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Pancreatic ductal adenocarcinoma (PDAC) is becoming increasingly more common.

Treatment for PDAC is dependent not only on stage at diagnosis, but complex anatomical

relationships. Recently, the therapeutic approach to this disease has shifted from upfront

surgery for technically resectable lesions to a neoadjuvant therapy first approach.

Selecting an appropriate regimen and determining treatment response is crucial for

optimal oncologic outcome, especially since radiographic imaging has proven unreliable

in this setting. Tumor biomarkers have the potential to play a key role in treatment

planning, treatment monitoring, and surveillance as an adjunct laboratory test. In this

review, we will discuss common chemotherapeutic options, mechanisms of resistance,

and potential biomarkers for PDAC. The aim of this paper is to present currently

available biomarkers for PDAC and to discuss how these markers may be affected by

neoadjuvant chemotherapy treatment. Understanding current chemotherapy regiments

and mechanism of resistance can help us understand which markers may be most

affected and why; therefore, determining to what ability we can use them as a marker for

treatment progression, prognosis, or potential relapse.

Keywords: pancreatic duct adenocarcinoma (PDAC), neoadjuvant chemotheraphy, CA 19-9–carbohydrate antigen

19-9, biomarker (development), tumor biomarker

INTRODUCTION

Pancreatic ductal adenocarcinoma is the 4th leading cause of cancer death in the United States and
has recently been associated with an increased incidence (1). The majority of patients with PDAC
present with unresectable disease, whether locally advanced or metastatic. Thus, new modalities in
early detection and treatment response are necessary. Most large centers are now treating patients
with borderline resectable or locally advanced disease with upfront (neoadjuvant) chemotherapy
and resecting if no progression occurs. However, the desmoplastic and fibrous nature of PDAC can
make the interpretation of surveillance imaging problematic when trying to determine treatment
response (2). For instance, in patients with PDAC who underwent neoadjuvant FOLFIRINOX
therapy, cross-sectional imaging was not reliable tool to predict resectability or pathologic
treatment response (3). Therefore, a combination of tumor biomarkers and traditional imaging
methods maybe a better tool for determining treatment response and resectability.
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Molecular profiling represents a promising avenue of
personalized cancer care that may be prognostic of oncologic
outcomes. Using these techniques in a thoughtful way can
guide us to creating individualized treatment plans for each
patient based on their tumors molecular profile. This concept
was recently tested in a clinical trial assessing the utility of
molecular profiling as a guide for neoadjuvant regimen choice
in patients with PDAC. Using a panel of 6 protein biomarkers
to guide gemcitabine or 5-FU based chemotherapeutic selection,
the authors increased rates of treatment completion (neoadjuvant
and resection) from 50 to 70% in borderline resectable
PDAC cases, and from 80 to 90% in resectable cases. These
improvements translated to overall survivals (OS) of 38 months
in all patients and 45 months in patients who completed
treatment, both an improvement over historical controls (4).

Biomarkers can be any combination of biochemical,
radiographic, or pathophysiologic variables utilized to
provide clinically useful diagnostic or prognostic information.
Ideally, biomarkers should be relatively easy to obtain (no
biopsy needed), inexpensive, reliable, and provide actionable
information (5). This article will review current neoadjuvant
chemotherapeutic approaches in PDAC and a variety of
promising diagnostic and prognostic biochemical biomarkers in
this patient population.

COMMON NEOADJUVANT DRUGS

REGIMENS

FOLFIRINOX
FOLFIRINOX is a combination of 5-fluorouracil (5FU),
leucovorin, irinotecan and oxaliplatin. 5FU targets thymidelate
synthase (TS), which converts deoxyuracil monophosphate
(dUMP) to deoxythymidine monophosphate (dTMP) and
requires N5 N10-methylene tetrahydrofolate as a cofactor.
Inhibition of TS results in a decreased pool of the nucleoside
thymidine, which is toxic to rapidly dividing cells. The 5-FU-
TS complex is stabilized by the reduced folic acid leucovorin.
5-FU is catabolized by dihydropyrimidine dehydrogenase
(DPD). Irinotecan is a pro-drug for the topisomerase-1
inhibiting molecule SN-38. Oxaliplatin works by preventing
DNA replication and transcription through formation of DNA
crosslinks (6) leading to cell death.

Gemcitabine and Nab-Paclitaxel
Gemcitabine (GEM) has several mechanisms of action, and
therefore several potential targets for resistance; GEM acts as
a pyrimidine nucleoside and it is activated intracellularly by
deoxycytidine kinase (dCK). PDAC can down regulate dCK via
increased CYR61/CCN1 signaling, resulting in GEM resistance
(7). GEM enters the cell via a facilitated transport mechanism
involving the trans-membranous protein human equilibrative
nucleoside transporters (hENT1). Patients who are negative for
hENT1 have worse OS and prognosis than hENT1 positive
patients when given GEM based chemotherapy (8). It has been
shown that GEM effectiveness can be altered by changes in
expression of the translation inhibiting microRNA miR663a (9).

Taxols are chemotherapeutic drugs that bind to α-tubulins
and hyperstabilize microtubules, thereby impairing cell division.
Neoadjuvant therapy with GEM and docetaxel has been
associated with high resection rates, favorable surgical outcomes,
and potentially improved survival in patients with PDAC (10).
When paclitaxel is conjugated to albumin (NP), it has increased
solubility, improved cellular uptake, and decreased risk of
hypersensitivity reactions. Clinical trial data in the metastatic
setting has shown GEM-NP in combination is superior to GEM
alone (11).

Cisplatin and Platinum Based Therapies
Cisplatin and platinum-based therapies are widely used in
the treatment of PDAC and have been studied as a single
treatment or in combination with other chemotherapy drugs
(such as gemcitabine) (12). Cisplatin works to induce apoptosis
in the cancer cells and when combined with other drugs can
further increase DNA damage (13–15). In PDAC, cisplatin
has shown limited improvement when combined with other
therapies secondary to resistance. Cancer cells can become
resistant to cisplatin through several mechanisms including drug
transport, DNA damage response, DNA repair, and modulation
of apoptosis (16, 17).

BIOMARKERS WITH CURRENT CLINICAL

USE

Carbohydrate Antigen 19-9 (CA 19-9)
This molecule is a Sialylated Lewis (a) cell surface antigen
that plays an important role in mediating leukocyte migration
along endothelial surfaces by binding to P-selectin. This
particular mechanism of action has also been proposed
to play a role in PDAC metastasis through extravasation
of tumor cells (18). CA 19-9 has been recognized as a
potential diagnostic biomarker by the National Comprehensive
Cancer Network (NCCN). These guidelines recommend that
levels should be measured before each stage of treatment:
neoadjuvant therapy, surgery, adjuvant therapy, and then every
3–6 months for up to 2 years post-treatment for follow up
(19). However, there are still several limitations associated
with this biomarker that will be discussed below. Initially
elevated levels above 1,000 U/mL have been shown to have
poorer survival in upfront resectable disease, but this has
not translated to the neoadjuvcant setting. In fact, recent
work has found that any elevation in CA19-9 in early stage
disease, has a worse survival than patient with normal levels,
and suggested these patients be considered for neoadjuvant
treatment (20, 21).

In the neoadjuvant setting, normalization of CA 19-9 after
upfront chemotherapy was associated with longer OS in patients
who did not undergo tumor resection (15 vs. 11 months; p =

0.022). Similarly, normalization of CA 19-9 level in patients who
underwent subsequent resection was also associated with longer
OS (38 vs. 26 months; p = 0.020) (22) CA 19-9 may also be
prognostic of resectability in patients with PDAC. It has been
reported that patients with a median CA 19-9 level of <130

Frontiers in Oncology | www.frontiersin.org 2 May 2020 | Volume 10 | Article 620

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Awad et al. Biochemical Predictors and Pancreatic Cancer

U/mL are more likely to have resectable tumors than patients
with higher levels (23).

If ordered before each stage of treatment as the NCCN
recommends, CA 19-9 levels can be followed throughout
treatment and give information about prognosis. Pretreatment
CA 19-9 level >1,200 U/mL, a post-treatment CA 19-9 >100
U/mL, and a CA 19-9 level that declines <40% following chemo-
radiotherapy may possibly serve as a surrogate marker for poor
survival in advanced PDAC (24). The group with the higher pre-
treatment level had a mean survival time of 8 months compared
to 13 months for the group with pretreatment levels of <1,200
U/mL. After GEM, a CA 19-9 level that drops that >20% after
8 weeks is associated with improved OS (383 days) compared
to patients who had a rise in their CA19-9 level or a decline of
< 20% (OS 281 days) (25). Patients with pathological complete
response had a post gemcitabine, docetaxel, and capecitabine
therapy CA19-9 level of 18.5 U/ml (26).

Finally, CA 19-9 can be used in the post resection surveillance
period for detecting early disease recurrence. CA 19-9 levels
higher than 125 and 200 U/mL have both been shown to be
indicative of tumor recurrence following pancreatic resection
(27, 28).

Of note, CA19-9 may be falsely elevated with biliary
obstruction, biliary endoprotheses, and/or cirrhosis. Another
limitation is the fact that up to 10% of population does not
express the CA19-9 antigen due to lack of the fucosyltransferase
enzyme (29).

Carcinoembryonic Antigen (CEA)
CEA is a surface glycoprotein that facilitates cell adhesion. It
is normally produced by the fetal gastrointestinal tract and
its production is halted before birth with postnatal levels
declining to below 20 ng/ml in adults. CEA levels can be elevated
in colorectal adenocarcinoma and other adenocarcinomas
including PDAC. CEA is equally specific (85 vs. 83%), but
less sensitive (44 vs. 73%) than CA 19-9 for PDAC (30),
making it less useful diagnostically. In patients with known
PDAC, elevated CEA (>4.45 ng/mL) was associated with early
recurrence (27). CEA may be most helpful when patients present
with other benign pancreatic conditions, discordant radiological
findings, and elevated CA 19-9 levels (30). CEA is frequently
elevated in smokers (31), patients with hypothyroidism, and
other malignancies. Liver failure can also compromise CEA
catabolism and lead to falsely elevated levels.

PROPOSED BIOMARKERS WITH LIMITED

CLINICAL USE

Cancer Antigen 125 (CA-125 or MUC16)
CA-125 is a mucin glycoprotein expressed at cell surfaces and
plays a role in the barrier immunity of mucosal surfaces.
Due to its abundant presence at various mucosal surfaces, this
marker lacks specificity. In practice, its role is mainly limited
to the treatment algorithm of ovarian cancer. CA-125 binds
to mesothelial cell surface proteins and may have a role in
ovarian cancer metastasis to the peritoneum. This marker is of
interest because this mechanism of action may help researchers

gain insight into how PDAC tumor cells form peritoneal
metastases (32).

While CA 19-9 is more sensitive in the general population,
CA-125 may have a superior specificity for detecting PDAC in
diabetics (33). Studies have suggested using CA-125 in a panel
with CA19-9, CEA, and CA242 improves diagnostic accuracy
from 68% alone to 92% in combination (34). However, this data
has not been validated in a prospective manner. CA−125 can be
elevated in the setting of biliary obstruction, which is common in
patients presenting with PDAC.

Cytokeratin 19-Fragments (CYFRA 21-1)
Cytokeratin is a key component of the cellular cytoskeleton
and plays a role in cell stability. CYFRA 21-1 is a fragment of
cytokeratin 19 and is measurable in the serum of patients with
PDAC. CYFRA 21-1 levels have been correlated with OS, burden
of disease, and response to treatment (35).

S-Pancreas-1 Antigen (SPAN1)
SPAN1 is a glycoprotein expressed in PDAC with limited clinical
use. The sensitivity of combination assays of Span-1 were 84%
with CA19-9 and 86%with CEA, (36). Other authors suggest that
SPAN1 may be useful in early detection of treatment failure of
GEM therapy in patients with PDAC (37). SPAN1 levels higher
than 37 U/mL may be an independent risk factor for early
recurrence and LNmetastases (28). SPAN1 is falsely positive with
cirrhosis and hepatitis.

Fecal Elastase-1 (FE1)
Elastase is a serine protease secreted in pancreatic juice and often
utilized as an indicator of pancreatic exocrine function. As PDAC
is commonly associated with fibrosis, the exocrine function of
pancreas can be affected even without evidence of pancreatic
duct obstruction. FE1 levels may provide insight to the degree
of fibrosis that exists in patients with PDAC (37). Low FE1 serum
levels (<200 mg/g) have been associated with 1- and 3-year DFS
(disease free survival) rates of 66.2 and 36.6%, while high serum
levels(≥200 mg/g) had DFS of 29.9 and 8.8%, respectively (p <

0.001) (37).

Human Equilibrative Nucleoside

Transporter 1 (hENT1)
Human equilibrative nucleoside transporter 1 is a membrane
associated protein that aids in the uptake of nucleosides
and facilitates the intracellular transport of GEM. There is
marked variation of hENT1 expression throughout the general
population with some individuals expressing negligible levels.
This variation in expression can be associated with GEM
treatment resistance. Ameta-analysis of 10 studies and found that
high hENT1 expression was associated with longer OS (HR =

0.37; 95%CI 0.28–0.47) and DFS (HR = 0.44; 95%CI 0.33–0.59)
in patients receiving GEM-based adjuvant therapy (38).

Deoxycytidine Kinase (dCK) and

CYR61/CCN1
The protein dCK mediates the active form of GEM via
phosphorylation. The CYR61/CCN1 signaling pathway down
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regulates dCK and up regulates CTGF (connective tissue
growth factor). This promotes fibrosis and increases GEM
treatment resistance by reducing its phosphorylation. In
addition, epithelial-mesenchymal transition (EMT) is induced
by CYR61/CCN1, which causes epithelial cells to convert to
mesenchymal stem cells. In this transition the cells loose E-
cadherin and cell-to-cell adhesion, allowing for invasion through
basement membranes, and subsequent metastasis (7). Given this,
high dCK expression has been associated with longer OS with
GEM-based adjuvant treatment (HR = 0.40; 95%CI 0.20–0.80)
and DFS (HR= 0.41; 95%CI 0.22–0.74) (38).

Ribonucleotide Reductase (RRM1/2)
In addition to GEM’s role in DNA polymerase inhibition, GEM
also inhibits riboneucluoreductase, an enzyme required for DNA
synthesis. Ribonucleotide reductase consists of two subunits, M1
(RRM1 gene) and M2 (RRM2 gene). Overexpression of RRM
genes increase concentration of deoxynucleotide triphosphate
(dNTP), which out compete GEM for incorporation into DNA,
thereby decreasing its effectiveness (39). Additionally, over
expression of RRM1 (the regulatory subunit of ribonucleotide
reductase) may bind to GEM irreversibly leading to its
deactivation (40, 41). In a study which investigates over 40
patients with PDAC, the median OS of RRM1-negative and
RRM1-positive patients was 12.9 and 5.1 months, respectively (P
< 0.05) (42).

Cytidine Deaminase (CDA) and

Deoxycytidylate Deaminase (DCD)
CDA and DCD are enzymes involved in the pyrimidine
salvage pathway. High expression of CDA will accelerate GEM
catabolism and lead to treatment resistance (43, 44). This makes
detection of CDA & DCD in the pretreatment setting beneficial
and can aid in predicting potential survival benefit and toxicity
before GEM administration (45). In theory, patients with PDAC
who have elevated levels of CDA undergoing GEM treatment,
may be givenNab-paclitaxel concurrently to induce CDAdamage
by reactive oxygen species and enhance treatment effectiveness.
The most predictive CDA level needs further clinical correlation.

Dihydropyrimidine Dehydrogenase (DPD)
Dihydropyrimidine dehydrogenase is the rate limiting enzyme
in pyrimidine catabolism, whereby thymidine and uracil are
reduced. This pathway is a similar to the pathway of 5FU
catabolism. DPD activity has been demonstrated to be low in
patients with well-differentiated types of PDAC when compared
to patients with poorly differentiated and anaplastic types (46). In
that same study of 18 patients, low DPD activity (<395 pmol/mg
protein) was associated with a significantly improved OS (46).
Combining a DPD inhibitor to fluoropyrimidine regimens has
been shown to increase the treatment response rate in gastric
cancer (47). The DPD inhibitor gimeracil has been studied in
pancreatic cancer as a component of the combination treatment
S-1 (includes 5-FU prodrug tegafur and potassium oxonate), with
the JASPAC-01 clinical trial in Japan showing non-inferiority
over single agent GEM in the adjuvant setting with improved 5-yr
OS (44 vs. 24%) (48).

Thymidelate Synthase (TS)
High TS levels may also contribute to gemcitabine resistance; as
TS provides an alternative source of substrate for DNA synthesis.
This is supported by studies demonstrating a decrease in GEM
resistance when TS enzyme expression is knocked down using
small interfering RNA (49).

Multidrug Resistance-Associated Proteins

(MRPs)
Multidrug resistance-associated proteins are a member of
the ATP-binding cassette (ABC) transporter family and
actively transport molecules across the cell membrane (50).
Overexpression of MRP4 confers resistance to 6-mercaptopurine
(6-MP) and 6-thioguanine (6-TG). Whereas, overexpression of
MRP5 confers significant resistance to 5FU (51).

MicroRNA (miRNA)
miRNA are small non-coding RNA that bind to and inhibit
the translation of mRNA. miRNA can act as either a tumor
suppressor or oncogene depending on the mRNA it is inhibiting
and are variably expressed in PDAC (52) miR211 down regulates
RRM2 expression, increasing sensitivity to GEM (53). On
the other hand, miR-17-5p inhibition enhances sensitivity to
gemcitabine via up regulation of Bim (apoptotic promoter)
expression in pancreatic cancer cells (54).

Excision Repair Cross-Complementing

Gene-1 (ERCC1)
ERCC1 acts as a part of nucleotide excision repair pathway. High
ERCC1 expression in patients with PDAC has been associated
with reduced recurrence free survival (6 vs. 10 months; P= 0.03)
and decreased OS (9 vs. 18 months; P = 0.019) (53, 55).

Cell-Free DNA (cfDNA)
PDACs can shed DNA fragments into the circulation from
necrotic and apoptotic cells in the form of cfDNA. cfDNA has
been shown in some studies to predict early tumor recurrence
compared to cross sectional imaging (56). It may also be
beneficial to monitor treatment response in the metastatic
setting (56). In addition to detecting cfDNA in circulation, these
fragments of DNA can be tested for mutations known to be
associated with PDAC. KRAS mutations detected in cfDNA
from patients with PDAC were associated with a 90% chance
of disease progression within a median follow-up time of 3.7
months compared to only 25% in the KRAS negative group (P =

0.01) (57). Additionally, cfDNA may assist in detecting changes
in tumor genetics longitudinally, in that 78% of mutations found
in cfDNA after metastatic progression were not detected in the
primary tumor at time of resection (58). This suggests that
cfDNA may provide a more accurate genomic representation of
disease compared to a conventional single site biopsy.

Circulating Tumor Cells (CTC)
CTC are cells released into circulation from the tumor. Patients
who have detectable CTC tend to have a worse prognosis.
Detection of epithelial CTCs was significantly associated with
worse survival compared with patients without CTCs (median
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survival 13.7 mo vs. >14 month, P = 0.008) (59). CTCs may also
provide information on response to neoadjuvant treatment and
be prognostic of recurrence post resection up to 2 months earlier
than imaging evidence (60).

Mothers Against Decapentaplegic

Homolog 4 (SMAD4)
SMAD4 is a signal transducer for the transforming growth
factor beta pathway, which in turn plays a role in cellular
proliferation, differentiation and apoptosis. Detection of high
levels of SMAD4 is highly correlated with a poorer prognosis
(61). Thus, determining SMAD4 status at initial diagnosis may
be of value in stratifying patients into local vs. systemic treatment
regimens (62).

Carboxylesterase 2 (CES2)
CES2 is a carboxylase enzyme capable of converting irinotecan
into its active form of SN-38. Higher expression of CES2
was associated with increased OS in patients who underwent
neoadjuvant FOLFIRINOX treatment (hazard ratio = 0.14, 95%
confidence interval= 0.04–0.51, P = 0.02) (63).

Secreted Protein Acidic and Rich in

Cysteine (SPARC)
SPARC is a glycoprotein that is overexpressed in the stromal
cells of PDAC. SPARC plays a role in cellular proliferation
and angiogenesis through the regulation of macromolecular
movement, and therefore may assist in determining a tumor’s
invasive capability (64). SPARC also facilitates the uptake of
albumin bound paclitaxel (NP). This may help drug delivery to
the hypoxic PDAC microenvironment (65). Accordingly, high
SPARC expression is associated with lower survival (11.5 months
in case of high expression vs. 25.3 months in case of low
expression; p= 0.020) (66).

Epidermal Growth Factor Receptor mEGFR

(EGFR)
EGFR (ErbB1, HER1) is a transmembrane tyrosine kinase
receptor with downstream targets affecting both DNA replication
and cell proliferation. An increased expression of these receptor
in the tumor microenvironment will result in increased

replication and has been associated with worse clinical outcomes.
Patients with resected tumors that stained positive for EGFR by
immunohistochemistry had worse OS compared to patients who
were negative (18 vs. 34 months, P = 0.04) (67).

Erlotinib targets EGFRs and has demonstrated mixed clinical
promise in PDAC patients with EGFR positive tumors. In one
randomized trial of patients with advanced PDAC receiving GEM
therapy alone or GEMplus erlotinib, single agent GEMhadworse
OS (5.9 vs. 6.2 months) (68). However, another randomized
trial comparing GEM vs. GEM plus erlotinib given in locally
advanced pancreas cancer, followed by either continuation of
chemotherapy or switching to 54Gy radiation with capecitabine
found no difference in an intention to treat anlaysis of OS
between the GEM and GEM plus erlonitib (13.6 vs. 11.9
months) (69).

BRCA Mutations
Patients with germline mutations in BRCA are at an increased
risk for PDAC (70). Recent phase I clinical trials have
shown antitumor effectiveness with platinum-based combination
therapy (specifically cisplatin in combination with GEM and
veliparib) in patients with PDAC and BRCA mutations.
Randomized phase II trails are currently enrolling to study the
effect of cisplatin and GEM with and without veliparib for
patients with PDAC and BRCA mutations (71, 72).

CONCLUSION

Biomarkers may be used to offer patients personalized care and
improve oncologic outcomes. While CA 19-9 is currently the
only PDAC related biomarker with proven clinical utility, other
biomarkers discussed in this review show significant promise to
improve care. Further research and breakthroughs in the field of
precisionmedicine will allow us to gain more insight into the role
that these and other biomarkers will play in future cancer care.
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