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Abstract: N-Myc downstream-regulated 1 (NDRG1) has inconsistent oncogenic functions in various
cancers. We surveyed and characterized the role of NDRG1 in head and neck cancer (HNC). Cellular
methods included spheroid cell formation, clonogenic survival, cell viability, and Matrigel invasion
assays. Molecular techniques included transcriptomic profiling, RT-qPCR, immunoblotting, in vitro
phosphorylation, immunofluorescent staining, and confocal microscopy. Prognostic significance was
assessed by Kaplan–Meier analysis. NDRG1 participated in diverse oncogenic functions in HNC
cells, mainly stress response and cell motility. Notably, NDRG1 contributed to spheroid cell growth,
radio-chemoresistance, and upregulation of stemness-related markers (CD44 and Twist1). NDRG1
facilitated cell migration and invasion, and was associated with modulation of the extracellular matrix
molecules (fibronectin, vimentin). Characterizing the 3R-motif in NDRG1 revealed its mechanism
in the differential regulation of the phenotypes. The 3R-motif displayed minimal effect on cancer
stemness but was crucial for cell motility. Phosphorylating the motif by GSK3b at serine residues led
to its nuclear translocation to promote motility. Clinical analyses supported the oncogenic function of
NDRG1, which was overexpressed in HNC and associated with poor prognosis. The data elucidate
the multifaceted and intricate mechanisms of NDRG1 in HNC. NDRG1 may be a prognostic indicator
or therapeutic target for refractory HNC.

Keywords: NDRG1; head and neck cancer; cancer stemness; cell motility; 3R-motif; prognosis

1. Introduction

Head–neck cancer (HNC) is one of the most prevalent cancers worldwide, accounting
for approximately 5% of all cancers, according to GLOBOCAN 2020 estimates [1]. The stan-
dard treatment methods for HNC include surgery, radiotherapy, and chemotherapy alone
or in combination. Although treatment strategies have advanced in the last few decades,
the prognosis of patients with HNC has not significantly improved [2]. To investigate
the molecular carcinogenesis of HNC, our laboratory previously performed differential
display analysis to search for genes with an altered expression between normal and cancer
tissues. Among all dysregulated genes, N-myc downstream-regulated gene 1 (NDRG1) was
overexpressed in cancer tissues to the greatest extent, suggesting a significant role for this
molecule in HNC formation [3]. Cancer metastasis and recurrence after chemoradiotherapy
are the significant causes of treatment failure. Interestingly, patients with radioresistant or
recurrent cancers often have a higher rate of metastasis [4,5]. Similarly, highly invasive can-
cers with nodal metastasis are often accompanied by a poor radiotherapeutic response [4,5].
Recently, an association between cell invasion and radioresistance was demonstrated. These
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two malignant attributes share phenotypic crosstalk, and several molecules with both func-
tions have been identified [6]. To analyze metastatic and radioresistant molecules globally,
we employed cDNA microarrays to determine differential transcriptomic profiles. One
of the hub genes, N-myc downstream-regulated gene 1 (NDRG1), has been related to cell
invasion and radioresistance [6], indicating its potential crucial function in the pathological
mechanism of HNC. Nevertheless, the regulation of malignancy in HNC by this molecule
has not yet been elucidated.

NDRG1 was first identified in 1996 and is a reducing agent and tunicamycin-responsive
protein (RTP) [7]. In 1998, several groups reported the discovery of the gene. One group
named the gene Cap43 (calcium-activated protein, 43 kDa), reflecting its induction after
cells are exposed to metal ions [8]. Other groups called this gene rit42 (reduced in the
tumor, 42 kDa) or Drg1 (differentiation-related gene 1), indicating that the downregulation
of this gene is associated with a malignant phenotype [9]. Later, this gene was found
to be homologous to two mouse genes, TDD5 and Ndr1, and was widely distributed in
a pattern similar to that in other species, such as plants and roundworms [10]. There-
fore, RTP/Drg1/Cap43/rit42/TDD5/Ndr1 is thought to be evolutionarily conserved in
humans, mice, rats, roundworms, and plants, respectively. In humans, this gene is widely
expressed in many tissues and is thought to have essential functions [11]. In 2004, the
Human Nomenclature Committee (HUGO) officially unified all designations of this gene
as NDRG1.

NDRG1 is localized on human chromosome 8q24.3 and is expressed as a 3.0 kb mRNA,
including a 1182 bp open reading frame. It is translated into 394 amino acids, comprising a
43 kDa protein [9]. NDRG1 is distributed mainly in the cytoplasm [10] but is also associ-
ated with the cellular membrane or nucleus [11,12]. This molecule reportedly participates
in diverse cellular functions, including embryonic development, cellular differentiation,
genomic stability, metabolism, apoptosis, and autophagy [9–19]. It is also considered a gen-
eral stress-responsive gene because it can be induced by several stimuli, such as chemicals,
metal ions, DNA damage, endoplasmic reticulum stress, or cellular hypoxia [20–23].

Reports on the role of NDRG1 in modulating tumor development have been incon-
sistent. NDRG1 may act as an oncogene, as it is overexpressed in many types of cancers,
including oral, esophageal, gastric, colon, liver, lung, and bladder cancer [23–32]. The
major oncogenic function of NDRG1 is its role in promoting cellular motility, which en-
hances cell invasion, migration, or angiogenesis [26–33]. Other oncogenic functions of
NDRG1 have been reported, including facilitation of tumorigenesis (cell growth/tumor
initiation/stemness conversion) [34–37] and increasing radio-chemoresistance [19,38–42].
Paradoxically, NDRG1 is also a putative tumor suppressor as it is downregulated in sev-
eral types of cancers, such as prostate, renal, pancreatic, and endometrial cancer, and
neuroblastoma [43–46]. Several tumor-suppressive functions of NDRG1 have been re-
ported, including the reduction in cellular motility (invasion/migration) [44–51], sup-
pression of tumorigenesis (cell growth/stemness conversion) [43,50–52], and induction
of apoptosis [16,17]. Therefore, NDRG1 may play diverse roles in modulating malignant
formation that may depend on a specific tissue type or may have differential roles un-
der certain cellular conditions. However, the function of NDRG1 in HNC has not yet
been addressed.

In this study, we surveyed the molecular roles of NDRG1 via transcriptomic analysis
in HNC cells. The data reveal that it mainly regulates cancer stemness and cell motility.
We further characterized an NDRG1-specific domain, the 3R motif, and discovered a
deterministic mechanism in the differential regulation of these phenotypes. We defined the
clinical role of NDRG1 as an oncogene because it is overexpressed in tumor tissues and is
associated with poor prognosis in patients with HNC. These data elucidate the intricate
mechanisms of NDRG1 in cancer cells and implicate this molecule as a prognostic indicator
for HNC.
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2. Materials and Methods
2.1. Cell Lines and Cellular Transfection

OECM1, SAS, and FaDu HNC cell lines were used. These cell lines were easy to
maintain and efficient in plasmid transfection. The cell culture conditions were the same
as previously described [53–55]. OECM1 cells were cultured in RPMI-1640 medium, SAS
cells in Dulbecco’s modified Eagle medium (DMEM), and FaDu cells in MEM. Cellular
transfection was performed as previously described [53–55]. Briefly, cells were transfected
with an NDRG1-specific plasmid or the vector plasmid using Lipofectamine 2000 (Invit-
rogen, Carlsbad, CA, USA), followed by incubation in Opti-MEM (Invitrogen, Carlsbad,
CA, USA) for 12 h. The cells were continuously cultured in a complete medium. To clone
stably transfected cells, the neomycin reagent, a G418 antibiotic solution (Sigma-Aldrich,
St. Louis, MO, USA), was used to select stably transfected cell lines.

2.2. Construction of Full-Length and Truncated NDRG1 Expression Plasmids

To construct the full-length plasmid of NDRG1 (NDRG1-FL), the NDRG1 open read-
ing frame was prepared from cDNA from the OECM1 cancer cell line by PCR (forward:
5′-atg-tct-cgg-gag-atg-cag-ga-3′; reverse: 5′-cta-gca-gga-gac-ctc-cat-g-3′) and cloned into
the pGEM-T Easy vector (Promega, Madison, WI, USA). The NDRG1 cDNA sequence
was subcloned into the pEGFP-C1 vector, which contained an in-frame sequence for en-
hanced green fluorescent protein (EGFP). An expression plasmid containing the NDRG1
deleted C-terminal domain (NDRG1-dC) was prepared from the NDRG1-FL plasmid
by PCR (forward: 5′-ccc-aag-ctt-atg-tct-cgg-gag-atg-cag-gat-3′; reverse: 5′-cg-gga-tcc-cag-
aga-agt-gac-gct-gga-acc-a-3′). The PCR product was digested with HindIII and BamHI,
and subcloned into the pEGFP-C1 vector. An expression plasmid for NDRG1 with three
point mutations (S342A, S352A, and S362A) in its C-terminal region (NDRG1-3mt) was
prepared from the NDRG1-FL plasmid via point mutagenesis and subcloned into the
pEGFP-C1 vector.

The NDRG1-3mt plasmid with triple point mutations of NDRG1 were synthesized
using QuickChange site-directed mutagenesis kit (Stratagene, La Jolla, CA, USA). We
applied three times of point mutagenesis experiments to generate a triple mutation con-
struct in the S342A, S352A, and S362A. Briefly, this mutant construct was generated from
NDRG1-FL plasmid by standard PCR reaction using the wild-type dsDNA as a tem-
plate and three pairs of mutant primers (S342A forward: 5′-gatggcacccgcgctcgctcccaca-3′,
reverse: 5′-gatggcacccgcagccgctcccaca-3′; S352A forward: 5′-agggcacccgagctcgctcccacac-3′,
reverse: 5′-gtgtgggagcgagctcgggtgccct-3′; S362A forward:5′-agggcacccgcgctcgctcgcacac-3′,
reverse: 5′-gtgtgcgagcgagcgcgggtgccct-3′). After PCR amplification by PfuUltra HF DNA
polymerase, the Dpn I restriction enzyme was added to digest the wild-type dsDNA tem-
plate. Finally, the Dpn I-treated DNA was transformed into competent cells to produce
NDRG1-3mt plasmid.

2.3. Transcriptomic and Bioinformatic Analyses in a Global Survey of Molecular Functions

After transfection of the full-length NDRG1 (NDRG1-FL) or the vector plasmids
into OECM1 cells, the differential transcriptomes between NDRG-FL and the vector were
determined using Exon array analysis. The biotinylated oligonucleotide was hybridized
to Affymetrix Gene Chip ™ Human Exon 1.0 ST array chip (Affymetrix, Santa Clara, CA,
USA) and scanned by an Affymetrix Gene Array 2500 scanner (Affymetrix, Santa Clara, CA,
USA). The microarray raw signal intensities were imported into Partek® Genomics Suite
v6.3 (Partek, St. Louis, MO, USA) and normalized using the robust multiarray averaging
(RMA) algorithm. After scaling and applying threshold and ceiling values (floor 20, ceiling
20,000), the RMA normalized data were analyzed using the analysis of variance (ANOVA)
to determine samples based on the two-fold change. The two-fold change was set as the
threshold for screening differentially expressed genes (DEGs) by comparing the vector
control cells to the NDRG1-overexpressed cells using the analysis of variance (ANOVA).
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To globally survey the differential transcriptome, we used the two-over-representation
analysis, such as GO and KEGG, to identify the specific functional mechanism of NDRG1
based on the downstream network molecules and specific pathways. Furthermore, to
determine significant, concordant differences between two biological phenotypes, we
performed the GSEA analysis to uncover what specific phenotypes were predominant in
NDRG1 overexpressed in the OECM1 cells by the annotated gene sets. To study the function
of molecules and pathways, the DEGs list was uploaded to the Database for Annotation,
Visualization, and Integrated Discovery (DAVID) website (https://david-d.ncifcrf.gov/,
accessed on 14 February 2021), including Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analyses. Pie plots of functional categories were
generated using GO analysis. According to the KEGG database, functional pathways were
identified for enrichment bubble plots of the functional pathway. Functional pathways were
identified according to the KEGG database for enrichment bubble plots of the functional
pathway [53]. For gene set enrichment analysis (GSEA; http://software.broadinstitute.
org/gsea/index.jsp, accessed on 6 May 2021), the DEGs profile was used as a gene set for
enrichment analysis to identify a statistically significant phenotype. The samples were
first divided into vector control groups and NDRG1-overexpressed groups according to
the transfection conditions. Then, the C2 curated gene set (c2.all.v7.4.symbols.GMT) was
downloaded from the Molecular Signatures Database (MSigDB). This collection was used
as a reference gene set for GSEA software.

2.4. Assessment of Cancer Stemness by Spheroid Cell Formation

Cancer stemness was assessed based on the ability to form spheroids as previously
described [54–56]. Briefly, the cells were diluted as a suspension (1000 cells/mL) in a culture
medium containing DMEM/F12 medium supplemented with 10 ng/mL epidermal growth
factor (EGF; Invitrogen, Carlsbad, CA, USA) and 10 ng/mL basic fibroblast growth factor
(bFGF; Invitrogen, Carlsbad, CA, USA), N-2 supplement (Invitrogen, Carlsbad, CA, USA),
B-27 supplement (Invitrogen, Carlsbad, CA, USA), and 1% Matrigel (BD Biosciences, San
Jose, CA, USA). Subsequently, 1 mL of the cell suspension was plated in each well of a
Costar® 24-well ultra-low attachment plate (CORNING, Corning, NY, USA). After 10 days,
cell spheres were visualized and enumerated.

2.5. Determination of Radiosensitivity and Chemosensitivity

Radiosensitivity and chemosensitivity were determined using clonogenic survival
and viability assays based on MTS, as previously described [54–56]. The MTS assay was
performed to assess chemosensitivity using the CellTiter 96 Aqueous One Solution Cell
Proliferation Assay kit (Promega, Madison, WI, USA). Briefly, the cells seeded in the 96-well
plate were treated with serial concentrations of cisplatin. After 48 h of incubation, MTS
reagent was added to each well, and the cell viability was determined by the absorbance at
490 nm under a multimode microplate reader (Molecular Devices, San Jose, CA, USA). To
determine radiosensitivity, cells were seeded in a 6-well cell culture plate for 8 h. The cells
were then exposed to radiation (0–6 Gy) and continuously cultured for 7–14 days to allow
cell colony formation. The cell colonies were stained with crystal violet, and the survival
fraction was calculated as the number of colonies divided by the number of seeded cells
multiplied by plating efficiency. To measure chemosensitivity, the cells were treated with
various concentrations (0–5 µg/mL) of cisplatin and maintained in the culture medium for
two days. The number of surviving cells was counted and compared with that of untreated
surviving cells.

2.6. Analyses of Cell Invasion and Migration

Cell invasion was determined using a Matrigel invasion assay as previously described [54–56].
Briefly, the membrane in the upper chamber of a Millicell apparatus (Millipore, Burling-
ton, MA, USA) was coated with Matrigel (BD Biosciences, San Jose, CA, USA). Cells in
a medium containing 1% fetal bovine serum (FBS) were seeded into the upper chamber,

https://david-d.ncifcrf.gov/
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while the lower chamber contained 20% FBS in the medium to attract invading cells. After
incubation, the cells that had passed through the membrane to invade the reverse side
were stained and photographed. Cell migration was examined using an in vitro wound
healing assay as previously described [54–56]. Briefly, the cells were seeded in an ibidi®

culture insert (Applied BioPhysics, Inc., Troy, NY, USA) on top of a 6-well plate. After 12 h
of incubation, the culture insert was detached to form a cell-free gap in the monolayer.
After changing to a culture medium containing 1% FBS, cell migration into the gap was
photographed every 8 h.

2.7. RNA Extraction and RT-qPCR Analysis

RNA extraction and cDNA synthesis were performed as previously described [56,57].
Briefly, PCR and cDNA synthesis were performed using a MiniOpticon™ real-time PCR
detection system with SYBR Green Supermix reagents (Bio-Rad Lab., Hercules, CA, USA).
The qPCR amplification reactions were carried out with 35 cycles of denaturation at 95 ◦C
for 15 s, annealing at 55 to 60 ◦C for 30 s, and extension at 72 ◦C for 1 min. Primers used in
this study are listed in Supplementary Table S1.

2.8. Protein Extraction, Subcellular Fractionation, and Western Blot Analysis

Protein extraction and Western blot analyses were performed as previously described [57,58].
Briefly, cellular proteins were extracted or fractionated subcellularly via the NE-PER nu-
clear and cytoplasmic extraction reagent (Thermo Fisher Scientific, Waltham, MA, USA).
Proteins were separated by SDS-PAGE and transferred onto nitrocellulose membranes.
After hybridization with primary antibodies and a secondary antibody conjugated with
horseradish peroxidase, the membranes were developed using an ECL reagent (EMD Milli-
pore, Darmstadt, Germany), followed by autoradiography. Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) level was used as an internal control. The relative density of
each sample was determined after normalization to GAPDH levels. All the antibodies used
in this study are listed in Supplementary Table S2.

2.9. Immunofluorescence Analysis and Confocal Microscopic Examination

Immunofluorescence and confocal microscopy were performed as previously described [56–58].
Briefly, EGFP-fused NDRG1-expressing cells were grown on coverslips coated with poly-l-
lysine, fixed in paraformaldehyde, permeabilized, and blocked with FBS. After fixation, the
cells were mounted with a mounting medium containing DAPI fluorescent dye (Vectashield
H-1200; Vector Lab, Burlingame, CA, USA). Immunofluorescence was visualized using an
LSM 510 META confocal microscope (Zeiss Microscopy GmbH, Jena, Germany).

2.10. Immunoprecipitation, Kinase Assay, and In Vitro Assessment of Phosphorylation

Glycogen synthase kinase 3-beta (GSK3b) kinase inhibitor (SB216763) was purchased
from Sigma-Aldrich. To determine the phosphorylation status of NDRG1, immunoprecipi-
tation was used to pull down the NDRG1 protein, followed by an in vitro phosphorylation
assay, similarly as previously described [57–59]. Briefly, Protein A/G PLUS-agarose beads
(Santa Cruz Biotechnology, Dallas, TX, USA) with an anti-GFP antibody were used to
precipitate NDRG1 proteins. After elution of the immunoprecipitated complex, the protein
solution was subjected to an in vitro kinase assay by incubation with recombinant GSK3b
protein (Sigma-Aldrich, St. Louis, MO, USA) in a solution containing ATP. Phosphory-
lated proteins were subjected to SDS-PAGE analysis, and the phosphorylation status of
NDRG1 was determined by hybridization with an anti-phosphoserine antibody (Abcam,
Cambridge, UK). Alternatively, NDRG1-FL- or NDRG1-Dc-transfected cells were treated
with GSK3b-specific inhibitor (SB21673) at various doses for 24 h. Cellular proteins were ex-
tracted and subjected to a pulldown assay with an anti-GFP antibody. The phosphorylation
status of NDRG1 was revealed by phospho-serine-specific immunoblotting.
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2.11. Clinical Tissue Expression and Prognostic Evaluation of NDRG1 in Patients with HNSC

The Cancer Genome Atlas (TCGA)-HNSC cohort was used for the clinical analysis.
The GEPIA2 platform (http://gepia2.cancer-pku.cn/#index, accessed on 4 May 2021) was
used to compare the transcript levels of NDRG1 in HNSC tumors (N = 519) and normal
tissues (N = 44). The KM-Plotter online tool (http://kmplot.com/analysis, accessed on
4 May 2021) was used to determine the prognostic significance of NDRG1 in patients
with HNSC (N = 500). High- and low-risk groups were classified using an optimization
algorithm in the order of the prognostic index, according to the gene expression level.
Kaplan–Meier analysis was performed to evaluate the overall survival at the five-year
(60 months) follow-up. The hazard ratios (HRs) with 95% confidence intervals (CIs) and log-
rank p-values were calculated using the Kaplan–Meier method and Cox regression analysis.

3. Results
3.1. Transcriptomic Analysis Reveals NDRG1 Participation in Diverse Oncogenic Functions

To survey the molecular functions of NDRG1 globally, transcriptomic and functional
pathway analyses were performed using microarray and bioinformatics methods. After
transfection of the full-length NDRG1 (NDRG1-FL) plasmid into HNC cells (OECM1, SAS,
and Fadu), the NDRG1 protein expression was determined by Western blot analysis. As
shown in Figure 1a, NDRG1 was substantially increased in all cell lines, indicating a suc-
cessful transfection of these plasmids. Furthermore, NDRG1 overexpressed cells exhibited a
mesenchymal-like, spindle, or fibroblast morphological alteration compared to the parental
OECM1 cells with the epithelial-like morphology (Figure 1b). This result implied that the
mechanism of epithelial-to-mesenchymal transition may be partially involved.

The differential transcriptomes were determined using Affymetrix Exon array anal-
ysis in OECM1 cells. The exon array data of NDRG1-FL were compared with those of
vector transfectants by a two-fold change in expression by ANOVA analysis. A total of
1109 DEGs were identified, including 475 upregulated and 634 downregulated genes. The
top 50 upregulated and 50 downregulated genes are shown in Supplementary Table S3.

These genes were subjected to DAVID analysis for gene annotation and network
pathway analysis. NDRG1 participated in a wide range of cellular functions, including
the growth (20%), migration/invasion (12%), stress response (10%), signal transduction
(10%), and development/differentiation (8%) (Figure 1b). GO analysis revealed the role
of NDRG1 in stress response mechanisms that included DNA replication and repair, cel-
lular apoptosis, drug resistance, molecular signaling, and stemness (Figure 1c). GSEA
analysis confirmed that NDRG1 was significantly enriched in these malignant-related
phenotypes, such as regulation of stemness (p < 0.001) and epithelial-to-mesenchymal
transition (p < 0.001) (Figure 1d). These results suggested that NDRG1 participates in a
wide range of oncogenic functions.

http://gepia2.cancer-pku.cn/#index
http://kmplot.com/analysis
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The GAPDH level was used as an internal control. (b) The morphology of OECM1 cells transfected 
with vector or the NDRG1-FL plasmids, scale bar 20 μm. (c) The transcriptomic and bioinformatic 
analyses for the overexpression of NDRG1 in OECM1 cells. Affymetrix Exon array was performed, 
and the differential expressed genes (DEGs) were identified by ANOVA analysis with the two-fold 
change in the gene expression level. Distribution of NDRG1 regulated downstream molecules with 
functional category, as determined by GO analysis from DAVID website. (d) The most significant 
KEGG functional pathways are regulated by NDRG1, as determined by KEGG enrichment analysis 
from the DAVID website. (e) GSEA analysis of the stemness property and invasion phenotype in 
vector control or NDRG1 overexpressed in the OECM1 cells. 
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Figure 1. Global survey of molecular mechanisms reveals NDRG1 functions mainly in the regulations
of stemness property and invasion phenotype. (a) Successful transfection of NDRG1-FL in three
HNC cell lines. After transfection of NDRG1 overexpression (FL) or the vector control (Vt) plasmid
into HNC cell lines (OECM1, SAS, and FaDu), the NDRG1 protein expression was determined
by Western blot analysis. Because the EGFP protein sequence was fused in-frame in the NDRG1
expressing plasmids, the NDRG1 protein in Western blot gel appeared by two bands: the lower
one of the endogenous cellular NDRG1 and the higher one of the transfected NDRG1 protein. The
GAPDH level was used as an internal control. (b) The morphology of OECM1 cells transfected
with vector or the NDRG1-FL plasmids, scale bar 20 µm. (c) The transcriptomic and bioinformatic
analyses for the overexpression of NDRG1 in OECM1 cells. Affymetrix Exon array was performed,
and the differential expressed genes (DEGs) were identified by ANOVA analysis with the two-fold
change in the gene expression level. Distribution of NDRG1 regulated downstream molecules with
functional category, as determined by GO analysis from DAVID website. (d) The most significant
KEGG functional pathways are regulated by NDRG1, as determined by KEGG enrichment analysis
from the DAVID website. (e) GSEA analysis of the stemness property and invasion phenotype in
vector control or NDRG1 overexpressed in the OECM1 cells.

3.2. NDRG1 Contributes to Cancer Stemness and Leads to Chemo-Radioresistance

Cancer stemness is characterized by stress tolerance and resistance [60,61]. The tran-
scriptomic analysis data indicated that NDRG1 fulfills the attributes of cancer stemness. To
confirm the potential effect of this molecule, we transfected the NDRG1-FL plasmid into
HNC cells and determined the specific cancer stemness ability presented by spheroid cell
formation. As shown in Figure 2a, overexpression of NDRG1 significantly promoted cancer
stemness in the two HNC cell lines, as observed by the increase in the number and size of
the cellular spheres (p < 0.001 in OECM1 cells and p < 0.01 in FaDu cells).
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in HNC cells, as determined by clonogenic survival assay. The error bars shown in the relevant
figures indicate the standard deviation of the quantification results in the experiments. (*** p < 0.001;
ANOVA test). (c) NDRG1 protected cisplatin-induced cell death, as determined by the MTS assay.
(d,e) OECM1 and FaDu cells were transfected with NDRG1-FL or vector control and cells were
collected for RT-qPCR analysis (d) or the cellular proteins were extracted and subjected to Western
blot analysis and determination of protein expressions by antibodies (e). The GAPDH was used
as an internal control. All the experiments were performed three times independently and typical
results were shown. The error bars shown in the relevant figures indicate the standard deviation of
the quantification results in all experiments. (* p < 0.05; ** p < 0.01; *** p < 0.001; n.s., no significance;
t-test).

Since radioresistance and chemoresistance are concurrent presentations of cancer
stemness [60,61], we examined whether NDRG1 also regulates these functions. A clono-
genic survival assay was performed to assess the effect of radiosensitivity. As shown in
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Figure 2b, NDRG1 overexpression led to higher resistance to irradiation in two tested cell
lines (p < 0.001 at 6 Gy in both OECM1 and FaDu cell lines). The MTS survival assay was
performed to determine the effect of cisplatin treatment on chemosensitivity. As shown in
Figure 2c, NDRG1 overexpression resulted in higher drug resistance (p < 0.001 at 3 µg/mL
in OECM1 cells and 5 µg/mL in FaDu cells).

To extend the cellular effect of NDG1 to molecular presentations, we determined the
expression of cancer stemness-associated regulators (ABCG2, Twist1, BMI1, NES, c-Met) in
NDRG1-FL-transfected HNC cells. RT-qPCR was performed to examine mRNA expression
status. Although there were various levels in the two HNC cell lines, these molecules were
generally elevated in response to NDRG1 transduction (Figure 2d). The protein levels
of CD44 and Twist1 were confirmed by Western blot analysis, which showed significant
elevation in response to NDRG1 transduction (Figure 2e). The collective findings indicated
that NDRG1 contributes to cancer stemness and chemo-radioresistance, which may be
related to several stemness regulators.

3.3. NDRG1 Facilitates Cell Motility via Modulation of Extracellular Matrix (ECM)

To examine the potential effect of NDRG1 on cell motility, in vitro wound healing
and Matrigel invasion assays were performed. As shown in Figure 3a, transfection with
NDRG1-FL promoted cell migration, with a 1.8–2.7-fold increase observed in the three HNC
cell lines. Similarly, overexpression of NDRG1 facilitated cell invasion, with a 1.3–2.5-fold
increase observed in all HNC cell lines (Figure 3b). Conversely, silencing NDRG1 inhibited
cell migration and invasion in OECM1 cells (Supplement Figure S1).
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Figure 3. NDRG1 promoted cell motility via ECM mechanism. (a) NDRG1 facilitated cell migration
in HNC cells. After seeding the NDRG1 overexpression (FL) or vector control (Vt) transfected cells
into ibidi culture inserts for 8 h, cells were subjected to wound healing migration analysis. (b) NDRG1
increased cell invasion in HNC cells. After seeding the NDRG1 overexpression (FL) or vector control
(Vt) transfected cells into Matrigel-coated membranes for 30 h, the cells were subjected to a Matrigel
invasion assay. (c,d) OECM1 and FaDu cells were transfected with NDRG1-FL or vector control and
cells were collected for RT-qPCR analysis (c) or the cellular proteins were extracted and subjected
to Western blot analysis and determination of protein expressions by antibodies (d). The GAPDH
was used as an internal control. All the experiments were performed three times independently
and typical results were shown. The error bars shown in the relevant figures indicate the standard
deviation of the quantification results in all experiments. (* p < 0.05; ** p < 0.01; *** p < 0.001; t-test).

To extend the molecular presentation, we examined the expression of ECM-associated
molecules, including fibronectin, vimentin, and N-cadherin. The RT-qPCR and Western
blot methods were used to determine the expression levels of mRNA and proteins. These
molecules were significantly upregulated at various levels in response to NDRG1 transduc-
tion in the two tested cell lines at both the mRNA (Figure 3c) and protein levels (Figure 3d).
These results suggest that NDRG1 promotes cell motility in HNC cells via modulation of
the ECM-related pathways.

3.4. 3R-Motif of NDRG1 Has Minimal Effect on Cancer Stemness

NDRG1 belongs to the NDRG gene family, which comprises an α/β hydrolase fold
region. This region has been widely examined by several investigators previously. The
C-terminal region of the NDRG1 protein contains a unique three-tandem-repeat (3R) motif
comprised of a 10 amino acid sequence (GTRSRSHTSE) [11]. However, the molecular
function of the 3R motif has not yet been examined. Thus, we characterized this unique
structure and delineated its role in malignant-related phenotypes. To examine whether
this motif plays a biological role, we constructed a plasmid expressing an NDRG1 isoform
with a C-terminal deletion (NDRG1-dC) (Figure 4a). After transfection and expression
confirmation of the protein levels by the Western blot method in the two HNC cell lines
(Figure 4b), the effects of C-terminal deletion on the functions of cancer stemness and cell
motility were examined.

Cells 2022, 11, x FOR PEER REVIEW 12 of 24 
 

 

 

 
Figure 4. NDRG1-3R motif has minimal effect on cancer stemness. (a) Illustration of various NDRG1 
truncated forms of EGFP tagged plasmid constructs (NDRG1-FL and NDRG1-dC). NDRG1-FL is 
composed of 394 amino acids; NDRG1-dC is composed of 337 amino acids, which lost the 3R motif. 
The mutations of GSK3b phosphorylation site of NDRG1 (NDRG1-3mt) are located at the 3R motif, 
which was made by triple serine-to-alanine substitutions (S342A, and S352A and S362A). (b) 
Confirmation of the various NDRG1 truncated forms’ expressions by Western blot analysis. After 
transfection of the NDRG1-FL, NDRG1-dC, or the vector plasmid into HNC cells, cellular proteins 
were extracted and subjected to Western blot analysis for NDRG1 expression. (c) Deletion of the C-
terminal domain has no influence on NDRG1-induced cancer stemness. After transfection of the 
NDRG1-FL, NDRG1-dC, or the vector plasmid into HNC cells, the effect of NDRG1 on stem-like 

Figure 4. Cont.



Cells 2022, 11, 1581 11 of 22

Cells 2022, 11, x FOR PEER REVIEW 12 of 24 
 

 

 

 
Figure 4. NDRG1-3R motif has minimal effect on cancer stemness. (a) Illustration of various NDRG1 
truncated forms of EGFP tagged plasmid constructs (NDRG1-FL and NDRG1-dC). NDRG1-FL is 
composed of 394 amino acids; NDRG1-dC is composed of 337 amino acids, which lost the 3R motif. 
The mutations of GSK3b phosphorylation site of NDRG1 (NDRG1-3mt) are located at the 3R motif, 
which was made by triple serine-to-alanine substitutions (S342A, and S352A and S362A). (b) 
Confirmation of the various NDRG1 truncated forms’ expressions by Western blot analysis. After 
transfection of the NDRG1-FL, NDRG1-dC, or the vector plasmid into HNC cells, cellular proteins 
were extracted and subjected to Western blot analysis for NDRG1 expression. (c) Deletion of the C-
terminal domain has no influence on NDRG1-induced cancer stemness. After transfection of the 
NDRG1-FL, NDRG1-dC, or the vector plasmid into HNC cells, the effect of NDRG1 on stem-like 

Figure 4. NDRG1-3R motif has minimal effect on cancer stemness. (a) Illustration of various NDRG1
truncated forms of EGFP tagged plasmid constructs (NDRG1-FL and NDRG1-dC). NDRG1-FL is
composed of 394 amino acids; NDRG1-dC is composed of 337 amino acids, which lost the 3R
motif. The mutations of GSK3b phosphorylation site of NDRG1 (NDRG1-3mt) are located at the
3R motif, which was made by triple serine-to-alanine substitutions (S342A, and S352A and S362A).
(b) Confirmation of the various NDRG1 truncated forms’ expressions by Western blot analysis. After
transfection of the NDRG1-FL, NDRG1-dC, or the vector plasmid into HNC cells, cellular proteins
were extracted and subjected to Western blot analysis for NDRG1 expression. (c) Deletion of the
C-terminal domain has no influence on NDRG1-induced cancer stemness. After transfection of the
NDRG1-FL, NDRG1-dC, or the vector plasmid into HNC cells, the effect of NDRG1 on stem-like
property was determined by spheroid cell formation. (d) Deletion of the C-terminal domain has no
significant influence on NDRG1-induced radioresistance compared to NDRG1-FL, as determined by
clonogenic survival assay in OECM1 cells. The error bars shown in the relevant figures indicate the
standard deviation of the quantification results in the experiments. (* p < 0.05; n.s., no significance;
ANOVA test). (e) After transfection of the NDRG1-FL, NDRG1-dC, or the vector plasmid into OECM1
cells, RNA was extracted and subjected to RT-qPCR analysis for cancer stemness markers. All the
experiments were performed three times independently and typical results were shown. The error
bars shown in the relevant figures indicate the standard deviation of the quantification results in all
experiments. (* p < 0.05; ** p < 0.01; *** p < 0.001; n.s., no significance; t-test).

The effects on cancer stemness are shown in Figure 4c. Spheroid cell formation was
significantly increased in response to NDRG1-FL transfection. This ability was also ob-
served in NDRG1-dC transfectants, suggesting that the 3R-motif of NDRG1 has a negligible
effect on cancer stemness. Similar results were observed for NDRG1 in radioresistance. As
shown in Figure 4d, transduction with NDRG1-FL promoted radioresistance in OECM1
cells. This effect existed even without the C-terminal domain, indicating a minimal effect
of the 3R-motif on cancer stemness.
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The molecular regulation of cancer stemness-related biomarkers/regulators (BMI1,
NES, and c-Met) was also examined in OECM1 cells. As shown in Figure 4e, transduction
with NDRG1-dC, similar to that with NDRG1-FL, substantially induced the expression of
these molecules. These molecular results support the cellular investigations that NDRG1
contributes to cancer stemness with a minor role by its 3R-motif.

3.5. 3R-Motif of NDRG1 Is Critical for Cell Motility

The effect of the 3R-motif on cell motility was examined by transduction of NDRG1-dC
into HNC cells. In the cell migration assay, migration was significantly increased upon
NDRG1-FL transfection in all three tested cell lines (Figure 5a). However, this increase was
diminished upon deprivation of the 3R-motif in NDRG1-dC transfectants. Similar results
for cell invasion were observed (Figure 5b). Cell invasion was promoted by NDRG1-FL
but was abolished in NDRG1-dC transfectants. These cellular results were supported by
molecular presentations (Figure 5c). The ECM-related molecules fibronectin, vimentin, were
significantly upregulated by NDRG1-FL but were not induced by NDRG1-dC (Figure 5c).
These results suggest that NDRG1 facilitates cell motility, and that its 3R motif plays a
crucial role in this effect.
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Figure 5. NDRG1-3R motif is critical for cellular motility. (a) Deletion of the C-terminal domain signif-
icantly attenuated NDRG1-induced cell migration. After transfection of the NDRG1-FL, NDRG1-dC,
or the vector plasmid into HNC cells, the cells were subjected to wound healing migration analysis.
(b) Deletion of the C-terminal domain significantly inhibited NDRG1-induced cell invasion. After
transfection of the NDRG1-FL, NDRG1-dC, or the vector plasmid into HNC cells, the cells were sub-
jected to Matrigel invasion assay. (c) Deletion of the C-terminal domain suppressed NDRG1-induced
ECM-associated molecules. After transfection of the NDRG1-FL, NDRG1-dC, or the vector plasmids
into HNC cells, cellular proteins were extracted and subjected to Western blot analysis. The GAPDH
was used as an internal control. All the experiments were performed three times independently
and typical results were shown. The error bars shown in the relevant figures indicate the standard
deviation of the quantification results. (* p < 0.05; ** p < 0.01; *** p < 0.001; n.s., no significance; t-test).

3.6. 3R-Motif of NDRG1 Is Required for Nuclear Translocation and Phosphorylation

The 3R-motif of NDRG1 (NDRG1-3R) has not yet been characterized. Therefore, we
searched for a homologous protein sequence to this domain using the SeqWeb searching
tool. This 3R-motif was similar in sequence to the RS domains (arginine/serine-rich domain)
of the SR protein family (Figure 6a). Because SR proteins are reportedly involved in cellular
trafficking and subcellular translocation [62–64], we examined whether NDRG1-3R also
plays a role in guiding nuclear translocation. Immunofluorescence staining and confocal
microscopy were used to determine the specific subcellular localization of NDRG1 in HNC
cells. Green staining indicated a particular site of NDRG1 (EGFP-tag), while blue staining
with DAPI dye revealed nuclei. Similar results were observed for the three HNC cell lines.
In the vector- or NDRG1-FL-transfected cells, this protein was distributed more evenly
in all cellular compartments, including the cytoplasm and nucleus (Figure 6b). However,
NDRG1 was not detected in the nuclei of cells in NDRG1-dC transfectants. Apparently,
deprivation of the 3R-motif prohibited NDRG1 import into the nucleus.

To confirm the guiding function of this 3R-motif, Western blot analysis of subcellular
protein fractions was performed. The expression levels of HDAC1 and GAPDH were
used as internal controls to indicate nuclear and cytosolic compartments. Two HNC cell
lines were examined, and the results were consistent (Figure 6c). Both NDRG1-FL and
NDRG1-dC proteins were observed in the cytosolic fraction, whereas only NDRG1-FL was
found in the nucleus. NDRG1 truncated with deprivation of the 3R-motif (NDRG1-dC)
was excluded from the nuclear fraction. These results suggested that NDRG1-3R plays an
essential role in guiding nuclear translocation.

As the kinase at the RS domain of SR proteins is essential for nuclear import [62–64],
we determined whether the phosphorylation of NDRG1-3R is critical for its nuclear im-
port. Because this 3R-motif possesses three putative sites (Ser342, Ser352, and Ser362)
for phosphorylation by GSK3b [65], we examined the effect of this kinase on NDRG1 in
OECM1 cells. Cellular proteins extracted from NDRG1-FL or NDRG1-dC transfectants
were analyzed by an in vitro phosphorylation assay with recombinant GSK3b protein.
Phosphorylation status was revealed by immunoblotting with a phosphoserine-specific
antibody after being pulled down with anti-GFP antibodies. Phosphorylation of NDRG1-FL
substantially increased in response to GSK3b treatment (Figure 6d). However, NDRG1-dC
protein was insensitive to this kinase and exhibited minimal phosphorylation. These results
indicated the specific kinase activity of GSK3b for NDRG1 at the 3R-motif residues.
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translocation in OECM1and FaDu cells. After transfection of NDRG1-FL, NDRG1-dC, or the vector
plasmid into HNC cells, the cells were subjected to immunofluorescent and confocal microscopic
analysis. Because the EGFP protein sequence was fused in-frame in the NDRG1 expression plasmids,
the localization of EGFP indicated the specific localization of NDRG1. Blue staining with DAPI
dye was used to indicate nuclei, scale bar 10 µm. (c) Depletion of 3R motif significantly inhibited
nuclear translocation. After transfection of NDRG1-FL, NDRG1-dC, or the vector plasmid into HNC
cells, the subcellular compartment proteins were isolated and separated to nuclear and cytosolic
fractions. The NDRG1 expression level in various subcellular fractions was determined by Western
blot analysis. The HDAC1 and GAPDH were used as internal controls for nuclear and cytosolic
compartment proteins. (d) GSK3b phosphorylated NDRG1 at the serine residues of its C-terminal
domain. After transfection of the NDRG1-FL or NDRG1-dC expression plasmids into OECM1
cells, the cellular proteins were extracted and subjected to an in vitro phosphorylation assay with
recombinant GSK3b kinase. These NDRG1 proteins were then pulled down with anti-GFP antibody,
and their phosphorylation status was revealed by immunoblotting with phosphoserine-specific
antibody. Expression of the EGFP protein in each transfected sample was used as an internal control.
(e) Treatment of GSK3b inhibitor suppressed nuclear translocation of NDRG1 in HNC cells. The
OECM1 cells were treated with GSK3b-specific inhibitor (SB21673) at various doses as indicated
for 24 h. The subcellular compartment proteins were isolated. The endogenous NDRG1 expression
level in various subcellular fractions was determined by Western blot analysis. The HDAC1 and
GAPDH were used as internal controls for nuclear and cytosolic compartment proteins, respectively.
(f) Treatment of GSK3b inhibitor attenuated nuclear translocation of NDRG1 in HNC cells. After
transfection of the NDRG1-FL or NDRG1-dC expression plasmids into HNC cells, transfected cells
were treated with GSK3b-specific inhibitor (SB21673) at 3 µM for 24 h. These cells were then subjected
to immunofluorescence analysis and confocal microscopy, as described in the method section, scale
bar 10 µm. The error bars shown in the relevant figures indicate the standard deviation of the
quantification results. (* p < 0.05; *** p < 0.001; n.s., no significance; t-test).

We then examined whether NDRG1 phosphorylation by GSK3b was critical for its
nuclear import. OECM1 cells were treated with a GSK3b-specific inhibitor (SB21673), fol-
lowed by protein extraction by subcellular fractionation and analysis of NDRG1 expression
by Western blotting analysis. As shown in Figure 6e, treatment with the GSK3b inhibitor
substantially reduced NDRG1 protein levels in the nuclear compartment, whereas no
difference was observed in the cytoplasm. The effect of GSK3b on NDRG1 translocation
was confirmed by confocal microscopy. Two HNC cell lines were tested, and similar results
were obtained. As shown in Figure 6f, NDRG1 was evenly distributed in the nucleus and
cytoplasm of control cells. Inhibition of NDRG1 phosphorylation by a GSK3b inhibitor
attenuated its presentation in the nuclei. Thus, GSK3b phosphorylation at the 3R-motif of
NDRG1 may be indispensable for its molecular import to the nucleus.

3.7. Phosphorylation of the 3R-Motif by GSK3b Is Critical for Cell Motility in HNC Cells

To investigate whether GSK3b kinase activity at the 3R-motif is essential for cell
motility, we examined the effect of cell invasion after suppressing this kinase ability using a
GSK3b-specific inhibitor (SB21673). Two cell lines were examined, and similar results were
obtained. Transfection with NDRG1-FL significantly increased cell invasion (Figure 7a).
However, the inhibition of GSK3b kinase abrogated NDRG1-induced cell invasion.

To further validate that the phosphorylation sites at the 3R-motif are essential for cell
invasion, we constructed an NDRG1-expressing plasmid with three serine point mutations
at the 3R-motif (Ser342, Ser352, and Ser362) (NDRG1-3mt). The differential invasion
ability of HNC cells after transfection with NDRG1-FL, -dC, or -3mt in HNC cells were
examined. As shown in Figure 7b, NDRG1-FL transfection significantly increased cell
invasion. However, this function was minimized in transfectants by either NDRG1-dC or
NDRG1-3mt. Therefore, the cell motility function promoted by NDRG1 is dependent on its
3R-motif. This motif must be phosphorylated by GSK3b to guide its nuclear translocation.
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Figure 7. The phosphorylation of 3R-motif by GSK3b is critical for cell motility in HNC cells.
(a) Dephosphorylation of NDRG1 by GSK3b inhibitor reversed the effect of NDRG1-induced cell
invasion. The HNC cells (OECM1, SAS) were transfected with NDRG1-FL or the vector plasmids,
with or without the addition of GSK3b inhibitors (SB21673, 3 µM) for 24 h. These cells were then
subjected to Matrigel invasion assay. (b) Mutation of GSK3b phosphorylation sites in NDRG1-3R
motif reversed the effect of NDRG1-induced cell invasion. After transfection of various NDRG1
truncated plasmids (-FL, -dC, -3mt) into OECM1 cells for 30 h, these cells were subject to Matrigel
invasion assay. All the experiments were performed three times independently and typical results
were shown. The error bars shown in the relevant figures indicate the standard deviation of the
quantification results in all experiments. (** p < 0.01; *** p < 0.001; n.s., no significance; t-test).

3.8. NDRG1 Is Overexpressed in Tumors and Is Associated with Poor Prognosis in Patients with HNC

To determine the definitive role of NDRG1 in HNC, we determined the clinical presen-
tation of this molecule in patients with HNC. Differential expression of NDRG1 between
normal and tumor tissues was examined using The Cancer Genome Atlas Head-Neck
Squamous Cell Carcinoma (TCGA-HNSC) dataset. As shown in Figure 8a, NDRG1 was
overexpressed in tumors (p < 0.001), supporting the oncogenic function of this molecule
in cancer formation. We further assessed the association between NDRG1 expression and
patient survival using the TCGA-HNSC cohort (N = 500). As shown in Figure 8b, high
NDRG1 levels were significantly correlated with poor survival (p = 0.034, HR = 1.37).
These results suggested that NDRG1 functions in cancer aggressiveness. NDRG1 may be a
prognostic biomarker and therapeutic target for patients with HNC.
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Figure 8. High level of NDRG1 is significantly associated with poor survival in HNC patients. (a) In
HNC patients, NDRG1 is overexpressed in the tumors compared to the normal tissues from TCGA-
HNSC datasets generated by GEPIA2 website. The relative expression levels were shown. (b) Higher
level of NDRG1 expression is associated with poor prognosis in HNC patients, as determined by
Kaplan–Meier survival analysis via KM-Plotter online tool from the HNC dataset (N = 500). * p < 0.05;
t-test.
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4. Discussion

NDRG1 is a multifunctional protein that participates in several cellular processes to
maintain homeostasis. Although the role of NDRG1 in various types of cancer remains
elusive, the present findings reveal its oncogenic function in HNC. Transcriptomic profiling
has revealed that NDRG1 participates in a wide range of oncogenic functions. Bioinfor-
matic analysis revealed the role of NDRG1 in the stress response, including DNA repair,
cellular apoptosis, drug resistance, and stemness (Figure 1c). We further validated these
roles by showing that NDRG1 promotes cancer stemness conversion and contributes to
chemo-radioresistance in HNC cells (Figure 2). These results have been supported by
other investigations [34–41]. A high level of NDRG1 was associated with the resistance
to ionizing radiation [6,38] or multiple drug-induced cytotoxicities [15,39–41] in various
types of cancer cells. Conversely, knockdown of this molecule sensitized cells to irradiation
or response to drug treatment [15,38]. Moreover, a clinical study revealed that higher
NDRG1 levels correlated to a worse therapeutic outcome of neoadjuvant chemotherapy
in the patients with esophageal squamous carcinoma [42]. Furthermore, our transcrip-
tomic analysis revealed that NDRG1 regulates cell motility, including the mechanism of
epithelial-to-mesenchymal transition (Figure 1d). We also confirmed this cellular function
by demonstrating that NDRG1 facilitates cell migration and invasion by modulating ECM
(Figure 3). This function of NDRG1 in augmenting cancer metastasis is also supported by
other investigations [26–33]. In mice model study, the effect of NDRG1 in tumorigenesis
showed enhancement [25,33,34] or suppression [43,50,52] in various studies. However,
NDRG1 promoting cancer metastasis is consistently found by several investigators [25,33].
Thus, NDRG1 facilitating cancer metastasis may be the primary cause of cancer progression.

NDRG1 belongs to the NDRG gene family, which comprises an α/β hydrolase fold
region (Figure 6a) [66–69]. With its high serine and threonine content within the α/β hydro-
lase region, NDRG1 was known to possess potential phosphorylation sites for PKC, PKA,
CK-II, and tyrosine kinase [6,68,69]. The PKA and PKC have been shown to phosphorylate
NDRG1, which affected its function in cell growth [10,68–70]. A truncated form of NDRG1
with a deletion in the N-terminal domain was found in several prostate and pancreatic
cancer cell lines. This truncated isoform was located more in the cytosol than the full-length
molecule [71]. However, the C-terminal region of NDRG1 with the 3R-motif is a unique
structure absent in other NDRG family members [11]. In this study, we discovered that
this 3R-motif accounts for differential malignant functions, with minimal effect on cancer
stemness (Figure 4), and is indispensable for cell motility (Figure 5). Further investigation
of NDRG1-3R revealed that this 3R-motif acts as a leading sequence that can direct NDRG1
translocation into the nucleus (Figure 6b,c). This result may explain previously obscure
descriptions of NDRG1 localization to the nuclear compartment in the absence of a defined
localization sequence [7,12]. Our novel findings of the 3R-motif from nuclear import to cell
motility resolved the clinical presentation. In colorectal cancer patients with lymph node
metastases, the nuclear localization of NDRG1 was significantly higher in the neoplasm
tissue than in the normal mucosa. However, there was no differential localization in the
cytosolic compartment [27]. In gastric cancer, NDRG1 nuclear localization is frequently
found in the region of cancerous invasion and is correlated with lymph node metastasis [28].
In prostate cancer, a phosphorylated form of NDRG1(S330) predominantly located in the
nucleus was significantly overexpressed in the metastatic lesions of the tumor tissue [72].
Therefore, the function of NDRG1 in promoting cell motility in HNC may rely on its
3R-motif to guide nuclear translocation.

NDRG1 contains multiple putative phosphorylation sites throughout its protein se-
quence. Several kinase sites for PKC and PKA within the α/β hydrolase region affect
NDRG1 functions in growth control [10,68–70]. In the C-terminal region of NDRG1, five
sites for SGK1 kinase (Thr328, Ser330, Thr346, Thr356, and Thr366) and three sites for
GSK3b kinase located at the 3R-motif (Ser342, Ser352, and Ser362) have been predicted [65].
Phosphorylation by SGK1 has been related to several physiological conditions, primarily
stress and growth arrest [73–77]. The phosphorylation of NDRG1 by SGK1 at Ser330, but
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not Thr346, was associated with nuclear localization, and the cytosolic form of the pNDRG1-
pT346 was predominant in prostate cancer cells [71]. Conversely, a recent study showed
that the phosphorylation of NDRG1 by PIM1 at Ser330 reduced its nuclear localization,
and this pNDRG1(S330) was associated with a higher grade of prostate cancer [78]. It was
assumed that the differential location of NDRG1 may possess various cellular functions, as
NDRG1 translocation may respond to multiple cellular environmental stress conditions.
For example, treatment of iron chelators or exposure cells under hypoxia conditions may
include NDRG1 upregulation and nuclear localization, along with growth suppression
or DNA repairing [11,71]. Thus, differential localization of NDRG1 may be essential to
fulfill its multiple functions that may be intricately regulated by various phosphorylation
pathways in tissue-specific manners

The effect of GSK3b kinase has not yet been investigated. Previously, NDRG1 has been
reported interacting with GSK3b to promote tumor growth [79]. The present study provides
the first evidence that GSK3b specifically phosphorylates NDRG1 at the serine residues in
the 3R-motif. Truncated NDRG1-dC did not respond to GSK3b kinase activity, whereas it
was observed in the NDRG1-FL protein (Figure 6d). Conversely, treatment with a GSK3b-
specific inhibitor substantially reduced NDRG1 phosphorylation (Figure 6e). The functional
relevance of GSK3b was revealed. Dephosphorylation of NDRG1 by a GSK3b inhibitor
prohibited its nuclear import, suggesting that NDRG1 phosphorylation by this kinase is
crucial for its nuclear translocation (Figure 6f). Furthermore, we showed that the nuclear
import of NDRG1 is closely linked to its function in cellular motility. Dephosphorylation
of NDRG1 by GSK3b inhibitor reversed the effect of NDRG1-induced cellular invasion
(Figure 7a). The functional significance of GSK3b-mediated phosphorylation of specific
sites in NDRG1 was confirmed. Mutation of GSK3b phosphorylation sites at serine residues
in the 3R motif reversed NDRG1-induced cellular invasion (Figure 7b). Thus, our results
reveal the significance of the 3R-motif in NDRG1. The phosphorylation of NDRG1 by
GSK3b in the 3R-motif is critical for NDRG1 nuclear translocation, which is indispensable
for the role of NDRG1 in promoting cell motility.

Previously, the confounding role of NDRG1 was reported in HNC. In favor of a
tumor-suppressive function, NDRG1 was found to inhibit cell proliferation, invasion,
and tumorigenesis in oral cancer cells [50]. A study in the tissue section showed that a
lower level of NDRG1 was related to metastatic tumors; however, the expression level
of NDRG1 was correlated with invasion markers MMPs [80]. In favor of an oncogenic
function, upregulated NDRG1 was associated with high invasion and radioresistance
in HNC cells [6]. In two investigations of global molecules using paired clinical oral
tissues, NDRG1 was consistently overexpressed in the tumors compared to the normal
counterparts [3,81]. These inconsistent findings imply that NDRG1 may possess diverse
roles and function differentially under specific cellular conditions. Nevertheless, the
clinical presentation of a molecule defines its pathological role. In analyzing the TCGA
dataset with 519 HNSC patients, we found that NDRG1 was overexpressed in tumor
tissues (Figure 8a), indicating this molecule functions in modulating cancer development.
Furthermore, high levels of NDRG1 correlated with poor prognosis (Figure 8b). This
result may be caused by the malignant attributes of NDRG1 in promoting cancer stemness
(Figure 2) and cell motility (Figure 3). Two molecular mechanisms presumably manifest
the aggressive phenotype of NDRG1. Cytoplasmic NDRG1 confers cancer stemness and
therapeutic resistance (Figures 4 and 6). NDRG1 may also translocate into the nucleus via
phosphorylation at its 3R-motif by GSK3b to facilitate motility (Figures 5–7). Thus, our data
elucidate the intricate oncogenic mechanisms of NDRG1 in HNC.

5. Conclusions

This study reveals the comprehensive role of NDRG1 in HNC. Clinically, NDRG1 is
overexpressed in tumors and correlated to poor prognosis. Functionally, this molecule
contributes to cancer stemness, therapeutic resistance, and cell motility. Mechanically,
various cellular compartments of NDRG1 play differential oncogenic roles. The cytoplasmic
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NDRG1 may exert its effects on cancer stemness and therapeutic resistance. NDRG1 may
also translocate into the nucleus via phosphorylation at its 3R-motif to facilitate motility.
The data elucidate the multifaceted and intricate functions of NDRG1 in HNC. NDRG1
may be a prognostic indicator or therapeutic target for refractory HNC.
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