamp and transform traditional
and ongoing research involving the use of structures. They also
embolden us to step back, rethink, and innovate our projects.

AlphaFold’s achievements have been made possible by the
protein databank (PDB), currently with a size nearing 200 000
experimentally determined structures. It has been trained on
protein chains from the PDB and uses the input sequence to
query databases of protein sequences to construct a multiple
sequence alignment.4 However, its striking success has not led
us to a deeper mechanistic understanding of exactly how a
protein sequence folds, thus not assisting in the folding of a
protein from its sequence. Below, we first briefly describe the
protein folding problem,50,51 and strategies to predict protein
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structures. We describe key conceptual and computational
developments and the transformative AlphaFold advances. We
outline its strengths and some weaknesses. We emphasize what
it has accomplished, and what it has not, and the magnitude of
the challenges, underscoring the difference between the
theoretical folding problem, which was not solved,51−57 and
practical predictions by incorporating additional evolution
information that generally have been.58−65 We proceed to AI
approaches to the complementary problem of protein−protein
interactions (PPIs) by these methods and others,66−75 with the
human−microbiome PPI as a relevant and topical example.66

AI-powered prediction of human−microbe PPIs can accelerate
research into questions such as how microbiota hijack cell
signaling and provide drug targets.76−80 We discuss how AI can
reshape drug discovery, for example by amplifying repurposing
of FDA-approved drugs,81−91 an area which is already thriving.
AI can also select combinations of drug targets, powerfully
guiding and accelerating experiments by providing specific
testable hypotheses. Machine learning has already proved its
merit in the life and medical sciences.1,92−98 Coupled with
harnessed exascale computing,99,100 advanced, AI-powered
methods are set to revolutionize therapeutic development,
providing prioritized drug combinations for the attending
physicians.

Finally, we note that AlphaFold, which predicts single
ranked structures for a protein sequence, is unable to address
directly allosteric mechanisms, which are based on the
populations of conformational states in the ensembles.101−117

Allostery, where the signal propagates dynamically with the
shifts in the populations, underlies regulation and thus cell
life.118,119 Due to its higher specificity and consequently lower
toxicity, which results from targeting nonconserved allosteric
sites, allostery also increasingly features in allosteric
drugs.120−125

Can we then foresee AlphaFold assisting in unraveling the
mechanisms of allosteric hotspot mutations and allosteric drug
discovery? Indirectly it can and does, even in our hands. The
rigid structures that AlphaFold predicts can be submitted to
MD simulations that generate such ensembles (Figure 1). At
the same time, as we discuss here, other AI-based strategies can
assist directly in such efforts, most effectively via accelerating
and enhancing MD simulations. Efforts are also likely to persist
in exploiting AI toward prediction of allosteric binding sites.
Nevertheless, it behooves us to recall that the effectiveness of
allosteric sites is determines by both stable interactions at the
site, which is something that AI can help with, and initiation of
effective allosteric signals, which would be more challenging.
Current approaches to predict allosteric binding sites address

Figure 1. Current strategy of allosteric drug discovery in computational structural biology employing the AlphaFold program with artificial
intelligence (AI)-powered methods (top panel). Experimental instruments, such as X-ray crystallography, cryo-electron microscopy (cryo-EM), and
nuclear magnetic resonance (NMR) can resolve protein structures, but often miss the coordinates of highly fluctuating regions in the protein
structure. AlphaFold can predict the missing coordinates of these regions. The resulting structure can be subjected to molecular dynamics (MD)
simulations that provide conformational dynamics, conformational changes, and folding characteristics of the protein. An example is shown for Src
homology region 2-containing protein tyrosine phosphatase 2 (SHP2) (bottom panel). The X-ray structure of SHP2 (PDB ID: 4DGP) misses
residues in two flexible regions, which can be predicted by AlphaFold. SHP2 contains two Src homology 2 (SH2) domains (nSH2 and cSH2) and a
protein tyrosine phosphatase (PTP) domain.
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only the former. In that sense, they resemble the character-
ization of orthosteric sites, except that their scoring is based on
statistics of allosteric sites.

Orthosteric drugs block the active site; allosteric drugs alter
the population of the active state of the protein, including the
active site, through binding at a site far away.126 We suggested
that allosteric drugs can constitute of “anchors” and “drivers”
atoms, where the anchor atoms bind to the allosteric pocket,
without changing the conformation of the binding site. The
interactions of the anchor atoms stabilize ligand binding,
resembling protein−ligand binding at the orthosteric site. The
binding of driver atoms “pulls” or “pushes” atoms in the
protein pocket. This initiates the allosteric signal, which shifts
the receptor population from the inactive to the active state.
Driver atoms can trigger agonism and antagonism. AlphaFold
cannot handle population shifts. AI strategies can but will need
to go beyond prediction of stabilizing interactions.

Finally, not surprisingly, prediction of the structures of
intrinsically disordered proteins (IDPs) and regions (IDRs) is
another problem where AlphFold falls short. Disordered
proteins (regions) are characterized by broad and heteroge-
neous ensembles where the differences in the relative
conformational stabilities are small, or even minor and the
barriers are low.127−135 The conformations interconvert,
leading to low probabilities of AlphaFold’s reliably capturing
those most favored, or the conformational distribution.
Nevertheless, leveraging, learning, and mining of the
conformations can exploit AI.136−138

AI-powered algorithms, which are fed vast compiled data,
and enabled by the emerging massive compute power are
propelling a revolution in computational biology (Figure 1).
Unlike quantum computing, in the case of AI and data-driven
computing, the technological innovations at the requisite scales
are already at hand.

■ PROTEIN FOLDING VERSUS PREDICTION OF
PROTEIN STRUCTURE

Protein Folding. The protein folding problem embraces
two questions:51 first, the conceptual question of how a
protein’s amino acid sequence dictates its 3D atomic structure,
and second, how, starting from a single amino acid sequence,
to successfully predict the 3D structure, without using
information related to other available (homologous, same
family) sequences nor structures of any related sequences.
Such computational prediction methods are guided by the
conceptual notion that this is how the protein folds in nature.
Single sequence-based prediction in solution considers forces
related to hydrogen bonds, ion pairs, van der Waals
attractions,139 and chiefly water-mediated hydrophobic inter-
actions, with the hydrophobic effect the driving force for
protein folding. This formal folding problem emerged six
decades ago, alongside the first atomic-resolution protein
(globins) structure. The structure led to thermodynamic
questions of the balance of interatomic forces that determines
the structure of the protein, how the protein can fold so
quickly, that is the kinetics of the pathways, and the
computational problem of protein structure prediction. The
landmark thermodynamic hypothesis of Christian Anfinsen
and his colleagues140,141 stated that the native structure of a
protein is its thermodynamically most stable structure, and it is
determined only by its amino acid sequence and the conditions
it is at, with kinetics playing no role. No other considerations
are at play, that is, whether it is synthesized in the lab or on the

ribosome or undergoes chaperone assisted folding. The folding
paradigm stipulated that unfolded molecules will always
spontaneously fold into the same shape; that is, the linear
amino acid sequence specifies a protein’s folded native
state.58,142−144 Anfinsen’s thermodynamic hypothesis empha-
sized the shape of the energy landscape where the native state
is the one with the lowest free energy.141,145 Computationally,
that description posed the problem of prediction of protein
structure, forming the basis for approaches that dominated the
field for scores of years. If only the sequence matters, along
with the physicochemical forces, it should be possible for
“good” algorithms to fold it. Assuming that the crystal structure
represents the minimum energy state, the “goodness” of the
predicted structure can then be assessed by comparison with it.
Anfinsen’s description combines sampling of alternative
conformations, ranking them by energy and identifying the
lowest energy state.51,146−148 Subsequent efforts focused on
prediction of secondary structures, although the dominant role
of the hydrophobic interactions suggested that secondary
structure is an outcome of the 3D structure and its cause.149,150

The small (5−10 kcal/mol) difference in the stability of the
native structures as compared to the denatured states151

compounded the challenge that predicting methods faced.
Already early on, Cyrus Levinthal conceptualized the key

problem facing the protein and the prediction algorithms:152

the vast time scales for the protein to search the folding space
and reach its most stable native state under biological
conditions.58 For prediction algorithms’ sampling backbone
states, the search space size grows exponentially with chain
length, becoming an impossibility. Levinthal argued that there
is no need to search this vast space since the energy landscape
is funnel-like, rather than flat, and thus can guide sampling
toward the biological conformational basin.51,153 Packed
hydrophobic cores optimize their van der Waals (vdW)
interactions, restrict torsion angles, and abolish internal
“holes”, with hydrogen bonds and salt bridges balancing the
loss of interactions with water. Harold Scheraga employed
physical chemistry to pioneer studies to decipher how amino
acid sequences influence the 3D folding pathways, thermody-
namics, and biological activity of proteins. Neither AlphaFold
nor broadly other protein structure prediction algorithms
consider folding pathways. Physical chemistry is accounted for
implicitly; in the case of AlphaFold, via AI.
Protein Structure Prediction. Prediction of protein

structure can be template-based or template-free, which does
not use global similarity to an experimental (protein data bank,
PDB) structure.58 Template-free modeling exploits physics-
based energy functions. Both can exploit machine learning and
AI to use data in the PDB. Template-based modeling selects a
structural template and uses sequence alignment. Template-
free modeling uses conformational sampling and ranking. It
may start with multiple-sequence alignment to related
sequences to predict local structural features, which will
guide the 3D modeling followed by refining and ranking.

Integrative modeling154−156 that assembles structures from
individual components may suffer from high false-positive rate.
Computational integrative approach can combine data from
experimental methods, bioinformatics, physics, and statistics
for rapid and accurate structure determination of protein
complexes. The algorithms can integrate experimental data,
such as X-ray crystallography, NMR spectroscopy, 2D and 3D
electron microscopy (EM), small-angle X-ray scattering
(SAXS), mass spectrometry (MS), hydrogen−deuterium
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exchange (HDX), mutations, sequence conservation and
covariation, and statistical analysis of known structures.
Computationally, the algorithms can derive from computer
vision, image processing, computational geometry, machine
learning, robotics, and graph algorithms. Machine learning has
however been used toward protein structure prediction.157−163

AlphaFold is not the first in being a machine-learning model.
Its remarkable success (with scores of near 90 even in the
difficult targets in the 2020 Critical Assessment of Protein
Structure Prediction, CASP) was influenced by its training not
only on all the PDB structures but also on structures it
predicted, and it uses the structure and correlation data to
predict the pairs of amino acids that are in contact as well as all
amino acid pairwise distances. It also ensured that the
distances between the amino acids satisfy the triangle
inequality, saving time at intermediate steps.164 To date,
AlphaFold illuminates half of the dark human proteins.10

Still, questions remain, such as which structural states exist
for a give protein, and what is the population of each state.
Addressing these questions is vital to relate protein structure to
function. This is where AlphaFold falls short. However, the
models it produces can serve as input to generate ensembles,
for example by MD simulations, which, if carried out at
sufficiently longtime scales, in parallel, it should be able to
produce. Simulations can sample the relevant states, can
enumerate possible state combinations (multistate models),
and can determine the population sizes for the states.
The Structure−Function Paradigm Overlooked En-

sembles and Dynamic Energy Landscapes: AlphaFold Is
Attuned but Is Unable to Address Them. The sequence−
structure−function dogma was the touchstone of a generation.
It dominated molecular biology for decades. It was introduced
by physical chemists who explained that biological macro-
molecules function when they are folded. Thus, to understand
how molecules function, one needs to consider their 3D
structures, a transformative paradigm that became a tenet of
modern biology. Today, it is broadly recognized that rigid
molecules cannot perform a function, leading the way to the
appreciation that to sustain life, molecular flexibility is a
necessity. That however has not fully translated to the
understanding of the powerful concept of the energy
landscape.165 That is, that biomolecules are dynamical objects
that are always interconverting between a variety of structures
with varying energies,166 and that this is the origin of allosteric
mechanisms.167−169 This notion of flexibility as interconver-
sion between conformations is critical for understanding
biological processes and their regulation, such as protein
activation as a shift of the ensemble from the inactive to the
active state, how allosteric drugs work, cell signaling, and
binding mechanisms through conformational selection rather
than induced fit. The conceptual evolution from the classic
structure−function paradigm to dynamic energy landscapes of
biomolecular function and allosteric mechanisms, poses a
challenge to AlphaFold’s powerful predictions. To understand
biological regulation, structure should be linked to function
through protein ensembles in terms of populations and relative
energies, which is the foundation of allostery (Figure 2).
Despite its transformative power and vast broad impact, the
AlphaFold predictions are unable to address it directly. It is
only through their sampling that this functional aim can be
accomplished.

Around their native states, protein landscapes consist of
rapidly interconverting conformations. The ensembles are

“fuzzy”.170,171 Events associated with their environments and
functions, such as changes in pH, interactions with ions, water,
and lipids, and binding of small or macromolecules, promote
conformational changes. These are frustrated by their local
restricted molecular environment.172 The cooperative, accom-
modating structural changes shift the ensemble. The shifted,
now populated states are frustrated by their current
neighboring residues conformations. Binding and catalysis
involve making and breaking covalent and noncovalent
interactions at the interaction site. These propagate through
frustration, influencing the conformational states of the
ensemble. The shifts in the ensemble alter the relative
stabilities, i.e., the populations of the states, thus influencing
the allosteric transitions. Importantly, frustration does not
create new conformations; instead, it alters the number of
molecules populating it.173 Frustration is thus a powerful tool
harnessed by evolution for function.174

Biomolecules must be described statistically, not stat-
ically.166,175 Static descriptions were the norm for decades.
Yet, a static description cannot capture function. It cannot
describe protein activation from the inactive to the active state
upon some activation event, such as binding a hormone, or
being covalently modified by a post-translational modification,

Figure 2. Structural ensembles for B-Raf activation. The snapshots for
B-Raf kinase domains (top panels) are generated from the protein
databank (PDB). The representative inactive OFF-state conformation
(PDB ID: 3SKC) and active ON-state conformation (PDB ID:
6UAN) are highlighted in blue and red, respectively. The free energy
landscape of B-Raf kinase domain depicting the population shift from
OFF-state to ON-state upon activation (middle panel). Highlighted
activation segments of αC-helix and A-loop representing the side by
side comparisons between the single structure predicted by AlphaFold
and the representative B-Raf conformations of both inactive OFF-
state and active ON-state (bottom panels). The AlphaFold structure
falls into neither the active ON-state nor the inactive OFF-state.
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or the presence of oncogenic driver mutations. It is also unable
to describe how high affinity binding to an activator shifts
protein molecules to their active state.176,177 It will further fail
when attempting to describe how allosteric “rescue muta-
tions”178,179 work (albeit not other rescue mutations, e.g., refs
180−183), how allosteric drugs are able to block the active
site, and how mutations countering them can be overcome. All
these processes which take place in the cell would not have
been possible had the protein existed in a single structure or
was flipping between only two states, active and inactive. While
there is a single conformation that the active enzyme should
adopt for productive catalysis, there are multiple ways to
inactivate it and thus many inactive states. The notion of a
single structure bred the concept of the “lock-and-key” binding
mechanism. This view was superseded by the “induced fit”
mechanism which considered the presence of only two states,
an active and an inactive state. In an induced fit scenario, the
ligands bind to the single “open” protein structure and the
interaction between a protein and a rigid binding partner
induces a conformational change in the protein.184 In contrast,
the conformational selection mechanism167−169,185 theorizes
that the energy surface hosts a very large number of
conformations, and the one that fits best is selected, with
subsequent minor induced fit optimization, largely by side
chains.

AlphaFold exploits AI to make template-free predictions of
protein structures from their sequences, equipping biologists
with structures with good resolution. The predictions that it
yields, like those obtained by homology modeling, are rigid.
Flexibility is implicitly captured by the absence of, or low
confidence levels of predicted structure for certain regions, as
in the case of intrinsically disordered proteins. Thus,
computational methods once relegated to the periphery of
biology, are now at the forefront, driving “the second
molecular biology revolution”. AlphaFold can drive break-
throughs in fundamental problems in the life sciences,
including precision medicine, with promise to transform
research and accelerate drug discovery. It is driven by deep
learning innovations, which appear poised to transform MD
simulations.

■ APPICATIONS OF ARTIFICIAL INTELLIGENCE AND
MACHINE LANGUAGE

AI and Machine Language in Simulations. Machine
learning for molecular simulations�tools, strategies, and
principles�have been reviewed recently.186 As can be seen
from this excellent review, machine learning has already been
making a significant impact on the development of
approximate methods for complex atomic systems. The
innovation in the development and integration of MD
simulations with deep learning can reproduce, interpret,
predict, and generate data relating to the behavior of biological
macromolecules.187−192 Deep learning methods can help MD
simulations excel in their efficiency and scales, with AI bridging
between deep learning technologies and simulations. Chal-
lenges toward broad usage include smooth connection of AI
and MD and automation of workflows. These could popularize
novel deep learning tools in MD simulations toward efficiently
exploiting both powerful methods. The number of publications
in this area has been skyrocketing, emphasizing the recognition
of the potency of AI and machine learning in simulation. As an
example, MD simulations need to perform extensive sampling
of the conformational space that require long time scales. Deep

learning involving, e.g., variational autoencoders have been
shown to be useful. The learned latent space in the variational
autoencoders has been employed to generate unsampled
protein conformations, and simulations starting from these
conformations accelerated the sampling.193 In another
example, a deep learning framework with mixed classical and
machine learning potentials (TorchMD) has been developed
for molecular simulations.188 The review cited above provides
additional diverse examples. Deep learning has also been
already exploited in structural modeling and design60,194−196

and analysis191 and linking these to function.197

AI and Machine Language in Prediction of Patho-
gen−Human Host PPIs. AI and deep learning are also being
developed and applied to experimental determination and
prediction of macromolecular structures,198 as well as to
PPIs.199,200

Applications of AI approaches to human−microbiome
protein−protein interactions have also been reviewed
recently.66 These interactions play important roles in human
health and disease. There is a rapid increase of data that
microbes, bacteria, and viruses impact human health. They can
modulate human signaling and immune response by
interacting with the human proteins. To decipher this
modulation, it is important to identify the specific interactions,
the human host proteins that are involved, and the structure of
the complex. Identification of the interactions along with their
structural details at atomic resolution permit understanding the
mechanisms involved in pathogen survival and assist in drug
discovery targeting these interactions. The interactions help
the pathogens to elude and bypass the immune defense, with
the pathogens hijacking host signaling. Mechanistically,
pathogen proteins can have surfaces which resemble those of
the host, allowing them to mimic and compete with host
protein interactions (Figure 3). They bind to the host protein
and rewire its physiological signaling. Data, including structural
details, are scarce and large-scale experimental detection is
challenging. Efficient and robust computational strategies to
predict the interactions is thus vital. We have developed an
algorithm and server to predict these human host−microbial
PPIs (HMIs) based on their protein structures, which can be
experimental or modeled. In large scale applications,
AlphaFold can now be used toward this aim. Machine learning
permits both the large-scale efficient and generalizable
application and addressing the complex dynamics of such
relationships that the machine learning algorithms can
decipher.

Challenges in machine learning for PPI prediction relate to
both data and method. With limited microbial but not human
data, microbial sample sizes are small. In sequence-based
algorithms, the dimensionality problem can be pronounced,
where the difficulty exponentially grows as the feature size
increases. Principal component analysis (PCA), uniform
manifold approximation and projection (UMAP), or autoen-
coders can be used to embed the samples into lower-
dimensional spaces,201,202 and preprocessing and postprocess-
ing pipelines can be employed for other data. In structure-
based methods the problems may relate to the quantity and
diversity of the representation. Data relating to host-microbe
PPIs with 3D structures are sparse, thus facing a problem in
training and evaluating the computational methods. Additional
problems involve lack of gold standard test data set. Evaluation
metrics are also unclear, the PPI networks are sparse, and
more.66 DeepMind’s AlphaFold2 success in sequence-based
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protein structure prediction,4 as well as the RoseTTAFold70

open-source counterpart, and the publicly available Alpha-
Fold2 prediction of all human proteins203 are major steps that
benefit the scientific community.

■ CONCLUSIONS
AI and machine learning are appending projects. They are
applied in diverse applications, including biological net-
works.204 They impact disease biology, drug discovery,
microbiome research, and synthetic biology. They also evolved
a machine learning pipeline for molecular complex detection in
protein-interaction networks,205 as well as the relevance of
major signaling pathways in cancer survival.46

Here, we briefly overviewed the immense impact of
AlphaFold, and of AI in structural biology, with some
examples. We highlighted what AlphaFold can and cannot
accomplish and why. Allosteric mechanisms fall into the latter
category. Nevertheless, through MD simulations of models
that AlphaFold produces, this aim can be accomplished as well.
Still, however, even though simulations would address this
dynamics problem, at such scales, the cost is prohibitive. A
paradigm-shifting machine learning method is needed to
model protein dynamics.

AlphaFold and its underlying deep learning innovations have
opened up the next frontiers in protein science,164 including

precision medicine.206 Protein structures connect to cell
biology, chemistry, biophysics, and medicine. To date, over
180 000 protein structures are available, open to all researchers
across the world in the PDB database. Still, structures of
pathogens are not within them, and neither are many others,
which are essential to human health. The resource is now
there, and with growing computational power, eventually,
these will be there as well. Nonetheless, the availability of the
structures is insufficient. For us, as biophysicists, the key is
what are the significant questions to ask. What should the focus
of our research be, such that we do not repeat what was so well
done but instead exploit the new capabilities to ask the really
important questions.
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