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Abstract

Background: Salmonella enterica is regarded as a major public health threat worldwide. Salmonella secretes the
novel translocated effector protein K2 (SseK2), but it is unclear whether this protein plays a significant role in Salmonella
enterica Typhimurium virulence.

Results: A ΔsseK2 mutant of S. Typhimurium exhibited similar growth curves, adhesion and invasive ability compared
with wild-type (WT) bacteria. However, deletion of sseK2 rendered Salmonella deficient in biofilm formation and the
early proliferative capacity of the ΔsseK2 mutant was significantly lower than that of the WT strain. In vivo, the LD50

(median lethal dose) of the ΔsseK2 mutant strain was increased 1.62 × 103-fold compared with the WT strain. In
addition, vaccinating mice with the ΔsseK2 mutant protected them against challenge with a lethal dose of the WT
strain. The ability of the ΔsseK2 mutant strain to induce systemic infection was highly attenuated compared with the
WT strain, and the bacterial load in the animals’ internal organs was lower when they were infected with the ΔsseK2
mutant strain than when they were infected with the WT strain.

Conclusions: We conclude that sseK2 is a virulence-associated gene that plays a vital role in Salmonella virulence.
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Background
Salmonella enterica is a facultative intracellular Gram-
negative pathogen that has a wide range of hosts and is
regarded as a major public health concern worldwide
[1]. Various Salmonella and serovars still pose a critical
threat to human health, especially in developing coun-
tries [2, 3]. Salmonella enterica can cause a variety of
animal diseases, such as typhoid fever. Salmonella
pathogenic is mainly facilitated by a type III secretory
system (T3SS) encoded by the genes in Salmonella
pathogenicity islands 1 and 2 (SPI-1 and SPI-2) [4, 5].
SPI-1 is mainly expressed in the intestines to mediate
invasion of epithelial cells by Salmonella, while SPI-2
can facilitate intracellular proliferation of Salmonella in

the host’s macrophages [6, 7]. Although sseK2 is an im-
portant gene that is located on SPI-2 [8], it is unknown
whether this gene plays a role in Salmonella virulence.
The SseK proteins in S. Typhimurium are regarded as

T3SS effectors, and include SseK2 (STM2137), SseK1
(STM4157) and SseK3 (sb26) [9]. Interestingly, these
proteins are highly similar in different bacterial species,
such as the enterohemorrhagic Escherichia coli and
Citrobacter rodentium [10, 11]. The SseK1 and SseK2
proteins are encoded by genes located in the islands on
bacterial chromosomes, and share 61% identity at the
amino acid level [10]. Both SseK1 and SseK3 are found
to inhibit the activation of the proinflammatory transcrip-
tion factor NF-κB and work as GlcNAc (N-acetylglucosa-
mine) transferases that could modify the TNFR1-associated
death domain protein TRADD [12, 13]. Notably, all of the
key residues necessary for SseK3 enzyme activity are con-
served in SseK2 [12]. While a previous study that deletion
of the sseK1 gene can significantly reduce virulence [14],
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there is no evidence regarding how the presence of the
sseK2 gene promotes bacterial virulence. The Salmonella
protein K2, which is a novel translocated protein, is a
secreted T3SS effector protein that is involved in bac-
terial translocation. In addition, the gene encoding
SseK2 is highly conserved in the Salmonella genome
[10]. Research has suggested that SseK2 is also an
GlcNAc transferase [15], but it is uncertain whether
sseK2 has an effect on S. Typhimurium virulence. Gaining
a better understanding of the effects of sseK2 on bacterial
virulence may help improve the design of live attenuated
vaccines, which are regarded as an effective means of pre-
venting Salmonella infection [16, 17].
In this study, we implemented a SacB/sucrose counter-

selection strategy to obtain a ΔsseK2 mutant. The poten-
tial virulence of ΔsseK2 mutant was examined in both in
vitro and in vivo models of infection. We verified that
deletion of sseK2 reduces Salmonella virulence, indicat-
ing that sseK2 is a Salmonella virulence-associated gene.
Our data clearly showed that sseK2 plays a vital role in
Salmonella virulence.

Results
Analysis of the ΔsseK2 mutant
An in-frame deletion of the sseK2 gene was cloned into
pRE112 to create a recombinant suicide plasmid. The
ΔsseK2 mutant was PCR (polymerase chain reaction)-amp-
lified using primers sseK2 - F and sseK2 - R. We obtained
an approximately 459-bp fragment (Fig. 1). The sseK2 dele-
tion was confirmed by DNA sequencing.

Growth characteristics of the ΔsseK2 mutant
The ΔsseK2 mutant, the WT strain, and a complemented
strain were verified by antibiotic selection and PCR, and
the results showed that their growth characteristics in
LB (LuriaBertani) medium did not differ greatly (Fig. 2).
This indicated that sseK2 deletion did not influence the
growth characteristics of S. Typhimurium.

Stability of the ΔsseK2 mutant
The ΔsseK2 mutant was serially passaged 60 times in LB
medium, and the presence of the sseK2 deletion was
then assessed by PCR (Fig. 3). The sseK2 deletion was
still detectable in the ΔsseK2 mutant strain, indicating
that this strain has good genetic stability.

Biofilm formation and morphology assay
Biofilm formation is an important aspect of Salmonella
virulence [18–20]. Therefore, we assessed biofilm forma-
tion in the three strains noted above. The results showed
that the ability of the ΔsseK2 mutant to form biofilm
was significantly lower than that of the WT and comple-
mented strains, based on OD570 values (Fig. 4), indicating

that sseK2 is necessary for the formation of biofilm by S.
Typhimurium.

The ΔsseK2 mutant has altered biological activity in vitro
The invasive and adhesive abilities of the sseK2 mutant
and the complemented strain were similar to those of
the WT strain (Table 1). This suggests that sseK2 does
not play an important role in promoting S. Typhimur-
ium attachment to and invasion of host macrophages.
The ΔsseK2 mutant intracellular load increased by 0.5
log over a period of 3.5 h (Fig. 5). In contrast, the intra-
cellular load of the WT and complemented strains in-
creased by 2.3 logs over the same time period. However,
over a 23.5 h period, the number of ΔsseK2 mutant bac-
teria decreased 1.9 logs, whereas the number of WT
bacteria decreased by 2.8 logs. These data show that
there is a significant difference in intracellular prolifera-
tion between the ΔsseK2 mutant and the WT strain (P <
0.05), indicating that SseK2 is required for intracellular
survival of Salmonella in vitro.

The virulence characteristics of the ΔsseK2 mutant in vivo
A mouse model of infection was established to deter-
mine whether sseK2 deletion would alter the virulence
characteristics of S. Typhimurium in vivo. The results
from this experiment are shown in Fig. 6. All of the mice
injected with 2.4 × 106 CFU (colony-forming unit) of the
ΔsseK2 mutant survived, while the 16.7, 50, 33.3 and
83.3% of mice injected with 2.4 × 107, 2.4 × 108, 1.2 × 109

Fig. 1 Identification of the ΔsseK2 mutant by PCR (polymerase chain
reaction). M: marker (DL2000); 1: negative control; 2: WT; 3: single-
crossover ΔsseK2 mutant; 4: double-crossover ΔsseK2 mutant
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or 4.8 × 109 CFU, respectively, died (Fig. 6b). In contrast,
16.7, 50% or 83.3% of mice injected with 2.25 × 106,
2.25 × 105 or 2.25 × 104 CFU, respectively, died (Fig. 6a).
The LD50 values for the ΔsseK2 mutant, the WT strain,
and the complemented strain were 3.44 × 108, 2.12 × 105

and 4.30 × 105 CFU, respectively. All of the mice in nega-
tive control group survived (data not shown).
The number of ΔsseK2 or WT bacteria in the mouse

livers increased to 7.75 logs and 8.35 logs, respectively,
between 4 h and 72 h and then decreased to 5.06 logs
and 5.48 logs, respectively, at 120 h post-infection. This
indicates that the bacterial load of the ΔsseK2 mutant in
the liver had begun to decrease. (Fig. 7a). In the Peyer’s
patches (PPs), the ΔsseK2 mutant and WT loads in-
creased to 7.13 logs and 8.48 logs, respectively, at 4–72
h, but decreased to 4.96 logs and 5.17 logs, respectively,
at 120 h (Fig. 7b). Meanwhile, the ΔsseK2 mutant and
WT loads in the spleen increased to 7.76 logs and 7.98

logs, respectively, between 4 h and 72 h post-infection.
However, they decreased to 5.07 logs and 5.20 logs, re-
spectively, after 120 h post-infection (Fig. 7c).
After 4 h of infection, S. Typhimurium could be recov-

ered form in the liver, spleen, and PPs. At 24 h post-infec-
tion, there was a significant difference in the number of
ΔsseK2 mutant and WT bacteria recovered from the
spleen, liver, and PPs. Moreover, in mice infected with the
complemented strain, the number of bacteria was restored
to the same level as in mice infected with the WT strain
(Fig. 7d, e, f ). The bacterial counts from in the spleen and
liver were significantly lower than those from mice in-
fected with the parental strain 24 h, 48 h, and 72 h post-in-
fection (P < 0.05), but the counts for the complemented
strain were restored to level of the parent strain.

Discussion
The results from this study provide evidence that dele-
tion of sseK2 can significantly reduce the virulence of
Salmonella. The sseK2 deletion significantly decreased

Fig. 2 Growth curves for the WT, ΔsseK2, and complemented strains. All strains were cultured in LB medium. Growth curves were generated by
determining viable cell counts

Fig. 3 PCR identification of ΔsseK2 mutant stability. M: marker
(DL5000); 1–6: PCR- amplified products from the 10th, 20th, 30th,
40th, 50th and 60th passages of the ΔsseK2 mutant; 7: wild-type
Salmonella Typhimurium SL1344; 8: negative control

Fig. 4 Biofilm formation by the WT, ΔsseK2, and complemented
strains. The asterisk (*) indicates statistically significant differences
between the WT, ΔsseK2 and its complemented strains (P < 0.05).
OD570 values for the WT, ΔsseK2 and complemented strains as
determined by crystal violet staining
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biofilm formation, the proliferation in macrophages in
vitro, and the bacterial load in liver and spleen decreased
in vivo infection models, indicating sseK2 is a virulence-
associated gene that plays a vital role in Salmonella
virulence.
SseK2 is a novel translocated S. Typhimurium protein

that is highly conserved among Salmonella strains [10].
However, the function of SseK2 was unknown until now.
Biofilm formation is required for Salmonella to spread
[21, 22]. Salmonella in biofilms are more resistant to
hostile environments than individual bacteria [23, 24]. In
vivo, biofilm formation helps bacteria evade the immune
system and resist antibiotics-mediated killings, thereby
resulting in chronic infection [23, 24]. Biofilm formation
also contributes to the spread of Salmonella in vitro,
because bacteria in biofilms are more resistant to disinfec-
tants and physical stress than individual bacteria [25–27].
The biofilm matrix is mainly composed of curli fimbriae
and cellulose [28]. A few proteinaceous compounds such
as BapA and DksA have been reported to participate in
biofilm formation [28]. We found that the ability of the
ΔsseK2 mutant to form biofilms was significantly de-
creased compared to the WT strain, indicating that the
SseK2 protein could be a novel proteinaceous compound
in biofilms. Furthermore, the ability to form biofilms is an
important virulence factor during Salmonella infection. A

strain of Salmonella that produces biofilm was more viru-
lent in chickens than s non- biofilm-forming strain [29].
Thus, a decreased ability to form biofilms could be in-
volved in the decreased virulence of ΔsseK2 mutant. How-
ever, its influence on the biofilm formation in vivo should
be explored in the future.
However, we did not observe any statistically signifi-

cant difference in adhesion and invasion between the
ΔsseK2 mutant and the WT strain, indicating that, at
least in vitro, Salmonella invasion and adhesion are not
controlled by sseK2. The apparent discrepancy between
the effect of sseK2 deletion on biofilm formation and its
lack of effect on invasion and adhesion may be because
sseK2 is located in SPI-2 [8]. A major function of SPI-2
is to enable intracellular bacterial replication, while the
principal role of the SPI-1 encoded secretion system is
to facilitate bacterial invasion of epithelial cells [30]. Prolif-
eration of the ΔsseK2 mutant in host cells was significantly
reduced by 10− 2-fold compared with the WT strain (Fig. 5).
Thus, sseK2 is necessary for biofilm formation and intracel-
lular proliferation in vitro, but is dispensable for host cell
adhesion and invasion. Interestingly, another protein,
DksA, also plays an important role in biofilm formation but
is dispensable for adhesion [31].
The LD50 of the ΔsseK2 mutant strain was markedly

increased compared with the WT strain. Mice were in-
fected with WT strain, began to die on the third day
post-infection, whereas mice infected with the ΔsseK2
strain began to die on the tenth day post-infection (Fig. 6).
We further tested the ΔsseK2 mutant and WT strains in
BALB/c mice to determine differences in bacterial bur-
dens post-infection. Consistent with our in vitro results,
the LD50 assay showed that the ΔsseK2 mutant developed
a systemic infection more closely than WT strain, indicat-
ing that sseK2 could affect the ability of S. Typhimurium
to establish systemic infection in vivo. Salmonella invades

Table 1 Role of the ΔsseK2, WT and complemented strains in
adherence to and invasion of J774A.1 cells

Strains Percentage adherence
(no.adhered/
no. inoculated)

Percentage invasion
(no.invaded/no.
inoculated)

ΔsseK2 1.63 ± 0.16 2.96 ± 0.12

WT 1.8 ± 0.12 3.40 ± 0.41

Complemented 1.75 ± 0.13 3.1 ± 0.38

Values are mean ± SD

Fig. 5 Intracellular proliferation of the WT, ΔsseK2, and its complemented strains in J774A.1. cells. The WT, ΔsseK2, and complemented strains
were co-incubated with J774A.1. cells, and the number of bacteria was counted at 1, 3.5 and 23.5 h. The asterisk (*) indicates that there was a
statistically significant difference between the WT, ΔsseK2 and complemented strains at 3.5 h compared with 1 h. (P < 0.05)
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multiple organs in mice, such as the liver, spleen, and PPs.
The bacterial loads of the complemented strain were simi-
lar to those of the WT strain in multiple organs, while
bacterial loads of ΔsseK2 mutant were lower than WT in
multiple organs. Furthermore, the ΔsseK2 mutant caused
less tissue damage to the liver, PPs and spleen (data not
shown). These data clearly show that sseK2 may be in-
volved in facilitating bacterial infection and that sseK2
gene contributes to S. Typhimurium virulence.
It is crucial for live attenuated Salmonella vaccines to

effectively confer protection against wild-type S. Typhi-
murium [32]. Therefore, we also evaluated the protective
efficacy of the ΔsseK2 mutant against oral challenge with
SL1344. Only 62.5% mice vaccinated with the ΔsseK2

mutant survived, whereas the control group exhibited
100% mortality (data not shown). Although the ΔsseK2
mutant does not confer enough of a protective effect to
be used as a new attenuated Salmonella vaccines, dele-
tion of the sseK2 gene and other genes could be a good
way to construct a live attenuated vaccine, as deletion of
two or three virulence-related genes is regarded as a
good approach for designing novel attenuated Salmon-
ella vaccine [33–35]. In addition, genetic stability and no
reversion to virulent strain are necessary conditions for
a vaccine candidate [36, 37]. The ΔsseK2 mutant grew
similarly to the WT strain and had a good genetic stabil-
ity over 60 passages, which will be advantageous in de-
veloping novel vaccine.

Fig. 6 Percent survival of mice infected with the WT (a) or ΔsseK2 mutant strain (b). The mice were inoculated by intraperitoneal injection, and
mortality was monitored over 5 weeks
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Conclusions
In summary, we constructed a ΔsseK2 mutant of S.
Typhimurium, and found that lack of sseK2 affects S.
Typhimurium pathogenicity by decreasing its virulence both
in vitro and in vivo. This study provides a new and effective
candidate for developing attenuated Salmonella vaccines.

Methods
Animals, bacterial strains, plasmids and culture conditions
Specific pathogen-free (SPF) BALB/c mice (age, 5–6
weeks; body weight, 20 ± 2 g) were obtained from the ex-
perimental animal center of Henan University of Science
and Technology (Luoyang, China). This study was car-
ried out in accordance with the regulations established
by the Chinese Ministry of Science and Technology. All
animals were subjected to a clinical examination to
assess their physical appearance and the normality of
their behavior, and those presenting signs of disease
were removed. The mice were anesthetized with 20% ur-
ethane (ethyl carbamate) solution by intraperitoneal in-
jection. 5 min later, the anesthetized mice were sacrificed
by cervical dislocation. Then the corresponding animal
experiments were started. All animals were humanely
handled. This work adheres to ARRIVE guidelines (Add-
itional file 1). The study was approved by the Institutional
Animal Care and Use Committee (IACUC) of the College
of Animal Science and Technology, Henan University of
Science and Technology (no. 201706001). All of the ani-
mal experiments were performed in our laboratory.
The bacterial strains and plasmids used in this study are

listed in Table 2. Liquid bacterial cultures were maintained
in LB broth. The J774A.1 Macrophage cell line (Resource
Center, IBMS, CAMS/PUMC 3111C0001CCC000222)

was obtained from the American Type Culture Collection
(ATCC, Manassas, VA). The cells were grown and main-
tained in Dulbecco’s Modified Eagle Medium (Sigma,
China) supplemented with 10% fetal bovine serum (FBS)
(Gibco, China) at 37 °C with 5% CO2.

Construction of the ΔsseK2 mutant and its complemented
strain
The ΔsseK2 mutant was constructed using methods
described previously [40, 41]. The primers are shown in
Table 3. The sseK2 gene was amplified by PCR, and the
recombinant plasmid pBSK-sseK2 containing the sseK2
gene was constructed. The sseK2 gene was deleted in-
frame, and then the recombinant plasmid pRE112ΔsseK2
was constructed and transformed into E. coliχ7213 (λpir)
for mobilization into the WT by conjugation. Single-
crossover transconjugants (in which the recombinant
plasmid pRE112ΔsseK2 was integrated into the chromo-
some) were identified and screened on LB plates con-
taining chloramphenicol. Ten percent sucrose was added
to LB plate without NaCl and with chloramphenicol and
the pRE112 suicide plasmid removed from the single-
crossover transconjugants. Chloramphenicol-sensitive col-
onies were selected, and the sseK2 deletion was screened
for by PCR using primers sseK2-F and sseK2-R. Subse-
quently, DNA sequencing was performed to confirm
whether sseK2 was deleted. The sseK2 gene was cloned
into the pBR322 plasmid for complementation studies.

Growth and phenotypic characterization assay
Growth and phenotypic characterization was performed
as previously described [42]. Three colonies were picked
and inoculated into 10 ml of fresh LB broth, then

Fig. 7 Analysis of WT and ΔsseK2 mutant bacterial loads in the liver (a), PPs (b), and spleen (c) of mice. The asterisk (*) indicates statistically
significant differences between the WT and ΔsseK2 mutant strains (P < 0.05). The virulence of the complemented strain was evaluated based on
the bacterial load in the liver (d), PPs (e), and spleen (f) of mice at 24 h

Zhang et al. BMC Microbiology          (2019) 19:182 Page 6 of 9



incubated overnight at 37 °C. The overnight culture was
diluted 1:100 into fresh LB broth and incubated over-
night at 37 °C with shaking. The overnight cultures were
then, serially diluted and plated to LB medium for plate
counts. The index generation time was calculated based
on the growth rate from 1 to 14 h.

Stability of the ΔsseK2 mutant
To determine the stability of the ΔsseK2 cassette post-
chromosomal integration, a liquid culture of the ΔsseK2
strain (1% inoculum) was serially passaged 60 times
every 12 h. Every 10 passages, DNA extraction for detec-
tion of ΔsseK2 by PCR.

Biofilm formation and morphotype assay
The biofilm formation and morphotype assay was per-
formed as previously described [43]. Briefly, suspension
of the WT, ΔsseK2, and complemented strains were ad-
justed to the same concentration, and at 28 °C for 72 h
in a 96-well cell culture plate without shaking in a hu-
midified environment. Each well of the 96-well plate was
slowly washed three times with PBS (phosphate buffered
saline) (pH 7.0), and then allowed to dry at 37 °C for 30
min. Then, 100 μl of crystal violet (10 mg/ml; Sigma)
was added to each well of the 96-well plate for 30 min.

Subsequently, 100 μl of absolute ethanol was added to
each well, and biofilm formation was measured by deter-
mining the OD (optical density) at 570 nm.

Adherence and invasion assays
Approximately 1 × 105 J774A.1 cells were added to each
well of a 24-well plate. The WT, ΔsseK2 and comple-
mentary strains were then added to the J774A.1 cells at
a multiplicity of infection (MOI) of 100:1. After incuba-
tion for 2 h at 37 °C, each well was washed three times
with PBS. The wells were then treated with 0.25% tryp-
sin, serially diluted, and plated, and colony counts were
performed to determine the number of adhesive cells.
For the invasion assay, 100 μg/ml gentamicin was
added to each well for 1 h at 37 °C, and the cells were
then lysed with 0.1% Triton X-100. To calculated the
invasion rate, serially diluted cell lysates were evenly
plated onto SS (Salmonella Shigella) agar, and the num-
ber of CFUs was determined. The data shown are rep-
resentative of at least three independent experiments
for each strain, which were performed in triplicate.

Intracellular proliferation assay
Approximately 1 × 105 J774A.1 murine macrophage cells
were added to each well of 6-well plates. Subsequently,

Table 2 Bacterial strains and plasmids used in this study

Strain or plasmid Characteristics Source or reference

Strains

SL1344 Serovar Typhimurium, wild-type [38]

SL1344ΔsseK2 sseK2 deletion mutant In this study

χ7213 χ7213, containing plasmid of pREsseK2, Cmr In this study

Plasmids Laboratory stock

pBluescriptIISK (+) Phagemid cloning vector, oriCOLE1 oriF1(+) bla lacZa In this study

pBSKsseK2 pBluescriptIIKSt, sseK2 [39]

pRE112 pGP704 suicide plasmid, pir dependent, oriT, oriV, sacB, Cmr In this study

pREΔsseK2 pRE112 dervative containing ssek2 fused in-frame, Cmr Laboratory stock

pBR322 oriColE1, AmprTcr In this study

pBR322-sseK2 pBR322 carrying the full sseK2gene (Ampr)

Table 3 Sequences of the primers used in this study

Primer Primer sequences Restriction site

ΔsseK2-up-F 5′-TCTAGAATAGAAGAGGCCCAAAGA-3’ Xba I

ΔsseK2-up-R 5′-GGATCCATTTTTACACGCTTAAATTA-3’ BamH I

ΔsseK2-down-F 5′-CTCGAG TCATGATAGCCTTGTTTTAC −3’ Xho I

ΔsseK2-down-R 5′-GGTACC ACACGGCGCACTATTAGA-3’ Kpn I

sseK2- F 5′-ACCACACTAACCAAAGCGCA-3’

sseK2 -R 5′-GCAGAGAATAATGGACCACAT-3’

pBR -sseK2-F 5′-GGATCCATGGCACGTTTTAATGCC-3’ BamH I

pBR -sseK2-R 5′-CTCGACTTACCTCCAAGAACTGGCAG-3’ Sal I
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the cells were infected and the invasion assay was per-
formed as previously described. After incubating for 30
min, the cells were washed three times, 150 μl of fresh
medium containing gentamicin (50 μg/ml) was added
to the wells. Two hours later, the infected cells were
lysed with 1 ml 0.1% Triton X-100 for 10 min. The
number of CFUs was determined by plating the cell ly-
sates on SS agar.

LD50 and persistence assay
Ninety-six (SPF) BALB/c mice were divided randomly
into five subgroups, each of which contained three male
mice and three female mice. Based on the results from
the preliminary study, mice in the ΔsseK2 mutant group
were inoculated orally with 0.2 ml of liquid culture con-
taining of 4.8 × 109, 1.2 × 109, 2.4 × 108, 2.4 × 107or 2.4 ×
106 CFU, the mice in the WT group received 2.25 × 108,
2.25 × 107, 2.25 × 106, 2.25 × 105, or 2.25 × 104 CFU, and
the mice in the complemented group received 2.2 × 108,
2.2 × 107, 2.2 × 106, 1.1 × 105, or 1.1 × 104 CFU. Six of the
mice were inoculated orally with 0.2ml PBS as a negative
control. The LD50 at 35 days post infection was calculated
using the previously established Bliss method [44].
Based on the LD50 result, 32 mice were randomized

to four groups, each group of 4 groups, each of which
contained four male mice and four female mice. On
days 0 and 14, 16 mice were vaccinated with the 0.2 ml
of liquid culture containing 1 × 107 CFU of ΔsseK2
mutant, seven days later, eight mice were orally inocu-
lated with 0.2 ml of liquid culture containing 1 × 107

CFU (lethal dose) of the WT and eight mice received
0.2 ml PBS. At the same time, 16 mice were orally inoc-
ulated with 0.2 ml PBS; seven days later, eight of these
mice received 0.2 ml of liquid culture containing 1 ×
107 CFU (lethal dose) of the WT strain, and eight re-
ceived 0.2 ml PBS.

Bacterial load analysis
Forty-eight mice were divided randomly into three
groups, each of which contained 15 mice. Three of the
mice received an intraperitoneal injection of 0.2 ml PBS
as a negative control. The other mice were infected
with 1 × 105 CFU of the different strains by intraperito-
neal injection and were then killed at different time
points (4 h, 24 h, 48 h, 72 h and 120 h). The spleen, liver,
and PPs were collected from each mouse and homoge-
nized in PBS. All samples were then serially diluted and
evenly spread onto SS agar. The number of CFUs for
each sample was determined 24 h later. For this animal
experiment, the mice were anaesthetized with a 20% ur-
ethane (ethyl carbamate) solution. All animals were hu-
manely handled.

Statistical analysis
The data are showed as mean ± standard deviation (SD)
and are representative of three independent experiments.
One-way ANOVA was employed to identify the signifi-
cant differences between the groups using the GraphPad
Prism software version 5.0. A value of P < 0.05 was con-
sidered significant.

Additional file

Additional file 1: ARRIVE guidelines. (PDF 191 kb)
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