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Abstract

Background: The 11 human cysteine cathepsins are proteases mainly located in the endolysosomal compartment of all cells
and within the exocytosis pathways of some secretory cell types. Cathepsin H (Ctsh) has amino- and endopeptidase
activities. In vitro studies have demonstrated Ctsh involvement in the processing and secretion of the pulmonary surfactant
protein B (SP-B). Furthermore, Ctsh is highly expressed in the secretory organelles of alveolar type II pneumocytes where the
surfactant proteins are processed.

Methodology/Principal Findings: Hence, we generated Ctsh null mice by gene targeting in embryonic stem cells to
investigate the role of this protease in surfactant processing in vivo. The targeting construct contains a ß-galactosidase
(lacZ) reporter enabling the visualisation of Ctsh expression sites. Ctsh-deficiency was verified by northern blot, western
blot, and measurement of the Ctsh aminopeptidase activity. Ctsh2/2 mice show no gross phenotype and their development
is normal without growth retardation. Broncho-alveolar lavage (BAL) from Ctsh2/2 mice contained lower levels of SP-B
indicating reduced SP-B secretion. The BAL phospholipid concentration was not different in Ctsh+/+ and Ctsh2/2 mice, but
measurement of surface tension by pulsating bubble surfactometry revealed an impairment of the tension reducing
function of lung surfactant of Ctsh2/2 mice.

Conclusions/Significance: We conclude that cathepsin H is involved in the SP-B production and reduced SP-B levels impair
the physical properties of the lung surfactant. However, Ctsh defiency does not reproduce the severe phenotype of SP-B
deficient mice. Hence, other proteases of the secretory pathway of type II pneumocytes, i.e. cathepsins C or E, are still able
to produce surfactant of sufficient quality in absence of Ctsh.
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Introduction

The family of papain-like cysteine proteases (Clan CA, C1 family)

consists of 11 members in humans, i.e. cathepsins B, C (J, dipeptidyl

peptidase I), F, H, K (O, O2), L, O, S, V (L2), W (lymphopain), and

X (P, Y, Z) [1]. All of these proteases have orthologous enzymes in

mice, only murine cathepsin L is homologous to both human

cathepsin L and human cathepsin L2(V) [2,3]. Hence the analysis of

mouse models with targeted inactivation of cysteine cathepsins has

been widely used as rational approach to elucidate the in vivo

functions of these endosomal/lysosomal enzymes that can also

function outside the cell and as truncated protease variants in the

cytosol and the nucleus [4,5]. Specific cysteine cathepsins are

involved in precursor protein activation (including proenzymes and

prohormones), MHC-II-mediated antigen presentation, bone

remodelling, keratinocyte differentiation, hair cycle, reproduction,

and apoptosis [6]. They have also been implied to participate in

tumor progression and metastasis as well as in inflammatory

diseases, such as inflammatory rheumatoid arthritis, atherosclerosis,

and periodontitis, and are potential therapeutic targets [7].

Mature Ctsh is a 25 kDa endosomal/lysosomal enzyme that has

been activated by proteolytic removal of a 75 amino acid

propeptide from the Ctsh-zymogene. Cathepsin H and Cathepsin

B are unique among lysosomal cysteine proteases in that they are

both an exopeptidase and an endopeptidase [8,9,10]. The

structural basis of the aminopeptidase activity of Ctsh is provided
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by an eight residue residual portion of the propeptide, termed

mini-chain, that remains attached to the papain-like structure by a

disulfide link and provides its C-terminal Thr 83P carboxylic

group to capture the positively charged N-terminal amino group of

substrate proteins [11]. Removal of the mini-chain renders Ctsh a

complete endoproteinase [12,13]. However, it has been experi-

mentally shown that Ctsh is able to execute specific endoproteo-

lytic cleavage in native substrate proteins even in the presence of

the mini-chain [14].

Cathepsin H is considered a ubiquitously expressed protease;

however, strong expression has been reported in type II

pneumocytes [15]. Interestingly cathepsin C, a strict aminopep-

tidase, and Ctsh are the only cysteine-cathepsins found in the

secretory compartment of type II pneumocytes, and both proteases

have been shown to be functionally redundant [15,16]. The

lamellar and multivesicular bodies of these cells produce the lung

surfactant that is essential to reduce surface tension at the air-

liquid interface within the alveoli thus enabling breathing

mechanics and gas exchange. Pulmonary surfactant is composed

of phospholipids and proteins. These surfactant proteins (SP) are

either hydrophilic glycoproteins, i.e. SP-A and SP-D, or very

hydrophobic, i.e. SP-B and SP-C [17]. Notably, hereditary SP-B

deficiency results in neonatal onset surfactant deficiency and

respiratory failure in humans and mice [18]. The ,8.7 kDa SP-B

found in the air-space is generated from ProSP-B by several steps

of limited proteolysis within the secretory compartment of type II

pneumocytes. SP-B processing in type II pneumocytes is sensitive

to treatment with cysteine-cathepsin inhibitors and in vitro studies

proved that Ctsh is capable of processing SP-B [14,19]. Since a

mouse model for Ctsh-deficiency has not been available, we

generated a Ctsh knock-out mouse model in order to address the

role of Ctsh in SP-B processing and surfactant generation in vivo.

Results and Discussion

The murine cathepsin H (Ctsh) gene is located on mouse

chromosome 9 comprising 12 exons that span a genomic region of

22 kb. In the Ctsh gene targeting vector a b-geo cassette

containing IRES, lacZ-Reporter and a neomycine (neo) resistance

was flanked at the 59 end by approximately 2 kb Ctsh sequence

containing exon 4 and part of exon 5 and a DNA fragment at the

39 end consisting of intron 9 and exon 10 (Fig. 1A). Hence, by

homologous recombination in HM-1 mouse embryonic stem cells

part of exon 5 through part of intron 9 (including the active site

cysteine critical for enzyme activity in exon 6) of the Ctsh gene was

deleted and substituted by the b-geo cassette (Fig. 1A). Southern

blot using SacI restriction digest and probing with the external

5̀probe in genomic tail DNA confirmed correct homologous

recombination in the Ctsh locus by showing the expected 1.3 kb

band shift (Fig. 1B). These results were further confirmed by long

range PCR with external and internal primers (data not shown).

Northern blots with the 59 probe binding to exon 3 revealed

absence of the 1.6kb mRNA of Ctsh in liver and kidney of Ctsh2/2

mice (Fig. 1C). In the Ctsh2/2 samples a larger band correspond-

ing to the fusion transcript comprising the first 5 exons of Ctsh and

the IRES-LacZ reporter was detected (Fig. 1C). Taken together,

these results proof correct homologous recombination of the Ctsh

locus and the functionality of the targeting construct.

Accordingly, tissues of Ctsh2/2 mice do not express the protease

as a protein (Fig. 2A) and show abolished proteolysis of the Ctsh-

specific aminopeptidase substrate H-Arg-AMC (Fig. 2B). Breeding

of heterozygous mice produced offspring with a statistical trend

(p = 0.06) towards a reduced number of Ctsh null mice as

compared to the expected Mendelian ratio (Fig. 2C). However,

Ctsh deficient mice do not show a gross morphological phenotype.

Furthermore, Ctsh null mice show no impairment of reproductive

capacity or breeding behavior or nursing, and can be maintained

as homozygous mutant mouse line. Ctsh2/2 and Ctsh+/2 mice

developed indistinguishably from their wild-type littermates,

reached normal body weight (Fig. 2D), and lived without

phenotype for observation periods of up to two years. Histomor-

phology of kidney, liver, heart, brain, thymus, and spleen of Ctsh2/2

mice did not show any signs of pathology (data not shown).

Cathepsin C (Ctsc; also named dipeptidylpeptidase 1) is an

aminopeptidase that has been shown to cooperate with Ctsh in

the processing of pro-granzyme B [16]. The cathepsin D-like

aspartic protease cathepsin E (Ctse) is another protease that might

compensate for the loss of Ctsh in the knock-out [20]. Hence we

determined the expression of both proteases as mRNA and protein

(Fig. 2E, F). Ctsc was not differently expressed or processed in lung

tissue samples from Ctsh+/+ and Ctsh2/2 mice. In general Ctse

expression in the lungs was at the limit of detection. Nevertheless,

we found an about 50% reduction of Ctse mRNA levels in Ctsh2/2

(Fig. 2E). However, Western Blots for Ctse could not verify a major

difference in Ctse protein levels between Ctsh+/+ and Ctsh2/2 lungs

(Fig. 2F). Hence, our data exclude a compensatory upregulation of

cathepsins C or E in the lungs of Ctsh deficient mice. However, both

proteases may be able to functionally compensate for the absence of

Ctsh simply by being able to sufficiently cleave most of the substrate

repertoire of Ctsh.

In the lung Ctsh has been shown to be specifically expressed in

type II pneumocytes [15]. Taking advantage of the lacZ reporter in

the Ctsh targeting construct a selective expression was detected in

distinct alveolar cells in lungs of Ctsh+/2 mice with the typical

appearance of type II pneumocytes (Fig. 3A). In addition,

considerable lacZ expression was detected in the epithelia of small

airway bronchioles (Fig. 3B). Involvement of Ctsh in lung branching

morphogenesis has been recently reported [21], however, lung

morphology and histology was not altered in Ctsh-deficient mice

(Fig. 3C, D). Immunohistochemical detection of Ctsh confirmed the

absence of the protease in the lungs of Ctsh2/2 mice (Fig. 3C,D),

while in wild-type mice the Ctsh staining pattern in lung tissue was

confined to specific alveolar cells, i.e. type II pneumocytes, and to

bronchioles (Fig. 3E,F). This provides evidence for the correct

function of the LacZ reporter that has been introduced to the Ctsh

locus by gene targeting (compare Fig. 1A).

Since type II pneumocytes produce and secrete surfactant we

analyzed the mRNA expression of the surfactant proteins A1 (SP-

A1), B (SP-B), and C (SP-C) (Fig. 4A). The mRNA levels of all

three surfactant proteins were not altered in the lungs of Ctsh2/2

mice. Previous studies in vitro and in cultured human pneumocytes

demonstrated processing of SP-B by cysteine cathepsins and

identified Ctsh as the very likely candidate [14,19]. SP-B Western

Blots of lung tissue lysates did not reveal significantly altered levels

of SP-B precursor or SP-B processing intermediates in wild-type

and Ctsh-deficient lungs. However, broncho-alveolar lavage (BAL)

from Ctsh2/2 mice contained lower levels of the fully processed 8.7

kDa SP-B (Fig. 4C). This result indicates reduced SP-B secretion

by the alveolar epithelia and suggests an impaired functional

quality of the lung surfactant of Ctsh knock-out mice. To further

investigate this, we evaluated the composition and the surface

activity of the surfactant which was isolated from the broncho-

alveolar fluid (BALF) of Ctsh+/+ and Ctsh2/2 mice. We found no

difference in the phospholipid concentration in the BALF (data not

shown), however, phospholipid concentration was adjusted to 1

mg/ml in all further experiments. Using a pulsating bubble

surfactometer the surface tension at the air–liquid interphase of

bubbles that had not been pulsating was 36.461.4 mN/m at 10 s

Phenotype of Cathepsin H Deficient Mice
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after the bubble’s creation, a significantly higher value than in

Ctsh+/+ mice (Fig. 4D). The surface tension after 5 min of pulsation

was not significantly different at maximal bubble radius, but at

minimal radius surface tension was 11.061.7 mN/m and

18.760.9 mN/m for BALF from Ctsh+/+ and Ctsh2/2 mice,

respectively (Fig. 4E,F). Together these results indicate that the

reduced level of SP-B in the BALF of Ctsh-deficient mice impairs

the tension reducing function of lung surfactant.

In summary, homozygous deletion of Ctsh by gene targeting

does not result in a gross phenotype in the mice. However, in

agreement with previous studies Ctsh is involved in SP-B

processing and function of pulmonary surfactant derived from

Ctsh null mice is impaired. This biochemical phenotype is not a

complete phenocopy of inherited SP-B deficiency that results in

severe respiratory failure at birth. It is tempting to speculate

whether the slightly reduced frequency of Ctsh2/2 offspring from

heterozygous mating may be caused by respiratory defects;

however, we were not able to observe (and to analyze) dead

newborns. It appears that the constitutive loss of Ctsh can be

compensated functionally (but not by compensatory upregulation)

by other cysteine or aspartic type proteases of type II

pneumocytes, such as cathepsin C and cathepsin E, respectively.

Using the newly developed Ctsh deficient mouse strain, a

cooperation of cathepsins H and C in progranzyme B processing

has been already established [16]. Hence, a network of proteases

may maintain the level of SP-B processing and secretion that is

needed to ensure sufficient surfactant and lung function in Ctsh2/2

mice. However, these conclusions only hold true for the pathogen

free conditions in which the mice were kept during this study.

Cathepsin H knock-out mice may provide additional insights into

the functions of this protease when challenged. In this regard, it

has been shown recently that Ctsh2/2 mice show less tumor

burden and cancer invasiveness when analyzed in the context of

the Rip1Tag2 model of pancreatic islet cancer [22]. Hence it will

be worthwhile to investigate the respiratory tract of this knock-out

mouse line when challenged by infections, sterile inflammations or

cancerous growth.

Materials and Methods

Ethics statement
The generation and phenotype analysis of cathepsin H deficient

mice in this study was performed in accordance to the German law

for animal protection (Tierschutzgesetz) as published on May 25,

1998. According to this law the animal work was reviewed and

approved by an ethics committee of the Regierungspräsdium

(governmental regional board) Freiburg and given the project ID

‘G02/56 RP Freiburg’.

Generation of mice with targeted disruption of cathepsin
H (Ctsh)

Part of exon 5 through intron 9 of the Ctsh gene were replaced

by a targeting vector comprising IRES, lacZ-Reporter and a G418

resistance cassette (neor) using homologous recombination in

HM1-mouse embryonic stem cells (Fig. 1). G418-resistant HM1-

cell clones (129P2/OlaHsd background) were screened by

Southern blot analysis of genomic DNA, which was digested with

SacI and hybridized with the external probe (Fig. 1B). Mutated ES

cells were microinjected into blastocysts of C57BL/6N females.

The resulting chimeras were used to generate heterozygous

Figure 1. Targeted disruption of the cathepsin H (Ctsh) gene. (A) Scheme for the targeted disruption of mouse Ctsh gene by homologous
recombination. Exons are indicated by number. (B) Southern blot analysis of SacI-digested genomic DNA from mouse liver by the 59 external probe
denoted in panel A. Expected fragment sizes are 5.5 kb for wild-type and 6.8 kb for mutant Ctsh alleles. (C) Northern blots from liver and kidney
samples of Ctsh+/+ and Ctsh2/2 mice. The Ctsh 59 probe detects the genuine 1.6 kb mouse Ctsh transcript in the Ctsh+/+ samples. *Denotes an
enlarged transcript in Ctsh2/2 consisting of Ctsh exons 1–5 plus lacZ reporter.
doi:10.1371/journal.pone.0026247.g001

Phenotype of Cathepsin H Deficient Mice
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Figure 2. Cathepsin expression and gross phenotype of Ctsh-deficient mice. (A) Western blots for Ctsh detection in lungs and liver of Ctsh+/+

and Ctsh2/2 mice. (B) Detection of ‘‘acidic’’ aminopeptidase activity at pH 6.0 in lungs, livers and kidneys of f Ctsh+/+ and Ctsh2/2 mice (n = 3). (C)
Observed and expected genotype frequencies of litters from Ctsh+/2 x Ctsh+/2 matings. (D) Weight gain of female littermates from heterozygous
matings (n = 5 per genotype). (E) mRNA expression of cathepsin C (Ctsc) and cathepsin E (Ctse) measured by quantitative ‘real-time’ RT-PCR in lungs
of Ctsh+/+ and Ctsh2/2 mice (n = 5 per group). (F) Cathepsin C (Ctsc) and cathepsin E (Ctse) detected by Western blotting in Ctsh+/+ and Ctsh2/2 lung
lysates.
doi:10.1371/journal.pone.0026247.g002

Phenotype of Cathepsin H Deficient Mice
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mutant offspring on a mixed C57BL/6N and the 129P2/OlaHsd

genetic background. Mice were backcrossed onto the C57BL/6N

for 10 generations. Mice were bred and maintained under specific-

pathogen-free conditions.

Genotyping
Routine genotyping of Ctsh deficient mice is performed on

genomic DNA by PCR. The primer pair Ctsh-fw / Ctsh-rev

amplifies 426 base pairs of the wild-type allele that is deleted in the

mutant: Ctsh-fw: 59 TAA-ATG-GGC-TAG-TGA-ATG-CTG-

ACG 39; Ctsh-rev: 59 TGA-ATC-TGG-AGT-TTG-GAG-GGT-

AGT 39. The primer neor anneals in the 3̀end of the G418

resistance cassette while primer Ctsh intron 9-rev is located in the

not deleted part of intron 9. Thus this primer pair will amplify the

mutated alleles as an 205 bp fragment : neor 59 ATC-GCC-TTC-

TAT-CGC-CTT-CTT 3̀; Ctsh intron 9-rev: 59 CAC-CCC-ATG-

ATT-CCT-TCC-TG 3̀. PCR annealing temperature of 56uC for

30 seconds and elongation at 72uC for one minute are

recommended for a total of up to 35 cycles.

qRT PCR
Total RNA was isolated from frozen lung tissue samples with

RNAeasy Mini kit (Qiagen) and reverse transcribed using iSript

cDNA Synthesis kit (Bio-Rad). Transcripts were quantified using

Platinum SyBRH Green qPCR SuperMix (Invitrogen) and the

following primer pairs: Ctsc, 59 ACC TGG GTG TTC CAG

GTG GGC CC39 (fw.) and 59GCC CGG AAT TGC CCA GCT

CGT CG39 (rev.); Ctse, 59CAG TCC GAC ACA TAC ACG39

and 59TGC CCT GGC TCC TTG AC39 (rev.); SP-A1, 59TGC

AGG CTC TGT GTG CGG GGA TCT39 (fw.) and 59CAG

GGA TCC CAG GGC TTC CGG CA (rev); SP-B, 59AGC AAC

AGC TCC CCA TTC CCC TGC C39 (fw.) and 59CCA CCA

CCA GGG GTA CCA CGT GGC39 (rev.); SP-C, 59TGA CTA

CCA GCG GCT CCT GAC GGC39 (fw.) and 59GTG GGT

GTG GAG GGC TTG GCC TGG39 (rev.).

Northern blot
For detection of Ctsh mRNA by Northern blots, total RNA of

kidney and liver from adult mice was prepared according to a

standard protocol [23]. Subsequently 5 mg total RNA was separated

in a formaldehyde agarose gel and processed as described previously

[24]. Filters were hybridized with [a-32P]dCTP labelled probes of

Ctsh exon 3 and a cDNA fragment of mouse b-actin.

Enzymatic activity
Ctsh aminopeptidase activity was measured by degradation of

synthetic substrate H-Arg-4-Methyl-Coumarin-7-Amid (AMC). A

crude organelle fraction was obtained by differential centrifugation

Figure 3. Cathepsin H expression in the lung. (A) Expression of the lacZ reporter (blue staining) in Ctsh+/2 mice as indication for Ctsh
transcription in distinct alveolar cells, i.e. type II pneumocytes (arrows heads), and (B) in small airway bronchioles (indicated by *). (C–D) Histology
and absent immunohistochemical detection of Ctsh in Ctsh2/2 lungs. (E–F) Immunohistochemical detection of Ctsh in lungs of wild-type mice
confirms the expression of Ctsh in distinct pneumocytes and bronchiolar epithelium (indicated by *). Scale bars are 50 mm.
doi:10.1371/journal.pone.0026247.g003

Phenotype of Cathepsin H Deficient Mice
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Figure 4. Cathepsin H function in production of lung surfactant proteins. (A) mRNA expression of surfactant proteins A1, B, and C measured
by quantitative ‘real-time’ RT-PCR in lungs of Ctsh+/+ and Ctsh2/2 mice (n = 5 per group). (B) Detection of surfactant protein B (SP-B) in lung tissue
lysates (C) Western blot detection of SP-B in broncho-alveolar lavage (BAL) of Ctsh+/+ and Ctsh2/2 mice of 2 genetic backgrounds (129P2/OlaHsd and
C57BL/6N). The lysosomal membrane associated protein 2a (Lamp 2a) is present at the limiting membrane of lamellar bodies [27,28] and serves as
loading control independent of the surfactant proteins. (D–F) Surface activity of BAL fluid measured by pulsating bubble surfactometry (n = 6–10).
doi:10.1371/journal.pone.0026247.g004

Phenotype of Cathepsin H Deficient Mice
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of Dounce-homogenized tissues and organelles were broken by

ultra-sound in 50 mM of phosphate buffer (pH 6.0) containing 2.5

mM EDTA/ 2.5 mM DTT. H-Arg-AMC substrate (50 mM) was

added and release of fluorescent AMC (excitation 359 nm/

emission 540 nm) was monitored for 30 min at 37uC.

Western blot
Aliquots of the BALF (3 mg protein) or crude organelle fractions

(10 mg protein) were separated using 4-12% NuPageH Bis-Tris Gel

(Novex / Invitrogen, Carlsbad, USA) and MES buffer and blotted

to nitrocellulose membranes (Hybond ECL, Amersham Pharma-

cia Biotech, Little Chalfont, U.K.). The membranes were blocked

using non-fat dry milk (16 h, RT) and incubated with affinity

purified SP-B antiserum (kindly donated by Dr. J.A. Whitsett

(Cincinatti, OH)) or with.affinity purified cathepsin H antiserum

(kindly donated by Dr. E. Weber (Halle, Germany). The

immunoreaction was detected using polyclonal antisera directed

against rabbit or mouse IgG conjugated to horse radish peroxidase

and ECT (Novex / Invitrogen, Carlsbad, USA) as substrate.

In order to detect proSP-B frozen lung tissue samples were lysed

with TritonX lysis buffer (0.2% TritonX-100 in PBS). To detect

Ctsc and Ctse sodium acetate lysis buffer (100mM sodium acetate,

1mM EDTA, 0.05% Brij) was used. Proteins (10 mg) were

separated on 15% Bis-Tris gels and blotted to PVDF membranes

(Amersham). Membranes were blocked with 3% powdered milk

(for Ctsc, and Ctse) or 4% BSA (for SP-B). For immunodetection

membranes were probed with a 1:500 dilution of anti-mouse Ctsc

or anti-mouse Ctse antibody (R&D Systems AF1034, AF1130), or

anti-SP-B antibody (Millipore ABS21) and HRP conjugated anti-

goat (Sigma A5420) or anti-rabbit (Biorad 172-1019) secondary

antibodies.

Histology, Immunohistochemistry and b-galactosidase
(LacZ) staining

The Lac-Z reporter in the gene targeting construct provides

direct visualization target gene expression in tissues of gene

targeted mice. Fixation of the lungs was by lacZ-fixation solution

(0.4 ml 25% glutaraldehyde; 1.25ml 0.2M EGTA (pH 7.3); 5.0ml

1M MgCl2; 43.0 ml PBS) for 2h at 4uC. After 3x5 min PBS

washes and the samples were incubation in 20% sucrose in PBS

for 16 h at 4uC. The dehydrated tissues were embedded in OCT

(water soluble glycol’s and resins compound) by freezing in liquid

nitrogen. Cryosections (10 mm tickness) were post-fixed in 0.2%

glutaraldehyde / PBS for 10 min at room temperature followed

3x5min washes in lacZ-buffer composed of 0.5ml 1M MgCl2; 0.25

ml 10% sodium-deoxycholate; 2.5ml 2% Nonidet-P40; 265 ml

PBS. Detection of lacZ (i.e. b-galactosidase activity) section was

achieved by an overnight incubation in 87.5ml lacZ buffer

supplemented with 2.5 ml X-gal (i.e. bromo-chloro-indolyl-

galacto-pyranoside dissolved at 40mg/ml in DMSO) and 5 ml

0.1M potassium-ferricyanide at 37uC in the dark. The stained

sections were observed und photographed under digital optical

microscope.

For immunodetecton of Ctsh, paraffin embedded lung tissue

sections were incubated with a 1:40 dilution of anti- mouse Ctsh

antibody (R&D Systems AF1013) followed by detection with the

Vectastain Elite ABC kit (Vector Laboratories) and 3,3-DAB and

nuclear staining with hematoxylin.

Broncho-alveolar lavage (BAL)
BAL was performed by cannulating the trachea and infusing the

lungs with 260.8 ml cold sterile PBS/2 mM EDTA. The broncho-

alveolar lavage fluid (BALF) was retrieved by gentle aspiration.

The BALF was pooled and the cells were transferred to a

microscope slide by cytospin (10 min, 400 xg). The supernatants

were collected and frozen at –80uC.

Surfactant aggregate separation and evaluation with
pulsating bubble surfactometer

The cell-free supernatant was centrifuged at 48,000 xg for 60

min at 4uC to pellet large surfactant aggregates (LA). The

supernatant, containing small surfactant aggregates (SA), was

removed and the LA pellet was resuspended in Ringer’s solution.

The phospholipid contents of the LA pellets and the SA

supernatants were determined as described [25]. By adding

Ringer’s solution, the phospholipid concentration of the LA

suspension was adjusted to 1 mg/ml. Surface activity of BALF was

measured with a pulsating bubble surfactometer (Electronetics,

Buffalo, NY) [26]. For the pulsating bubble surfactometer, 40 ml of

the LA suspension, which had been given a phospholipids

concentration of 1 mg/ml, were used for filling the sample

chamber with a micropipet. The surface tension used for statistical

analysis of this study was the value at minimal bubble size (cmin)

registered after 5 min of pulsation at a rate of 20 cycles/min and at

a temperature of 37uC. Before starting, bubble pulsation

adsorption rate was evaluated by determining surface tension 10

s after formation of a bubble (cads).
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