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Glutamine-driven oxidative phosphorylation is a major
ATP source in transformed mammalian cells in both
normoxia and hypoxia
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Mammalian cells can generate ATP via glycolysis or mitochondrial respiration. Oncogene activation
and hypoxia promote glycolysis and lactate secretion. The significance of these metabolic changes to
ATP production remains however ill defined. Here, we integrate LC-MS-based isotope tracer studies
with oxygen uptake measurements in a quantitative redox-balanced metabolic flux model of
mammalian cellular metabolism. We then apply this approach to assess the impact of Ras and Akt
activation and hypoxia on energy metabolism. Both oncogene activation and hypoxia induce
roughly a twofold increase in glycolytic flux. Ras activation and hypoxia also strongly decrease
glucose oxidation. Oxidative phosphorylation, powered substantially by glutamine-driven TCA
turning, however, persists and accounts for the majority of ATP production. Consistent with this, in
all cases, pharmacological inhibition of oxidative phosphorylation markedly reduces energy charge,
and glutamine but not glucose removal markedly lowers oxygen uptake. Thus, glutamine-driven
oxidative phosphorylation is a major means of ATP production even in hypoxic cancer cells.
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Introduction

The seminal work of Otto Warburg revealed that cancer cells
avidly ferment glucose even in the presence of oxygen, a
phenomenon called aerobic glycolysis or the Warburg effect
(Warburg, 1956). This fundamental effect has been repeatedly
confirmed in vitro and also in vivo where it accounts for the
effectiveness of flurodeoxyglucose PET imaging. Warburg
originally attributed aerobic glycolysis to impaired mitochon-
drial function (Warburg, 1956); however, it subsequently
became clear that most cancers display the Warburg effect
despite intact mitochondrial respiration capacity. In fact, the
contribution of oxidative phosphorylation to total ATP
production was recently claimed by Zu and Guppy (2004)
to exceed that of aerobic glycolysis in many cancer cells . In
light of this, it has been suggested that the shift to aerobic
glycolysis serves to maximize ATP production per unit of
enzyme synthesized (at the expense of ATP per glucose) or to
increase total ATP production without requiring increased

mitochondrial capacity (Pfeiffer et al, 2001; Vazquez et al,
2010; Shlomi et al, 2011). Alternatively, instead of functioning
to increase ATP production, aerobic glycolysis may promote
tumor growth by increasing the concentration of central
carbon metabolites available to drive biosynthesis (Vander
Heiden et al, 2009).

Whatever its function, the occurrence of the Warburg effect
reflects the activation of oncogenic signaling pathways whose
physiological function is to promote glucose uptake and
anabolic metabolism. These include the PI3K-Akt pathway, the
natural effector pathway of insulin signaling, which induces
glucose uptake and lipogenesis (Elstrom et al, 2004; Robey
and Hay, 2009). The PI3K-Akt pathway is frequently mutated
in cancer. In addition, it can be activated by Ras, whose
mutation underlies most pancreatic cancer and many other
lethal cancers (Wallace, 2005). In addition to the PI3K-Akt
pathway, Ras triggers several other pro-growth signaling
cascades such as the MAPK pathway. Moreover, it has
multifarious metabolic effects including induction of
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autophagy and macropinocytosis and inhibition of oxidative
phosphorylation (Bar-Sagi and Feramisco, 1986; Chun et al,
2010; Yang et al, 2010; Gaglio et al, 2011; Lock et al, 2011).

Like oncogenes, hypoxia promotes glycolytic flux, in part
due to the activation of hypoxia-induced factor (HIF) and
its downstream target genes, which include many glycolytic
enzymes (Tennant et al, 2009; Semenza, 2010). Both Ras
and hypoxia decrease flux of glucose through pyruvate
dehydrogenase (PDH) into the TCA cycle, in part through
activation of pyruvate dehydrogenase kinase (PDK). In such
cases, the TCA cycle can be fed by alternative substrates
including glutamine, whose importance for cell growth
and survival is increased by both Ras activation and hypoxia.
This may reflect enhanced reliance on glutamine as a
bioenergetic substrate (Le et al, 2012) or as an anabolic
precursor to amino acids or acetyl-CoA/ lipids (Gaglio et al,
2011; Metallo et al, 2012).

Here, we study how oncogene activation and hypoxia affect
energy metabolism, specifically (i) the contribution of aerobic
glycolysis versus oxidative phosphorylation to total ATP
production, and (ii) the relative contribution of glucose,
glutamine versus other nutrients to producing the reducing
power that drives oxidative phosphorylation. Toward this end,
we combine LC-MS-based isotope tracer data with oxygen
consumption measurements in a quantitative redox-balanced
metabolic flux model. Notably, although oxygen consumption
rate measurements were previously shown to be valuable for
metabolic flux analysis in microbes (Varma and Palsson,
1994), oxygen uptake has not been used together with isotope
tracer data to facilitate flux inference in mammalian cells. We
apply this approach to study the effect of Ras and Akt
activation and hypoxia on fluxes, providing a comprehensive
and quantitative view of the impact of these factors on ATP
production routes. Through this approach, we find that
glutamine-driven oxidative phosphorylation is a major ATP
source even in oncogene-expressing or hypoxic cells.

Results and discussion

Quantifying ATP production routes via
a redox-balanced metabolic flux model

To study ATP production routes, we used Bax� /� , Bak� /�

murine renal epithelial cells immortalized by expression of
adenovirus E1A and dominant-negative p53 (Degenhardt et al,
2002) (iBMK cells). Isogenic cell lines were generated by
transfecting cells with vector expressing either oncogenic
H-RasV12G or myr-Akt (Degenhardt et al, 2006; Degenhardt and
White, 2006). Note that activation of these specific genes may
not result in identical metabolic consequences to that of other
related family members that are frequently mutated in cancer
(e.g., K-Ras, PI3KCA). Introduction of either oncogene did not
substantially impact cellular growth in vitro (Supplementary
Table 1), but greatly enhances tumorigenicity in vivo, as
evident by faster allograft growth, with the effect of Ras yet
stronger than that of Akt (Degenhardt and White, 2006).

To quantify fluxes in central metabolism, we combined three
types of measurements (Figure 1A, see also Methods): (i)
uptake and excretion rates of major nutrients (glucose,
glutamine, and oxygen, including the fraction of oxygen

consumed by oxidative phosphorylation as measured by
respiratory chain inhibition) and waste products (lactate,
glutamate, pyruvate, and alanine); (ii) cellular DNA, RNA,
protein, and fatty acid content (Supplementary Table 2)
together with cellular growth rate to determine the flux of
metabolic building blocks into biomass; and (iii) steady-state
labeling of intracellular metabolites determined by LC-MS
when cells are fed media with [U-13C]-glucose or [U-13C]-
glutamine (Supplementary Figures 1–4).

To infer intracellular metabolic fluxes, we constructed a
metabolic network model of glycolysis and TCA cycle
(Supplementary Table 3) and applied metabolic flux analysis
(MFA) to identify a flux distribution that would optimally fit
the experimental data sets. The computational flux model is
redox balanced, i.e., the high energy electron (NADH or
FADH2) production rate matches the consumption rate by
oxidative phosphorylation. Flux confidence intervals were
derived by directly computing the range of possible fluxes for
each reaction that enable close-to-optimal fit with the
experimental data, by iteratively running the MFA while
constraining the flux through each reaction to increasing (and
then decreasing) values (Methods; note that reactions not
included in the metabolic network model may introduce
additional error beyond that reflected in the computed
confidence intervals). In all cases, we obtained fluxes that
resulted in good agreement with the steady-state labeling data
(Supplementary Figures 1–4). As a further validation of the
inferred fluxes, we measured the kinetic labeling of intracel-
lular metabolites (for 72 h) as well as their absolute
concentrations (Supplementary Table 4). The fluxes obtained
solely by fitting the steady-state data resulted also in good
agreement with the experimentally observed kinetic labeling
patterns (Methods; Supplementary Figures 1–4).

Predicted fluxes were used to calculate the contribution of
glycolysis and oxidative phorphorylation to ATP production,
considering that glycolysis makes 2 ATPs per glucose molecule
and the oxidative phosphorylation makes on average 2.5 ATPs
per NADH oxidation and 1.5 ATP per FADH2 oxidation. To
assess the contribution of glucose, glutamine, or acetyl-CoA
(produced by the catabolism of fatty acids or amino acids) to
generating the reducing power that drives oxidative phosphor-
ylation, we calculated the rate of high-energy electron
donation from each of these nutrients. To this end, we
computationally inferred for each NADH/FADH2-producing
reaction the abundance of substrate carbons being oxidized
that originate from glucose, glutamine, and other sources of
acetyl-CoA (see Methods).

Our flux-based approach for inferring the contribution of
specific nutrient oxidation to generating reducing power has
much in common with a classical approach involving feeding
cells with radioactive-labeled nutrients and tracking the
release of radioactive CO2(Guppy et al, 1997, 2002). However,
these previous methods only tracked reactions that make CO2,
while many NADH and FADH2-producing reactions were not
included. Moreover, these previous methods were blind to
oxidation of alternative non-radioactive substrates, which are
visible in our analysis as we track both labeled and non-
labeled carbon atoms. Thus, our approach enables both
the quantitation of the total generated reducing power and
the contribution of individual reactions.
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Glutamine-supported oxidative phosphorylation
is a major source of ATP in the parental iBMK
cell line

The total ATP production rate in the parental iBMK cell line
was found to be 861 nmole/ml cells/h (where ml refers to the

packed cell volume, with 1 ml equal to B106 cells). The relative

contribution of oxidative phosphorylation and aerobic glyco-

lysis wasB80 and 20%, respectively (Supplementary Table 3),

consistent with previous results(Zu and Guppy, 2004). The

major contribution of oxidative phosphorylation to total ATP

production in this cell line is evident when treating the cells
with either the complex III inhibitor antimycin A or the ATP
synthase inhibitor oligomycin, both of which lead to B5-fold
increase in the NADH/NADþ ratio and B10-fold decrease in
the ATP/ADP ratio (Figure 1C).

Tracking the source of reducing power, we found that
oxidation of glutamine, glucose, and acetyl-CoA derived from
other sources (such as unlabeled fatty acids or amino acids)
contributes 60, 30, and 10% of the total NADH/FADH2

production, respectively. Glutamine’s uptake rate is B30%
that of glucose, and it directly feeds TCA cycle through
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Figure 1 Glutamine-driven oxidative phosphorylation supports ATP production in iBMK-parental cells. (A) Redox-balanced metabolic flux analysis scheme.
Experimental measurements including uptake/excretion rates and steady-state intracellular labeling patterns were input into a redox-balanced metabolic flux analysis
model. Fluxes with confidence intervals were obtained by optimizing the simulation to fit the steady-state experimental observations. The resulting fluxes also fit kinetic
labeling data well. (B) Metabolic fluxes in the parental iBMK cell line. Numbers indicate metabolic flux in nmole/h/ml cells. Colors indicate the contribution of glucose
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concentrations. Pyr, pyruvate; AKG, a-ketoglutarate; OAA, oxaloacetate. (C) Effect of oxidative phosphorylation inhibitors on the ATP/ADP ratio and NADH/NADþ ratio.
Absolute concentrations of ATP, ADP, NADH, and NADþ were measured by isotope ratio-based MS 5 min after addition of vehicle (DMSO), the complex III inhibitor
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a-ketoglutarate. Glucose-derived two-carbon flux into TCA
cycle (via pyruvate dehydrogenase) is 60% lower than that of
glutamine flux into TCA cycle. Glucose-derived four-carbon
flux into TCA cycle (via pyruvate carboxylase) amounts to
B2% of glutamine flux into TCA cycle.

In addition to glucose-derived carbon atoms being a
contributor to TCA turning, glucose-driven glycolysis and
serine synthesis in the cytosol can both produce high-energy
electrons in the form of cytosolic NADH. To evaluate the
potential contribution of the serine pathway to high-energy
electron generation, we conducted studies with a U-13C-serine
tracer, which revealed that NADH production via this pathway
in the tested cell lines is B3% of glycolytic flux (see Methods).
Moreover, we observed that, of total NADH generated in the
cytosol, 84% is consumed to reduce pyruvate to lactate. For
the remaining 16% of cytosolic high-energy electrons to
contribute to ATP production, they must be imported into
the mitochondrion via the malate-aspartate shuttle, which
produces mitochondrial NADH, or the glycerol-phosphate
shuttle, which converts cytosolic NADH into mitochondrial
FADH2. For simplicity, we assume exclusive use of the malate-
aspartate shuttle. If cells were instead to exclusively use the
glycerol-phosphate shuttle, oxidative ATP production would
decrease by 3% (Supplementary Figure 5).

To validate the inferred greater contribution of glutamine
than glucose to oxidative metabolism, we measured O2 uptake
in cells deprived of either glucose or glutamine (Figure 1D). We
find that deprivation of either glucose or glutamine decreases
the whole cell NADH/NADþ ratio, with the effect of glutamine
removal being greater (P¼ 0.02, Methods). Note that the
observed change in the NADH/NADþ ratio reflects the
combination of cytosolic and mitochondrial pools. The effect
on different compartments may vary by nutrient, a topic that
merits further investigation using compartment-specific mea-
surement methods (Hung et al, 2011; Zhao et al, 2011). Similar
to the greater effect of glutamine on the NADH/NADþ ratio,
glutamine removal was also found to more strongly decrease
oxygen uptake (Po0.001). These results are in agreement with
those of Le et al (2012) showing a significant drop in ATP level
when cells are treated with a glutaminase inhibitor.

Ras induces aerobic glycolysis without increasing
the total ATP production rate

Activation of either Ras or Akt induces aerobic glycolysis, as
evident by a roughly two-fold increase in glucose uptake and
lactate secretion (Figure 2A). However, following the activa-
tion of either oncogene, most cellular ATP is still produced
oxidatively, with Ras but not Akt activation causing a decrease
in oxidative ATP production (Figure 2B). Oxygen consumption
was significantly decreased by Ras but not Akt activation
(P¼ 0.01 and P¼ 0.97, respectively) with the Ras versus Akt
difference also significant (P¼ 0.02). Consistent with this,
treating the oncogene-activated cells with mitochondrial
inhibitors leads to a rise in the NADH/NADþ ratio of 6.0
and a drop in ATP/ADP ratio of B88% following Akt
activation and to a lesser rise in NADH/NADþ of 3.9
and smaller drop of ATP/ADP B76% for Ras (P¼ 0.05 for
greater fractional drop in ATP/ADP ratio in Akt-driven than

Ras-driven cells for antimycin, P¼ 0.03 for oligomycin)
(Supplementary Figure 6A, Figure 2C). Our finding of Ras
activation decreasing oxidative ATP production is in agree-
ment with previous reports of Ras inhibiting both oxygen
consumption and glycolytic two-carbon flux entering TCA
cycle (Chun et al, 2010; Yang et al, 2010; Gaglio et al, 2011).

Glutamine oxidation remains the main source of reducing
power following the activation of both Ras and Akt
(Figure 2D). Similar to the parental cell line, removal of
glutamine decreases the consumption of oxygen (Figure 2E)
and the NADH/NADþ ratio (Supplementary Figure 6B) to a
greater extent than glucose removal (P¼ 0.01 for oxygen
uptake measurements in Ras and P¼ 0.003 in Akt). Moreover,
for the Ras cell line, the importance of glutamine as a TCA
substrate is increased, with the relative contribution of
glutamine oxidation to reducing power rising from 62% to
75%. The increased reliance on glutamine results from
unchanged glutamine flux into the TCA cycle via a-ketogluta-
rate, paired with decreased influx of other substrates, most
importantly decreased glycolytic two-carbon flux (Figure 2D).

Interestingly, while Ras activation induces aerobic
glycolysis, it proportionally reduces oxidative phosphoryla-
tion, such that the total ATP production rate remains the same.
This suggests that the induction of aerobic glycolysis by Ras, at
least in normoxia, is not for the purpose of increasing ATP
production, arguing against claims that Warburg effect
promotes tumorigenesis by accelerating the production of
usable energy (Pfeiffer et al, 2001; Shlomi et al, 2011).

Glutamine-supported oxidative phosphorylation
is a major source of ATP also in hypoxia

To quantify metabolic flux in hypoxia, we repeated the
analysis described above, examining the parental iBMK cells
grown in a hypoxic chamber with 1% oxygen. Similarly to
oncogene activation, hypoxia induces aerobic glycolysis
(Figure 3A). More interestingly, in hypoxia, the oxygen
consumption rate is reduced by only 30% compared with
normoxia. Our observation of persistent oxygen uptake in
hypoxia is consistent with Frezza et al (2011), who reported an
oxygen consumption rate of the HCT116 cell line in hypoxia
that is 50% of the normoxic rate . Hence, we find that 60% of
cellular ATP is still made oxidatively in hypoxia (Figure 3B),
which is confirmed by profound ATP/ADP ratio drop and
NADH/NADþ ratio increase upon treatment with mitochon-
drial inhibitors (Figure 3C). As expected, the drop in ATP/ADP
due to the oxidative phosphorylation inhibitors is less severe
in hypoxia (P¼ 0.002 for antimycin and P¼ 0.002 for
oligomycin).

In terms of reducing power, we find that, also in hypoxia,
more than 60% of NADH/FADH2 is produced by glutamine
oxidation. The contribution of glucose oxidation decreases
from 32% in normoxia to 17% in hypoxia (Figure 3D). The
decreased contribution of glucose oxidation to producing
reductive power results from a 4-fold decrease in pyruvate
dehydrogenase (PDH) flux in hypoxia, which is consistent
with the known PDH inhibition by hypoxia (Papandreou et al,
2006). In contrast, the contribution of other sources increases
in hypoxia. The role of glutamine-supported oxidative
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phosphorylation in hypoxia is further demonstrated via a
significant decrease in oxygen consumption and NADH/
NADþ ratio upon glutamine removal in hypoxia (P¼ 0.03
for oxygen consumption and P¼ 0.01 for NADH/NADþ ratio;
Figure 3E).

The changes in ATP production routes induced by hypoxia
resemble those induced by Ras activation: that is, the
increased reliance on aerobic glycolysis for ATP production,
as well as the decreased reliance on glucose oxidation for
generating mitochondrial reducing power. These changes may
provide Ras-driven tumor cells an advantage in hypoxia.

To examine the generality of our observation of persistent
oxidative ATP production in hypoxia, we analyzed the impact
of antimycin and oligomycin treatment on hypoxic Ras- and
Akt-driven cells (Figure 3F), with both drugs decreasing the
ATP/ADP ratio by B 50% in both cell lines, while also
substantially increasing the NADH/NADþ ratio. Consistent
with these observations, we observed persistent oxygen
uptake also in these cell lines in hypoxia. Similar to that in
the parental cells, in hypoxia, glutamine deprivation was
found to significantly decrease oxygen consumption and

the NADH/NADþ ratio in these cell lines (Figure 3G),
emphasizing the general dependence of both normoxic- and
hypoxic-cultured murine renal epithelial cells on glutamine to
power oxidative phosphorylation irrespective of oncogene
activation.

ATP production routes in cancer cell lines in both
normoxia and hypoxia

To study the importance of glutamine-supported oxidative
phosphorylation in other cell lines, we extended our analysis
to two common cancer cell lines: 4T1, Akt-driven mouse
mammary tumor cell line and ASPC1, a K-Ras-driven human
pancreatic cancer cell line, in both normoxia and hypoxia.
Similar to the iBMK cell line, in both 4T1 and ASPC, the
majority of ATP is made oxidatively. Hypoxia decreases the
oxidative phosphorylation rate by 60% in 4T1 and 40% in
ASPC1, while increasing the glycolytic rate in both cell lines,
and increases the fraction of glucose excreted as lactate instead
of entering TCA cycle. However, in both cases, oxidative
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phosphorylation continues to account for more than 50% of
total energy production (Figure 4A). To assess the importance
of glucose and glutamine oxidation, we measured the oxygen
consumption rate after glucose or glutamine removal
(Figure 4B). In both cell lines, in either hypoxia or normoxia,
glutamine removal more strongly reduced oxygen consumption
than glucose removal, confirming an essential role for glutamine
in supporting oxidative phosphorylation. Interestingly, in
ASPC1 cells, especially in hypoxia, when glucose is removed
from media, oxygen consumption increases. This suggests that,
in glucose starvation, cells can upregulate oxidative phosphor-
ylation, driven by glutamine and other sources, to compensate
for the decreased glycolytic ATP production.

To analyze the role of oxidative phosphorylation in a
broader set of cell lines, we applied flux balance analysis
(FBA) to predict metabolic flux rates through glycolysis and
oxidative phosphorylation in each of the NCI-60 cell lines
based on available metabolite uptake and secretion rates from
Jain et al (2012) (see Methods), which did not include the
oxygen uptake rate (preventing redox balancing in this
analysis). Utilizing the same metabolic network model of
glycolysis and TCA cycle as for the 13C-based flux analysis
(Supplementary Table 3), FBA was applied to search for flux
rates that maintain stoichiometric mass balance, optimally
match the measured uptake and secretion rates (of glucose,
lactate, glutamine, and glutamate), and have no thermo-
dynamically infeasible cycles (Methods). Our FBA analysis
shows that oxidative phosphorylation contributes 88% of the
total ATP production on average across the 60 cell lines
(Figure 4C). Notably, the predicted mitochondrial ATP
production rates for all 60 cell lines analyzed here are
consistent with cellular solvent capacity constraint, which
gives rise to an upper threshold of 8.4 mmole/ml cells/h
(Supplementary Figure 7) (Vazquez and Oltvai, 2011).
Reassuringly, applying the same FBA approach to predict
ATP production routes in the iBMK cell lines (using just
corresponding uptake and secretion measurements) resulted
in qualitatively similar results to those obtained with the
isotope tracer data (with an average error of 5% in the
prediction of glycolytic versus oxidative phosphorylation ATP
production).

To further validate the predicted contribution of oxidative
phosphorylation to ATP production, we repeated the flux
analysis in the NCI60 cell lines using a genome-scale human
metabolic network model (Duarte et al, 2007). We constrained
metabolite uptake and secretion rates using data from Jain et al
(as in the above analysis with the reduced network model of
Supplementary Table 3) and further included a biomass
reaction constraint (Methods) (Folger et al, 2011). Applying
FBA to predict fluxes that maximize the ATP production rate
resulted in an average contribution of oxidative phospho-
rylation to total ATP production of 84% across cell lines.
Alternatively, constraining oxygen consumption rate to a range
of likely rates (around the measured oxygen consumption in
the iBMK cell lines) without maximizing ATP production
predicted an average contribution of 70% (Supplementary
Figure 8). In both cases, the predictions obtained with the
genome-scale metabolic network model support the major
contribution of oxidative phosphorylation to ATP production.

In summary, we have developed an approach to analyzing
cellular metabolic fluxes including ATP production routes,
which combines quantitatively 13C-tracer and oxygen uptake
measurements. The results contribute to growing literature on
the importance of glutamine in driving TCA cycle flux,
especially in cells with activated Ras or grown in a hypoxic
environment (Frezza et al, 2011; Gaglio et al, 2011; Le et al,
2012; Metallo et al, 2012). Importantly, even in such
circumstances, we show that oxidative phosphorylation
remains the largest quantitative contributor to ATP produc-
tion. Moreover, we find that Ras has no net effect on ATP
production, as the increase in glycolysis is offset by decreased
oxidative phosphorylation. Taken in totality, these observa-
tions argue for a primary role of oxidative metabolism in most
cancers.

Materials and methods

Cell lines and culture conditions

Immortalized baby mouse kidney (iBMK) epithelial cells were
generated as described previously (Degenhardt et al, 2002). Briefly,
primary kidney epithelial cells from mice double deficient for Bax and
Bak (Bax� /�/Bak� /� ) were immortalized by E1A and dominant-
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negative p53 expression (Degenhardt et al, 2002; Mathew et al, 2008).
iBMK cells expressing human oncogenic H-RasV12G or myr-Akt were
derived by electroporation with pcDNA1.H-RasV12G (Lin et al, 1995) or
pcDNA3.myr-Akt (Plas et al, 2001), respectively, followed by zeocin
selection. The resulting cell lines were grown in Dulbecco’s modified
eagle media (DMEM) without pyruvate (Cellgro), supplemented with
10% dialyzed fetal bovine serum (HyClone) in all metabolomics
experiments. For normoxia experiments, cells are grown in an
incubator containing 5% CO2 and ambient oxygen at 371C. For
hypoxia experiments, cells are grown and all experiments are
completed inside a hypoxia glove box (Coy Lab) containing 1%
oxygen and 5% CO2 at 371C. For labeling experiments, medium was
prepared from DMEM without glucose or glutamine (Cellgro), with the
desired isotopic form of glucose and/or glutamine added to a final
concentration of 4.5 g/l glucose and 0.584 g/l glutamine. Short-term
experiments (e.g., nutrient uptake and kinetic flux profiling) were
conducted at 70–80% confluency; for longer-term labeling experi-
ments, confluency varied as the cells multiplied.

Exchange rate measurements

Media samples were collected at various time points. Glucose,
glutamine, and lactate were measured by enzymatic assay with
electrochemical detection on a YSI7200 instrument (YSI, Yellow
Springs, OH). Alanine and pyruvate were measured by LC-MS. Oxygen
consumption was measured using a Seahorse XF24 flux analyzer
(Seahorse Bioscience, North Billerica, MA). To measure oxygen uptake
in hypoxia, the Seahorse instrument was placed in the hypoxia
chamber with 1% oxygen. To probe the fraction of oxygen consump-
tion, which is effectively coupled with the electron transport chain, we
measured the oxygen consumption rate when cells were treated with
an electron transport chain inhibitor, antimycin A. We observed that
B80% of oxygen consumption across the studied cell lines and growth
conditions was used for oxidative phosphorylation.

Metabolomic experiments and LC-MS analysis

For all metabolomic and isotope-tracer experiments, metabolism was
quenched, and metabolites were extracted by quickly aspirating the
media and immediately adding a 80:20 methanol:water extraction
solution at � 801C.

Samples were analyzed using multiple LC-MS systems (each from
Thermo Scientific and fed by electrospray ionization), as described
previously (Munger et al, 2008; Lemons et al, 2010; Lu et al, 2010). In
brief, a stand-alone orbitrap mass spectrometer (Exactive) operating in
negative-ion mode was coupled to reversed-phase ion-pairing chro-
matography and used to scan from m/z 85–1000 at 1 Hz and 100 000
resolution; a TSQ Quantum Ultra triple-quadrupole mass spectrometer
operating in positive-ion mode was coupled to hydrophilic interaction
chromatography on an aminopropyl column and used to analyze
selected compounds by multiple reaction monitoring; and a TSQ
Quantum Discovery triple-quadrupole mass spectrometer operating in
negative-ion mode was coupled to reverse-phase ion-pairing chroma-
tography and used to analyze selected compounds by multiple reaction
monitoring. Data were analyzed using the MAVEN software suite
(Melamud et al, 2010). The results are adjusted for natural 13C abundance
and enrichment impurity of labeled substrate supplied to cells.

Absolute metabolite levels were quantified as previously described
(Bennett et al, 2008) and normalized by packed cell volume.

De novo serine synthesis rate

To quantify the rate of serine synthesis, cells were cultured in DMEM
media containing U-13C-serine. The steady-state labeling pattern of
intracellular 3-phosphoglycerate, serine, and glycine was measured by
extracting metabolites after washing three times with ice-cold PBS.
Labeled 3-phosphoglycerate was never observed, confirming that
reverse serine synthesis pathway flux is negligible. Glycine was
observed in two forms: unlabeled and Mþ 2 (whose relative fractions
are referred to as G0 and G2 below). Serine was observed in four forms:
unlabeled, Mþ 1, Mþ 2, and Mþ 3, with fractions S0, S1, S2, S3,

respectively. These forms arise via de novo synthesis from 3-
phosphoglycerate (making unlabeled via F1, see Supplementary
Figure 9), uptake from media (making Mþ 3 via F2), and reverse
SHMT flux from glycine (making all possible forms, depending on the
labeling of glycine and the methylene-THF methyl group, via F3). The
fraction of methylene-THF with the reactive one-carbon unit unlabeled
is denoted T0 and that labeled on the one-carbon unit is denoted T1. We
also measured net serine uptake flux F2 by monitoring the change of
serine concentration in the media.

Under isotopic steady state, the balance equations for the four
labeling forms of serine can be formulated as following:

S0ðF1þ F2þ F3Þ ¼ F1þ F3�T0�G0 ð1Þ

S1ðF1þ F2þ F3Þ ¼ F3�T1�G0 ð2Þ

S2ðF1þ F2þ F3Þ ¼ F3�T0�G2 ð3Þ

S3ðF1þ F2þ F3Þ ¼ F2þ F3�T1�G2 ð4Þ

The de novo serine biosynthesis flux is derived by solving the above
equations for F1:

F1 ¼ F2�
S0 � G0

G2
S2

S3 � G2

G0
S1

ð5Þ

Redox-balanced metabolic flux analysis

To infer intracellular metabolic fluxes, we constructed a metabolic
network model of glycolysis and TCA cycle (Supplementary Table 3)
and applied metabolic flux analysis (MFA) to identify a flux
distribution that optimally fits the following experimental data sets
(Supplementary Figures 1–4 and Supplementary Table 5): (i)
measured uptake and secretion rates of glucose, glutamine, lactate,
pyruvate, and alanine; (ii) measured oxygen consumption rate used by
oxidative phosphorylation; (iii) steady-state isotopic labeling pattern
of pyruvate, a-ketoglutarate, citrate, malate, and cytosolic acetyl-CoA,
where the labeling pattern of cytosolic acetyl-CoA was inferred based
on the steady-state labeling pattern of fatty acids via isotopomer
spectral analysis (ISA)(Kharroubi et al, 1992); (iv) consumption of
metabolic intermediates for biomass production based on measured
growth rate and biomass component contents. Specifically, we
measured the DNA, RNA, and protein contents to be equal to 11, 14,
and 88 mg/ml cells, respectively, in iBMK cells. Cellular demands for
acetyl-CoA based on steady-state fatty acid concentrations, cellular
growth rate, and fatty acid uptake rates are shown in Supplementary
Table 5; and (v) measured flux in the serine biosynthesis pathway.

The MFA method was formulated as an optimization problem
aiming to select a vector of fluxes v that maximizes the log-likelihood
of measured mass-isotopomer distributions in both 13C-glucose and
13C-glutamine experiments, denoted Xglc

j and Xgln
j . The mass-isotopo-

mer distributions produced by the set of fluxes v given the metabolic
network in Supplementary Table 3 are denoted Yglc

j ðvÞ and Yglc
j ðvÞ.

Assuming a Gaussian error model for measured isotope labeling data,
maximum log-likelihood is obtained by minimizing the variance-
weighted sum of squared residuals between measured and computed
mass-isotopomer distributions(Antoniewicz et al, 2006, 2007), where
Vglc

j and Vgln
j are diagonal matrices with the inverse of experimental

variance for the labeling pattern of metabolite j:

min
v

X
j

h
Xglc

j �Yglc
j vð Þ

� �T
�Vglc

j � Xglc
j �Yglc

j vð Þ
� �

þ Xgln
j �Ygln

j vð Þ
� �T

�Vgln
j � Xgln

j �Ygln
j vð Þ

� �i
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s. t.

S � v ¼ 0 ð6Þ

fi� 2sipvipfiþ 2si for reactions i with directly measured rate ð7Þ

viX0 for reactions i that are irreversible, ð8Þ

where S represents a stoichiometric matrix (with Sji representing the
stoichiometric coefficient of the jth metabolite in the ith reaction), and
fi and si represent the measured flux through reaction i and s.d.,
respectively. Stoichiometric mass and redox-balance constraint is
enforced by Equation 6. Metabolite uptake and secretion rates,
biomass demand fluxes, serine biosynthesis rate, and oxidative
phosphorylation rate (based on oxygen consumption rate) were
constrained to experimental measurements, allowing them to vary
by no more than two experimental s.d. from the mean measured fluxes
(Equation 7; Supplementary Tables 3 and 5). Irreversible reactions are
constrained to have positive flux (Equation 8). To efficiently compute
the mass-isotopomer distributions for both the glucose- and glutamine
labeling experiments (Yglc

j ðvÞ and Ygln
j ðvÞ) per each candidate flux

vector (v) as part of the optimization, we employed elementary
metabolite units (EMU)(Antoniewicz et al, 2007). The non-convex
optimization problem was solved using Matlab’s Sequential Quadratic
Optimization (SQP). To overcome potential local minima in SQP
algorithm, the optimization problem was solved several times, starting
from different sets of random fluxes.

To compute flux confidence intervals, we used the likelihood ratio
test to compare the maximum log-likelihood estimation, computed by
the above SQP optimization, with that obtained when constraining the
flux to higher or lower values. Specifically, we iteratively ran the SQP
optimization to compute the maximum log-likelihood estimation
while constraining the flux to increasing (and then decreasing) values
(with a step size equal to 5% of the flux predicted in the initial
maximum log-likelihood estimation). The confidence interval bounds
were determined based on the 95% quantile of w2-distribution with one
degree of freedom (Antoniewicz et al, 2006). The results of this
iterative process (i.e., the probability of a reaction having a range of
possible flux rates) were also used to calculate the s.d. of flux
estimates. This computationally intensive computation of accurate
flux confidence intervals took a total of B48 h on a standard laptop
computer using Matlab.

To compute metabolite labeling kinetics given a flux vector (v)
derived by the above optimization problem, we considered a system of
ordinary differential equations that describe the abundance of
isotopomer k of metabolite j at time t (denoted Uj,k(t)) as following
(Noack et al, 2011):

Uj;kðtÞ
dt

¼
X

i:Sj;i40

via UðtÞ; i; kð Þb U; i; kð Þ� Uj;k tð Þ
Cj

X
i:Sj;io0

vi� mCj ð9Þ

where the a(U(t),i,j,k) and b(U(t),i,j,k) are defined as follows,
assuming that reaction i that makes metabolite j has two substrates
s1 and s2: a(U(t),i,j,k) is equal to the sum of abundances of
isotopomers of s1 that produce isotopomer k of metabolite j via
reaction i, normalized by the steady-state concentration of metabolite j
(denoted Cj). b(U(t),i,j,k) is defined analogously based on the
abundance of isotopomers of s2. For reaction i that has one substrate,
a(U(t),i,j,k) is defined in the same way, while b(U(t),i,j,k) is equal to 1.
Growth rate is denoted m. The three terms on the right hand side of the
equation (from left to right) represent the sum of production rate
of isotopomer k of metabolite j by metabolic reactions, the sum
of consumption rate of the isotopomer by metabolic reactions, and the
consumption of the isotopomer due to cellular growth. Metabolite
labeling kinetics in terms of relative abundance of mass-isotopomers
was calculated by summing the computed abundance of all
isotopomer with a given mass in each time point. Calculated
metabolite labeling kinetics for each cell line in normoxia for both
glucose and glutamine labeling were compared with experimental
measurements (Supplementary Figures 1–4).

Flux balance analysis (FBA) in NCI-60 cell lines

To predict the most likely fluxes for NCI-60 cell lines, we employed the
same metabolic network model used in the MFA analysis described
above (Supplementary Table 3) and applied the following FBA analysis
to search for a steady-state flux distribution (denoted v) that matches
metabolite uptake and secretion rates measured by Jain et al (2012):

min
v

X
i2E

fi� við Þ2þ e
X

i

v2
i

s. t.

S � v ¼ 0 ð10Þ

viX0 for reactions i that are irreversible ð11Þ

where fi denotes the measured uptake or secretion rate through
reaction i (for every reaction i in reactions’ set E). Specifically, we used
measured reactions for glucose uptake (F1) and lactate secretion (F12)
taken from Jain et al (2012). Glutamine flux into TCA cycle (F11) was
defined as glutamine uptake minus glutamate secretion on the basis of
measurements from Jain et al. An upper bound on acetyl-CoA demand
for fatty acid biosynthesis (F14) was calculated based on the cell line-
specific growth rate (NCI’s DTP database http://dtp.nci.nih.gov/docs/
misc/common_files/cell_list.html), assuming that fatty acids com-
prise less than 20% of cellular dry weight of 200mg per 106 cells. S is the
same stoichiometric matrix as in the MFA analysis (see Supplementary
Table 3). The first term of the optimization function aims to minimize
the difference between measured and predicted metabolite uptake and
secretion rates, whereas the second term aims to minimize the total
sum of square of flux (Schuetz et al, 2007). e was set to 0.001. Similar
results were obtained also for lower values of e.

We used a similar approach to predict likely fluxes for NCI60 cell
lines using a genome-scale metabolic network model (Duarte et al,
2007). Here, we explicitly constrained the flux through nutrient uptake
and byproduct secretion reactions (for F1, F11, and F12), based on the
experimental measurements. We further defined a growth reaction
based on cellular biomass being 60% protein, 10% DNA and RNA, and
10% lipids, and constrained cellular growth rate based on experi-
mental data (from NCI’s DTP database). We then applied FBA in two
ways: (i) optimizing for maximal ATP production rate (and then
minimizing the total sum of fluxes squared as in the above analysis);
(ii) constraining oxygen consumption to be between 75–225 nmol/ml
cells/h (where the lower bound is 50% lower and the upper bound is
50% higher than the average oxygen consumption by oxidative
phosphorylation measured in the iBMK cell lines) and optimizing
for minimal sum of fluxes squared. Varying protein mass between
50 and 90% and DNA/RNA and lipid mass between 3 and 20%
changed the predicted contribution of oxidative phosphorylation
by less than 1%.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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