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Abstract: The totality of chemical space is so immense that only a small fraction can ever be explored.
Computational searching has indicated that bioactivity is associated with a comparatively small
number of ring-containing structures. Pyrrole, indole, pyridine, quinoline, quinazoline and related
6-membered ring-containing aza-arenes figure prominently. This review focuses on the search for fast,
efficient and environmentally friendly preparative methods for these rings with specific emphasis
on iminyl radical-mediated procedures. Oxime derivatives, particularly oxime esters and oxime
ethers, are attractive precursors for these radicals. Their use is described in conventional thermolytic,
microwave-assisted and UV-vis based preparative procedures. Photoredox-catalyzed protocols
involving designer oxime ethers are also covered. Choice can be made amongst these synthetic
strategies for a wide variety of 5- and 6-membered ring heterocycles including phenanthridine and
related aza-arenes. Applications to selected natural products and bioactive molecules, including
trispheridine, vasconine, luotonin A and rutaecarpine, are included.
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1. Introduction

Several recent articles have drawn attention to the virtually boundless extent of chemical space;
the domain that contains the totality of all possible compounds [1,2]. The total number of molecules
that could be made from only 30 atoms is in the range 10?° to 10?* [3], “drug-like” chemical space
comprises over 10° molecules [4,5] and, of course, even these huge numbers are insignificant in
comparison with the protein or nucleic acid spaces. The number of polypeptide chains of modest
(250 unit) length, drawn from the 20 natural amino acids, exceeds the ‘trans-astronomical’ number
of 10°% [6]. The CAS registry currently contains about 10% chemical substances. Its present rate of
growth is about 5 x 10° substances per year, so that at this rate more than 10> years would be needed
just to explore “drug-like” chemical space! It is abundantly evident that only a minute fraction of
chemical space can ever be preparatively accessed. To address this problem, computational algorithms
are being devised capable of virtual screening and/or for locating, within the total space, “islands”
or “trees” of substances with potentially desirable properties such as bioactivity [1,2,7]. Ertl and
co-workers developed self-organising neural networks which showed that a comparatively small
number of ring structural units is associated with bioactivity. They listed 30 heterocyclic moieties as of
crucial importance and 22 of these contained one or more N-atoms [7]. Pyrrole, indole and related
structures figured prominently, as did pyridine, quinoline, quinazoline and analogous 6-membered
ring-containing aza-arenes. The immense size of chemical space presents exciting opportunities of
discovering hitherto unknown and extraordinary substances with properties beneficial to human
society. Its size also represents a huge challenge for preparative chemists such that it is imperative
to open up every possible avenue that might facilitate the task. The exploration and exploitation of
identified “islands” depends critically, of course, on the availability of practical preparative methods.
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Thus, the development of synthetic strategies for the ring systems associated with bioactivity that are
fast, efficient and of low environmental impact, deserves special attention.

The advantages of free-radical based preparative methods include the usually neutral conditions,
the tolerance for many unprotected functional groups and the availability of much kinetic,
thermodynamic and mechanistic data to guide the design of experimental methodology. During the
last two decades a great deal of research has been directed towards making radical-mediated
synthetic methods safer, more efficient and more convenient [8-13]. New tactics have been devised
for avoiding hazardous initiator peroxides or azo-compounds and for dispensing with toxic tin,
mercury, copper and other metal reagents. For example, “pro-aromatic’ reagents, based on the
cyclohexadiene structure, release many radical types without the need for metals [14]. Murphy and
co-workers’ development of organic super electron donors unlocked completely new ways of
generating radicals and radical-ions and harnessing them synthetically [15-17]. The unique properties
of organoboron compounds have led to the design of several different reagent types for radical release
including B-alkylcatecholboranes [18,19] and N-heterocyclic carbene boranes [20-23]. The discovery
of homogeneous photoredox catalysts (PCs) has had huge impact on radical-mediated preparations.
The most popular are complexes of Ru or Ir [24-27] that re-introduce metals, albeit in small
quantities. However, organic dyes and other donor molecules are also coming into use as PCs [28,29].
Heterogeneous photoredox catalysts, particularly titanium dioxide (titania, TiO,), possess the added
convenience of easy removal after use by filtration or centrifugation. Their exploitation for radical
mediated preparations is also developing rapidly [30-32].

The N-O bonds in oximes and in oxime derivatives are comparatively weak and break
homolytically with production of a pair of N- and O-centered radicals. Aldehydes and ketones
are available as starting materials in huge variety from natural and commercial sources. Oximes can be
prepared essentially quantitatively from them simply by treatment with hydroxylamine hydrochloride.
The consequence is that oxime esters of many types containing the >C=N-OC(O)- structural unit
(carbonyl oximes) and oxime ethers containing the >C=N-O- unit are very readily accessible.
Most members of both classes are stable to moderate heat and hydrolysis, are non-toxic and
non-hazardous, are easily handled and have long shelf lives. Suitably functionalised, they have
proved amazingly adaptable for radical generation by an unprecedentedly wide range of methods [33].
These include conventional thermolyses, microwave irradiations, UV photolyses, sensitised UV
photolyses and with several types of photoredox catalysis. Oxime derivatives are therefore particularly
flexible, convenient and benign and stand as very attractive alternatives to other more hazardous
radical precursors. This article reviews the use of both carbonyl oximes and oxime ethers in radical
mediated organic syntheses.

When fittingly stimulated, both compound types initially yield N-centred iminyl radicals >C=N*
(Im, Scheme 1). Those suitably accoutred with acceptor groups can, when appropriately manipulated,
yield azaheterocycles. An O-centred radical [*OC(O)Z] is released from a carbonyl oxime together with
the iminyl radical and can be chosen to end up as volatile or otherwise easily separable by-products.
For the oxime ether precursors, best results are usually achieved with O-aryl substituents. In this
case the by-product is usually a phenol (ArOH) which can readily be removed because of its mild
acidity. Iminyl radicals with butene or butyne type side chains selectively undergo 5-exo cyclisation to
produce 5-member ring containing dihydropyrrole type products. By way of contrast, iminyl radicals
with aromatic or heteroaromatic acceptor substituents preferentially yield 6-membered ring pyridine,
quinoline etc. products. In some instances this results from an initial 5-exo spiro cyclization followed
by ring expansion via an aziridinyl type intermediate (see for example Section 4.1). Preparations
of many different azaheterocycle types may therefore be achieved by careful choice of the acceptor
substituent(s), and by tuning the reaction conditions and methodology.
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Scheme 1. Generation of iminyl radicals from oxime derivatives and subsequent ring closures.

This review also focuses on the iminyl radical based synthetic methodology developed for the
sets of aza-arenes identified above as of importance in the bioactivity islands of chemical space.

2. Syntheses of Dihydropyrroles and Pyrroles

Organotin promoted radical methodology is justly famed because it works seamlessly in so many
situations and has proved so dependable. Many ingenious syntheses of azaheterocycles have employed
organotin hydrides or ditins for the generation of iminyl or aminyl radicals. Zard, for example,
described tin hydride-mediated syntheses of dihydropyrroles, indolizidines and other aza-heterocycles
from sulfenimines (PhS-N=C<), thionocarbazones and other derivatives [34,35]. Nanni and
co-workers generated iminyl radicals by ring closures of C-centred radicals onto organic nitriles
and hence prepared many heterocyclic systems. They also employed tin-free thermolytic and other
processes [36-38]. Much of this earlier research has been reviewed by Bowman and Aldabbagh [39-41]
and/or by Fallis and Brinza [42]. Recently, Zhang and Studer have published an outstanding review
of aza-arene syntheses flowing from radical additions to organic isonitriles [43]. This methodology
exploits the formation and ring closures of amidoyl radicals (Ar-N=C*-R).

2.1. Pyrrole and Dihydropyrrole Preparations from Carbonyl Oximes

Numerous alkaloids contain pyrrole, dihydropyrrole or related rings and many biological roles are
associated with these structures [44—46]. Oxime esters 1 can easily be prepared from oximes reacting
with either carboxylic acids or acyl halides [47,48]. On photolysis they release an iminyl radical
together with an acyloxyl radical and the latter rapidly extrudes CO, with production of a C-centred
radical [48,49] (Scheme 2). Rodrigues, Sampedro and co-workers used acyl oximes such as 2 as
efficient sources of iminyl radicals [50-52]. With this precursor type, the radical co-produced with
the iminyl during UV photolyses was acyloxyl [CH3CO,°] that simply furnished volatile CHy
and CO; as by-products. They reported that the iminyls could be conscripted into syntheses of
many types of heterocycles including dihydropyrroles. UV photolysis of 2 through Pyrex released
iminyl radical 3 with an alkenyl side chain. These selectively cyclised in the 5-exo mode with
production of pyrolidinylmethyl radical 4 that subsequently abstracted an H-atom from co-reactant
cyclohexa-1,4-diene (CHD) to yield 3,4-dihydropyrrole derivative 5 (Scheme 2).

Dioxime oxalates 8 are another type of oxime ester that proved convenient for clean generation
of iminyl radicals. Symmetrical types were made by treatment of an oxime 6 with oxalyl chloride to
yield oxime oxalyl chlorides 7 as intermediates (Scheme 3). Although these could be isolated, they
hydrolysed and degraded quickly, so immediate treatment with another equivalent of either the same
oxime 6, or a different oxime, yielded the symmetrical dioxime oxalates 8 or unsymmetrical types
such as 11a—d respectively [53,54]. Dioxime oxalates 8 were “clean” and atom-efficient because, apart
from CO,, they delivered only iminyl radicals 9 on UV photolysis. Photo-dissociations were aided
by inclusion of 4-methoxyacetophenone (MAP) as photosensitizer and by the presence of an aryl
substituent adjacent to the C=N bond.
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Scheme 2. Photo-dissociation of oxime esters and preparation of dihydropyrroles [48,51].
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Scheme 3. Preparation of dioxime oxalates and their use in dihydropyrrole syntheses [54].

3,4-Dihydropyrrole derivatives 10 were obtained in moderate yields with toluene acting as both
solvent and H-atom donor (Scheme 3). Unsymmetrical dioxime oxalates such as 11 incorporated an
aryl-oxime unit, to promote photo-dissociation, as well as an alkenic acceptor unit. These precursors
enabled non-aromatic dihydropyrroles such as 12a,b to be accessed. Attempts to convert the latter to
pyrolizidines 13 and indolizidines 14 were unsuccessful.

2.2. Pyrrole and Dihydropyrrole Preparations from Oxime Ethers

Thermal preparative methods are often superior because of their simplicity and non-hazardous
nature. O-Phenyl oxime ethers 15 can easily be made by treatment of carbonyl compounds with
the commercially available O-phenylhydroxylamine hydrochloride. Conventional thermolyses of
appropriate derivatives were shown to provide dialkyl- or diaryl-iminyl radicals [55]. Subsequently it
was established that microwave heating (uwave) was a particularly efficient means of releasing iminyl
radicals and mediating dihydropyrrole preparations [56,57].

The optimum procedure utilized toluene as both solvent and H-donor together with an equivalent
of the ionic liquid (IL) 1-ethyl-3-methyl-1H-imidazol-3-ium hexafluorophosphate (emimPFg) to
promote microwave absorbance. This method enabled ketones with but-3-enyl type side chains
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to be converted to dihydropyrroles 16 in good yields in two steps (Scheme 4). The phenoxyl radicals
released from 15 also abstracted H-atoms from the solvent to afford phenol as an easily separable
by-product. When oxime ether 17 with an alkyne side chain was microwave irradiated under similar
conditions, pyrrole 19 was isolated in good yield. Evidently the first-formed methylene-dihydropyrrole
18 rearranged under the reaction conditions.

R? R? R®
PhONH, HCI  PhO, nwave, PhMe 5-ex0
pyndlne “N ZR® emimPFg N* # R® PhMe N
| —_— | — |
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Scheme 4. Preparation of oxime ethers and microwave-promoted syntheses of dihydropyrroles and
pyrroles [56-58].

Castle and co-workers prepared a set of alkyne-substituted oxime ethers 20 and carried out
microwave irradiations of mixtures with tetramethylpiperidine-N-oxide (TEMPO) in benzotrifluoride
solvent [58]. The ring closed radicals were trapped by the TEMPO with production of intermediates 21
(Scheme 4). These also rearranged, with loss of a piperidinyl radical, so providing 2-acylpyrroles 22 in
good to excellent yields.

2.3. Photoredox Catalyzed Preparations of Pyrroles and Dihydropyrroles from Oxime Derivatives

Photoredox catalytic methodology [25,27,59] has also been developed for production of
dihydropyrroles from O-aryl oxime ethers substituted with electron withdrawing groups (EWG) in
their O-aryl units. Narasaka and co-workers prepared oxime ethers 23 containing 4-CN (or 2,4-di-NO,
or 4-CFj3) aryl substituents. On inclusion of a catalytic amount of 1,5-dimethoxynaphthalene (DMN)
and irradiation with UV light in 1,4-cyclohexadiene, dihydropyrroles 25 were isolated in good yields
(Scheme 5) [60]. The incident light raised the photocatalyst to an excited triplet state (PC¥) that then
transferred an electron to the oxime ethers with production of the radical anions 24 (Scheme 5). Loss of
the stable phenolate type anions then occurred with release of the corresponding iminyl radicals that
subsequently underwent 5-exo cyclisation and H-atom transfer with CHD to afford dihydropyrroles 25.

Furthermore, Leonori and co-workers reported recently that the dye Eosin Y (as PC) catalysed
dihydropyrrole formation, simply with light of visible wavelength, when oxime ethers with
O-2,4-dinitroaryl substitution 27 were employed as reactants [28]. Remarkably, Et;N could replace
Eosin Y: visible light irradiation of 27 (EWG = 2,4-di-NO;) with Et3N in CH3CN furnished
imino-alcohols 31 in yields up to 85%. The complex of EtzN with the electron-poor ring of 27, on
excitation with visible light, generated a radical anion that dissociated to give 2,4-dinitrophenoxide
together with pyrrolidinylmethyl radical 28. The oxygen atom was believed to arise from an
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intermediate such as 29 that fragmented to nitrosophenoxide and a pyrrolidine-containing alkoxyl
radical. The latter picked up an H-atom to deliver imino-alcohols 30 as the products (Scheme 5).
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Scheme 5. Photoredox catalytic routes from oxime ethers to dihydropyrroles [28,60].

Weinreb and co-workers described an alternative strategy in which oximes 31 could be used
directly when treated with 2,6-dimethylbenzenesulfinyl chloride in the presence of Hunig’s base
(N,N-diisopropylethylamine, DIEA) and a radical trapping agent in dichloromethane (DCM) [61].
The best radical traps (Z) were found to be TEMPO and diphenyl diselenide; but CHD could also be
used when in great excess (Scheme 6). Probably sulfinate esters 32 were first formed that dissociated
to a caged iminyl/sulfonyl radical pair 33. The reformed N-sulfonylimines 34 then released iminyl
radicals that cyclised and were trapped to afford functionalised dihydropyrroles 35 in moderate to
good yields (Scheme 6).

ArSOCI
R3 DIEA R3
DCM
2 2 3
Rj\/\/\R‘; trap (2) j\/\)\ r\)\ j\/\/\R4 R R
=t S,
RIN R1\N R1\N R1SN R*
)
OH OSOAr 'OSOAr SOzAr
31 trap = TEMPO, 32 33 34 35, Z=TEMPO, SePh, or H

Ph,Se, or CHD 6 examples, 49-65%

Scheme 6. Preparation of dihydropyrroles from N-sulfonylimines [61].

3. Preparations of Pyridine, Quinoline, Phenanthridine and Related Aza-Arenes

Compounds containing the quinoline unit are hugely important to the well-being of society
because they play essential roles across the areas of medicine, pharmacology, nutrition, dyes, and even
electronics [62]. Bioactive natural products containing quinoline cores are widely distributed in many
plants, marine plants, corals, sponges [63—67] and even in chestnut honey [68]. Much the same can
be said for compounds containing phenanthridine units. They are noted for their ability to bind to
DNA [69] and have antimicrobial, anti-inflammatory, and anti-tumor activities [70-74]. Because of
this importance to the field of drug development, synthetic methods for molecules containing these
structural units, particularly short, mild and atom-efficient ones, have attracted great attention.
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3.1. Preparations of Aza-Arenes from Carbonyl Oximes

Iminyl radicals 36 containing suitably sited aromatic acceptor units usually ring close in 6-endo
mode with formation of a 6-membered N-containing ring 38 (Scheme 7). This rule holds good
for cyclisations onto a wide range of aromatic acceptors including benzene, naphthalene, furan,
thiophene, indole, pyridine and analogous moieties. As would be expected for less-favoured 6-endo
processes, the rate constants for these iminyl ring closures are significantly smaller than for 5-exo
cyclisations [75]. Never-the-less practicable preparative protocols have been established for many
mono- and poly-cyclic heterocycles.

oc(0)z
;] electro- R'=H or N
RN cyclic  branched alkyl |||
RE —————— R
O O
N N ’ H
- - ar RI_N
le . .
H = ,” \\
1 . 1 _R* s
R1_N R'=Me, Ar RN R T H
R2 > RZ —|
RS 6-endo AN
< / 1

w39
) : 1 H
o o A R'_N RI_N
o' 36 .-’ 38 — R2 — | R2
-Ae° - e -H* - S
.40 NI

Scheme 7. Iminyl radical 6-endo ring closures onto aromatic acceptors.

It is usually necessary to work with precursors having the second imine substituent R! either Me
or Ar. If R! is H (or a branched alkyl group) formation of a nitrile 37 is either the main process, or 37
is an important by-product (Scheme 7). Nitrile formation may entail an electrocyclic process of the
oxime ester; in which case the proportion may be diminished by suitable solvent choice. With several
types of oxime esters cyclisations onto aromatic rings initially create cyclohexadienyl type radicals
38. If a suitable H-donor is present as solvent, or otherwise, H-atom transfer to radicals 38 yields
cyclohexadienes 39 as a mixture of isomers. In practice this route has rarely been developed. Instead
restoration of aromaticity to the acceptor ring has usually been observed as in quinoline derivative
41. This can result when some radical in the system abstracts the highly labile tertiary H-atom of the
cyclohexadienyl ring in radical 38. However, this is a disproportionation that requires two radicals to
meet and so is not favored because reactive radical concentrations are always very low. The alternative
is that an acceptor molecule A is either added, or is adventitiously present, and single electron
transfer (SET) occurs with production of the corresponding cyclohexadienyl cations 40. These rapidly
deprotonate to yield cyclised products 41 with restored aromaticity. This oxidative process is facilitated
by non-H-atom donor solvents such as PhCF3 or t-BuOH.

Formyl and acyl derivatives of biphenyl, 4-phenylpyridine, 2-phenylthiophene, 3-phenylpyrazole,
2-phenylnaphthalene, 2-phenylindole and analogous aromatics are readily accessible and can be
converted to the corresponding acyl oximes without difficulty (see Scheme 8). UV photolyses of
these precursors through Pyrex in acetonitrile or {-butanol solutions enabled several 6-substituted
phenanthridines 42 to be prepared [50,52]. Similarly, benzo|[c][1,7]naphthyridines 43, and thieno[3,2-c]
isoquinolines 44 were conveniently prepared from the corresponding acyloximes.

Analogous photochemical preparations were described for 2,4-dimethyl-2H-pyrazolo[4,3-c]quinoline
45 and for benzo[i]phenanthridine 46. However, the aldoxime precursor from 2-phenylindole gave
only 2-phenyl-1H-indole-3-carbonitrile 47 in low yield. Isoquinoline derivatives were also obtained in
good yields from photolyses of mixtures of benzophenone acetyl oxime with alkynes in t-butanol [50].
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Scheme 8. Preparations of tri- and tetra-cyclic heterocycles from acyl oximes [50,52].

Huang, Deng and co-workers recently described a novel method of making 2-arylpyridines by
treatment of O-acyl oxime esters and acroleins with iodine and triethylamine in toluene at 120 °C [76].
The method had wide scope and yields ranged from moderate to excellent.

Symmetrical dioxime oxalates containing aromatic acceptors 48 were prepared in essentially
quantitative yields, via the oxime oxalyl chlorides, from the corresponding oximes. On UV photolyses
at ambient temperature in MeCN solution these returned phenanthridines 49 in clean and
atom-efficient processes [54]. Best yields were obtained on inclusion of MAP (ArMeC=0) and it seems
this acted as both a photosensitizer and as an electron acceptor to facilitate the final re-aromatization
(see Scheme 9).

O o R UV, MAP AMeC=0 @
MeCN ArMeC=C
/N‘OJ\"/O‘N/ T =
] o 2xco2 N Amecos = - ArMeCOH
® S
48

r ' Me
49,R'= H 67%,
Me; 73%, Ph; 59%

Scheme 9. Preparation of phenanthridines from dioxime oxalates [54].

Oxime carbonates 52 can be prepared either by treatment of an oxime with a chloroformate 50
or via the 1H-imidazole-1-carboxylates 51. The latter can be obtained from reaction of an alcohol
with carbonyldiimidazole (CDI) (see Scheme 10). For the preparation of aza-arenes commercial ethyl
chloroformate (50, R? = Et) was found to be very convenient because the main by-product (EtOH) is
volatile and easily separated. UV photolyses of appropriately functionalised oxime carbonates, with
MAP as additive, enabled phenanthridines 53, methylfuro- and methylthieno-[2,3-c]quinolines 54 to
be prepared as well as the 5-methylbenzofuro- and 5-methylbenzo[4,5]thieno-[3,2-c]isoquinolines 55 in
generally good yields [75,77].

Oxime carbamates 56 offer another alternative for aza-arene syntheses but have not yet been
much exploited. The Et;N aminyl group is sufficiently small that by-products derived from it
volatilize away. UV irradiation of 56 in PhCF3 at room temperature and with MAP additive provided
3-methoxy-6-methylphenanthridine 57 in 60% yield (Scheme 11) [78]. A slightly higher yield (61%) was
obtained in the absence of MAP. This was a worthwhile finding because residues of the photosensitizer
can be troublesome to remove.
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Scheme 10. Preparations of aza-arenes from oxime carbonates [75,77].
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Scheme 11. Preparation of phenanthridines from oxime carbamates [78].

3.2. Preparations of Aza-Arenes from Oxime Ethers

As mentioned above (Section 2.2) O-aryl oxime ethers, including those with appropriately
placed aryl acceptor units, can easily be made from carbonyl compounds. The 3-phenylpropanone
O-phenyl oxime ethers 58 were subjected to microwave irradiation at 160 °C in -BuPh together with
emimPFg ionic liquid. Quinoline 59a and tetrahydroacridine 59b were thereby produced in moderate
yields [56,57] (Scheme 12).

R
]! uwave, 160°C, 15 min uwave, 160°C, 15 mm
-BuPh, emlmPFe ©/\/\[ lX\ t-BuPh, em|mPF6
Z~Noopp N

59a: R'=R?= H, 46% 60a: X=CH 61a; 4 examples 62-76%
b: R R?=(CH,),; 51% b: X=N b; 3 examples 63-68%

pwave, 160°C, 15 min O uwave, 160°C, 15 min
+-BuPh, em|mPF6 O N /N'OPh +BuPh, emimPFg
—_ >
O ~ N S

63, 64% 64 65, 53%

Scheme 12. Microwave promoted preparations of aza-arenes from oxime ethers [56,57].



Molecules 2016, 21, 660 10 of 25

Similarly, biphenyl-2-carbaldehyde O-phenyl oximes 60a and 2-arylnicotinaldehyde O-phenyl
oximes 60b, with either electron releasing or electron withdrawing substituents, yielded the
corresponding phenanthridine 6la or benzo[h][1,6]naphthyridine derivatives 61b respectively.
The scope of the method was easily extended such that benzo[k]phenanthridine 63 and
benzo[b]thieno[2,3-c]quinoline 65 were prepared in a very few steps and in acceptable yields
(Scheme 12).

3.3. Photoredox Catalyzed Preparations of Aza-Arenes from Oxime Derivatives

The advantages of photoredox catalyzed processes include that visible light, rather than more
damaging UV radiation, is usually sufficient and that only catalytic quantities of the PC are required.
Several such methods have been reported recently for aza-arene preparations with oxime derivatives
as starting materials For example, Zhang, Yu and co-workers generated iminyl radicals from a wide
range of aroyl oximes with fac-[Ir(ppy)s] (ppy = 2-phenylpyridine) as PC [79]. The most reliable and
efficient aroyl group was shown to be 4-trifluoromethylbenzoyl; although other electron deficient
benzoates succeeded to variable extents. Visible light irradiations of biphenyl aroyl oximes 66 with
catalytic quantities of fac-[Ir(ppy)s] in DMF produced phenanthridine derivatives 67 in very impressive
yields (Scheme 13). The PC catalysed the formation of a radical anion from the substrate that then
released an iminyl radical together with the 4-trifluorobenzoate anion. The non-H-atom donor solvent
DMF favoured production of the fully aromatic products shown. Using similar methodology, the
precursors 68 yielded quinolines 69 with a good range of functionality. Furthermore, aroyl oxime
esters 70, with butadienyl substituents, led to iminyl radicals that ring closed selectively in 6-endo
mode with eventual production of pyridine derivatives 71, generally in very good yields.

3 R?
R? O R™ faclirppy)] R COR3 fac{Ir(ppy)s] R’ COR®
O 0 DMF, vis. light DMF, vis. light
/N‘OJ\Ar - ArCOxH N/ R4 -ArCOZH
f

o

66, Ar = 4-CF3CgH4 67; 27 examples, 82-99% 68 Ar 69; 21 examples, 46-88%
3 1 = 2+
R® COR , fac-{Ir(ppy)s] RS COR' X ()
A2 AR DMF, vis. light A N \ R S
| O _— | _ ///,'Il a\ { N/'Ru-\\\N Z [CI,
- ArCOzH 2 I g
N0 ar ? ATTNT R AN TN N '[\I\N\l
70 71; 14 examples, 45-91 % S S »
fac-{Ir(ppy)s] [Ru(bpy)s]Cl>
ArC(O)ONH, --
fac-{Ir(ppy)s] RZ
R2 2 1 2 1 !
O CBSA R O R R AT R RaAUR
DMF, vis. light O j\ | 7 )
~.N 0" Sard C ArCO,H z N
72, Ar = 4-CNCgH4 73 74; 19 examples, 39-88% 75; 8 examples, 45-61%

Scheme 13. Photoredox methods for preparations of aza-arenes from oxime derivatives [79,80].

Yu and An developed a convenient one-pot tactic that enabled aza-arenes to be prepared in one
step from readily available carbonyl compounds [80]. They used O-(4-cyanobenzoyl)hydroxylamine
[ArC(O)ONH;] in conjunction with biphenyl aldehydes 72. To promote aroyl oxime formation
4-chlorobenzenesulfonic acid (CBSA) was employed as additive. On irradiation with visible light from
white LED strips, phenanthridines 74 were obtained directly without isolation of the intermediate
oxime esters 73. A similar one-pot procedure, but employing blue LED strip illumination, was
established for preparations of quinoline derivatives 75 from cinnamaldehyde type precursors.
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A somewhat related method was reported by de Lijser and co-workers who employed
2'-arylbenzaldehyde oxime ethers 76 together with 9,10-dicyanoanthracene (DCA) [29]. Photolyses at
420 nm in CD3CN solutions enabled a set of substituted phenanthridines 80 to be obtained. This process
was believed to proceed via radical cation 77 that ring closed by nucleophilic attack of the aromatic
unit onto the N-atom of the oxime ether 78 (Scheme 14). Subsequent loss of methoxyl radicals led
to cyclohexadienyl cations 79 that underwent deprotonation to afford the product phenanthridines.
Yields were variable with strongly electron-releasing substituents Y being deleterious. The main
by-product was the volatile and innocuous MeOH and no nitrile formation was observed.

DCA in CD3;CN
z 2y ¢v15. light Jy
DCA* A
—_—
. N
#N-oMe - DCA Z
76, DCA = 9,10-dicyanoanthracene 77 78 79 80, 13 examples,
12-63%

Scheme 14. Photoredox production of phenanthridines from 2'-arylbiphenyl oxime ethers [29].

4. Preparations of Quinazoline, Quinoxaline and Related Heterocycles from Oxime Derivatives

Bioactivities of various kinds have been associated with numerous substances having structures
incorporating quinazoline rings. A number are enzyme inhibitors [81], some display antiviral or
anticancer activity [82,83]; others are antibacterial agents [84]. The growing library of approved drugs
containing this structural unit, such as erlotinib (Tarceva®) [85], prazosin (Minipress®, Vasoflex®,
Lentopres®, Hypovase® [86] and gefitinib (Iressa®) [87,88], demonstrates the transferable character of
aspects of its properties. Steady progress has been made in the development of synthetic methods for
quinazoline alkaloids in the last few decades [89-91]. Some useful microwave promoted procedures
have also been described including those based on: aniline N-ethyl carbamates [92], cyano-aromatic
compounds with anthranilonitrile [93], N-(2-cyanophenyl)-N,N-dimethylformamidine derivatives [94],
N-arylamidines with various aldehydes [95] and 2-aminoaryl imines with aldehydes [96]. The common
methods of making the quinazoline ring involve multi-step precursor preparations or special
reagents. A pleasing and effective exception is the CuCl,-catalysed reaction of aldehydes with
anthranilamide [97].

4.1. Preparations of Quinazoline Derivatives

Aminoarylalkanone O-phenyl oximes 81 can be efficiently prepared from the corresponding
ketones (Scheme 15). On mixing these starting materials with an aldehyde and microwave irradiating
at 160 °C, in toluene as H-donor solvent, with emimPFg as ionic liquid, imine intermediates 82 were
formed. Dissociation to phenoxyl and iminyl radicals 83 took place in one pot, without the need to
isolate the imine intermediates 82. Ring closure was exclusively in the 6-endo mode with production
of aminyl radicals 84 that were reduced to 1,2-dihydroquinazolines 85 by H-atom donation from the
solvent [98,99] (Scheme 15).

This proved to be a rapid, mild, reproducible and efficient process with aliphatic, aromatic
and heterocyclic aldehydes; the only by-product being phenol. Analogous methodology with 81 and
ketones was not successful, except with a few ketones such as cyclohexanone. The dihydroquinazolines
85 slowly oxidized to the corresponding quinazolines in air or oxygen. Alternatively, they
could be converted to the latter in high yields by pwave irradiation with DDQ (2,3-dichloro-5,
6-dicyanobenzoquinone) at 100 °C in dichloromethane solvent.
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R1
RZ
@O RCHO, IL R R
R3 NH, Btle 1607 S -OPh R2 R2 Sn
PhONH,.HCI [ . = Phile
l T R3 N>R -PhO g3 )TR R3 N)TR

pyridine
R 82 83 85; 6 examples 46-94%
RC‘\)\\ _OPh
N p—
R3 NH, R R R
2 2 - 2
81 R Sy peeT R e R N
—
RCHO, IL 5 )vR -H+ R3 VJ\ —ZnCI2 R3 N/)\R
ZnCly, PhMe R
o
Hwave 160 86 ZnCI ZnCI 87, 15 examples, 58-91%

Scheme 15. Microwave-assisted preparations of quinazoline derivatives from (2-aminoaryl)alkanone
O-phenyl oximes [98,99].

Inclusion of ZnCl,, a known promoter of imine formation [100], in practice led directly to the
corresponding fully aromatic quinazolines 87. Good to excellent yields were obtained with aliphatic
aldehydes, aromatic aldehydes having either electron-withdrawing or electron releasing substituents
and with heterocyclic aldehydes. The method was also tolerant of substituents in the aminoaryl
rings. It’s likely that, in addition to encouraging imine formation, the ZnCl, forms a complex with the
iminyl N-atom in radical cation 86. The acidity of the H-atom adjacent to the cation would thereby be
increased, thus facilitating proton-coupled electron transfer (PCET) and thence to the quinazolines 87
(Scheme 15).

Conventional organic preparations of quinazolinones usually start with derivatives of anthranilic
acid [89,101]. Several good Pd- and Cu-catalyzed methods for compounds containing this structure
have also been published [102-104]. Malacria, and co-workers devised an ingenious radical cascade
for making quinazolinones starting from N-acyl-N-(2-iodobenzyl)cyanamides 88 [105-107]. Iminyl
radicals 89 were obtained by 5-exo-cyclisation onto the nitrile group of the first-formed aryl radicals.
Subsequent ring closure took place efficiently onto a variety of aromatic and heteroaromatic rings
yielding quinazolin-2-ones 90 (Scheme 16). The method was subsequently extended to the analogous
2-azidoalkyl-N-acylcyanamides 91 and these yielded guanidines 92 [108]. The disadvantages of this
methodology were the need to use toxic cyanogen bromide in the syntheses of the precursors and the
stoichiometric amounts of organotin hydride needed for the ring closures.

Bu3SnH, AIBN
PhH reflux
(:(\Chm ! J§ )j Ar ,
Ar J -

88, Ar = Ph, pyridine, thiophene 89 90, 8 examples, 56-99%
s BusSnH, AIBN Rz
R\H\ PhH, reflux X\N ] 32\ .
- R Rl — R
N; CN NEN
I N
SnBuj; 92,10 examples, 49-82%

Scheme 16. Cascade preparations of quinazolinones and guanidines [105-108].

Aware that 5-aryl-4,5-dihydro-1,2,4-oxadiazoles 93 are readily available, either from 1,3-dipolar
cycloadditions of nitrile oxides to aldimines, or from reactions of amidoximes with carbonyls [109,110],
Chiba and co-workers adopted these as their iminyl radical precursors [111]. They discovered that
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on treatment in DMSO solution simply with dry air at 120 °C, oxidative rearrangements of 93 were
set in motion and resulted in formation of quinazolinones 96 (Scheme 17). Iminyl radicals 94 were
generated either via a SET and proton loss process, or by abstraction of the tertiary benzylic H-atom
followed by B-scission (Scheme 17). The dominant ring closure was in the 6-endo mode yielding
cyclohexadienyl radicals 95 that were oxidised to the quinazolinone products 96 usually in very good
yields. The process was tolerant of electron withdrawing and electron releasing substituents, as well
as 5-heteroaryl substituents. Substrates with ortho- or meta-substituents R® gave rise to mixtures of

isomeric quinazolinones (see structure 99).
6-endo 2 Q o
RS R2
R3 para )N\ 0 N
AN R AN R3
DMSO, H

120°C, R2 Q 95 96; 17 examples, 36-91%
-0 3 <
N R® dry air N
A e SIS L
Ar N e &HY Ar N°®
R2 or X, -XH .

R? o
93 94 5
Ar=Ph ®_< 99 R
5 exo Ar @
R® ortho
" di

Scheme 17. Preparations of quinazolinones from 4,5-dihydro-1,2,4-oxadiazoles [111].

Research with precursor 4,5-dihydro-1,2,4-oxadiazoles with ortho-R3, or containing 5-pyridine
units, indicated that spiro-cyclisation to radicals 97 could compete. In this case an alternative
ring opening to carbamoyl radicals 98 also took place and these species ring closed either
to quinazolinone isomers 99 or in 5-exo-mode onto a 3-phenyl substituent with production of
3-(arylimino)isoindolin-1-one by-products 100.

4.2. Preparations of Quinoxaline Derivatives

The quinoxaline and quinoxalin-2-one structural units are also associated with many natural
products and biologically active substances [112-115]. These rings have been assembled in several
ways based on initial addition of C-, or S-centered radicals to aromatic isonitriles 101. Nanni and
co-workers generated cyano-substituted alkyl radicals by treatment of 4-iodobutanenitrile 102 with
hexamethylditin in t-butylbenzene at 150 °C [116]. Additions to the isonitriles generated imidoyl
radicals 103 that ring closed onto the pendant cyano group in 5-exo mode to afford cyclic iminyl
radicals 104. The cascade continued with a further cyclisation on to the aromatic nucleus followed
by oxidative re-aromatization to produce cyclopentaquinoxalines 105 in moderate yields (Scheme 18).
Significantly, the 2-cyanophenyl disulfide 106 was employed in an analogous process that was free
of organotin compounds. UV photolysis of 106, together with an isonitrile, in benzene solution at
r.t. gave rise to benzo[4,5]thieno[2,3-b]quinoxalines 108 in fair yields via «-thioimidoyl radicals and
polycyclic-iminyl radicals 107 (Scheme 18).

More recently, photoredox catalyzed versions of the isonitrile insertion process requiring only
visible light, have been deployed for quinoxaline preparations. Sun et al. demonstrated that
diethyl 2-bromo-2-(2-isocyanoethyl)malonate 109 was a suitable precursor for 3-cyano-alkyl radicals
when irradiated by blue LED light in the presence of fac-Ir(ppy); as PC. Cyclopenta-iminyl radicals
were obtained as intermediates and afforded cyclopentaquinoxalines 110 in moderate to excellent
yields [117] (Scheme 18). Jamison and co-workers generated alkyl radicals from readily accessible
phenyliodine(III) dicarboxylates [118] with visible light and fac-Ir(ppy)s in DMF [119]. Their substrates
were aromatic isonitriles with ortho-pyrrole or analogous heteroarene substituents 111. The alkyl
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radicals coupled with the isonitriles giving imidoyl radical intermediates 112 that ring closed to
pyrrolo[1,2-a]quinoxalines (and related structures) 113 without the intermediacy of iminyl radicals
(Scheme 18). The process was tolerant of many substituent types enabling a good range of polycyclic
heteroarenes to be prepared. Efficiency was enhanced by their development of a continuous flow
system that integrated isonitrile formation with the photo-redox cascade.

(Me3Sn),, PhBu-t

R
(e @Q @D QD
+
I -Megsn[
NC
101 102

104 105, 4 examples, 30-50%
N
R c Ph, UV
NC CN
106 107 108, 4 examples, 40-70%
fac-Ir(ppy)s,
R NG NaOH, DMA N
vg blue LED, 50 °C @\ j\:k {:[ jik
+ —_— > R l
Br N/
NC Et0,C CO.Et EtO,C COEt EtO,C CO,Et
109 110, 14 examples, 43-88%
"7~ PhI(OCORY),
©Ar ! fac-Ir(ppy)s, DMF )
) NX Vs light, rt . N\¢
R o g IH — « I
111, X=CH, N 112 113,13examples45 81%

Scheme 18. Preparations of quinoxalines via aromatic isonitrile insertion routes [116,117,119].

5. Iminyl Radical Mediated Preparations of Natural Products and Bioactive Compounds

A significant number of iminyl radical based preparative methods have been developed for one or
more stages in total or partial syntheses of natural products and bioactive compounds. Trispheridine
114 occurs naturally in flowering plants of the family Amaryllidaceae [120,121]. Trispheridine itself,
as well as related compounds, are known to possess anti-tumor activity [122], high anti-retroviral
activity [123] and neuro-protective activity [124]. At least six iminyl radical-mediated preparations of
trispheridine have been devised and these are summarized in Scheme 19.

Three of these rely on UVA irradiations; all of easily prepared precursors including dioxime oxalate
115 [54], O-acyl oxime ester 116 [52] and O-phenyl oxime carbonate 117 [77]. All three precursors
were made in high yields, essentially in three steps, from commercially available 6-bromopiperonal.
The highest reported yield (59%) was that from dioxime oxalate 115 but it is probable that yields from
all three processes could be increased by optimization studies. The pwave promoted process from
O-phenyl oxime ester 118 was short, clean and comparatively efficient (70%) [57]. Compound 118
was made in high yield in two steps from 6-bromopiperonal and the reaction conditions were clean
and straightforward. The two photoredox catalyzed methods starting from aldehyde 119 [80] and
trifluoromethylbenzoyl oxime ester 120 [79] had the highest reported yields and reaction conditions
were benign (Scheme 19). The fac-Ir(ppy); catalyzed preparation, starting from aldehyde 119,
took only two steps from 6-bromopiperonal. It should be noted, however, that the co-reactant
O-(4-cyanobenzoyl)hydroxylamine is not commercial; although it can be made in two high-yielding
steps from 4-cyanobenzoyl chloride.
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UV, pyrex \39% 49% / MAP, t-BuOH
MeCN uVv, 3h

MAP, MeCN ‘ -BuPh, IL, pwave, O
uv, 2h 0 | SN 160°, 30 min <O O
—_— -~
59% < N 70% o) N ~OPh

o}
114 118
fac-Ir(ppy)s, fac-Ir(ppy)s
DMF CBSA, DMF
vis. light, 26°C/ 85% 80% \white LED, 30 h
g J i
NH
O e} o 2
< O 2N i < O O N /@J\
o} 0 0 Z NC
120 CF3 119

Scheme 19. Iminyl radical mediated preparations of trispheridine.

Vasconine 123, along with assoanine, oxoassoanine, pratosine and ismine, constitute another
group of alkaloids, isolated from Narcissus plants of the Amaryllidaceae family, that contain
phenanthridine rings [125,126]. The acyl oxime 121 was targeted as a key compound and prepared
in six steps from commercial 2-(3-bromophenyl)ethanol [52]. UV irradiation of this through Pyrex in
MeCN solution afforded phenanthridinylethanol derivative 122 in 53% yield (Scheme 20). Compound
122 can be converted to vasconine 123 by treatment with PBr; and can also act as precursor for

assoanine, oxoassoanine, and pratosine [125].
OH
MeO
PBT3

UV, pyrex
MeCN MeO X
-~ T - | N
MeO 2 MeO Zy X~
122, 53% Vasconine, 123
3 steps OO > fac{Ir(ppy)s] >
“: ) each DM, vis. light
RZO ~ N RZO ~ N
124 125a,b o CeH4-CF3-4 Noravicine, 126a; R',R? = CH,, 93%

Nornitidine, 126b; R'=R? = Me, 96%

Scheme 20. Iminyl radical strategies for vasconine [52], noravicine and nornitidine [79].

Noravicine 126a and nornitidine 126b are bioactive benzo[c]phenanthridine alkaloids with
antitumor activity [127,128]. Zhang, Yu and co-workers devised short (4-steps from methylenedioxy-
naphthalene 124) and high yielding total syntheses employing their photoredox strategy with oxime
esters 125a and b [79] (Scheme 20).
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Natural products that contain the indolizino[1,2-b]quinolin-9(11H)-one structure 130a include
camptothecine, mappicine and the nothapodytines [129]. Camptothecine has been obtained from the
bark of Camptotheca acuminata (Camptotheca, Happy tree, Tupelo family) [130] and mappicine from
Mappia foetida miers (Olacaceae family) [131]. The high bioactivity of these compounds stimulated
the production of many synthetic and semi-synthetic analogues [132,133]. Several pharmaceuticals
containing this core have been licensed for use including irinotecan (Camptosar®, Campto®) which
is used for the treatment of colon cancer and Topotecan (trade name Hycamtin®) which is approved
for treatment of several cancers including ovarian and lung types [134]. A number of total syntheses,
incorporating important radical-mediated steps, have been reported. Of particular note are those
of Curran and co-workers, most of which have key steps involving amidoyl radicals obtained from
additions to aromatic isonitriles [135-141].

Bowman and co-workers implemented an iminyl radical cascade synthetic protocol for the
tetracyclic rings A-D of heterocycles containing the indolizino[1,2-b]quinolin-9(11H)-one 130a
unit [142,143] (Scheme 21). The starting vinyl iodides 127 were assembled in four steps from
cinnamaldehyde derivatives and cyanopyridones and then UV irradiated with hexamethylditin
in t-BuPh at 150 °C. The initial vinyl radicals 128 ring closed onto the nitrile group in 5-exo
mode producing iminyl radicals 129 that underwent cyclisation and re-aromatization to afford
tetracycles 130a—c.

(Me3Sn),

1 1 1
¢-BuPh R Q R o R
UV, 150°C NN X SN o)
o N7 —s N
'Ne NG R2 NN\ i N
128 129 R 2

130a, R'=H,R?=H; 73%
130b, R'=OMe,R?=H; 43%
130c, R'=H,R?>=CO,Me; 21%

Scheme 21. Radical-mediated preparations of indolizino[1,2-b]quinolin-9(11H)-ones [142,143].

Luotonins A, B, E (132a—c) and congeners are structurally related to the mappicines and combine
the 2,3-dihydro-1H-pyrrolo[3,4-b]quinoline ring system with the quinazolinone unit. They have
been isolated from plant species of the genus Peganum found in China and are well-recognized as
remedies in traditional Chinese medicine [144]. They are given for disorders including rheumatism,
inflammation, influenza, hepatitis and leukemia and are known antagonists for human DNA
topoisomerase I [145,146]. Structure/activity relationships have been investigated for heterocycles of
this class [147]. Various non-radical syntheses have been devised [148-151]. Bowman and co-workers
adapted their radical cascade protocol for a comparatively short synthesis of luotonin A 123a [143].
The vinyl iodide radical precursor 131 was made by alkylation of 4-oxo0-3, 4-dihydroquinazoline-
2-carbonitrile with a substituted cinnamyl bromide. On UV irradiation of a solution of 131 and
hexamethylditin in t-BuPh, luotonin A 132a was isolated in a very modest yield of 21% (Scheme 22).
A slightly improved yield (30%) was obtained when the reaction was carried out in a sealed tube, at
120 °C, with added di-t-butyl peroxide.

Courillon, Malacria and co-workers devised an alternative strategy in which the starting material
was the N-acyl-N-(2-iodobenzyl)cyanamide 133 [105] (Scheme 22). For the luotonin synthesis,
3-(azidomethyl)-2-iodoquinoline was prepared in four steps from quinoline chlorcarbaldehyde and
then reduced to the corresponding amine and benzoylated to give 133. UV irradiation of the latter,
with hexamethylditin, in refluxing toluene for 6 h, gave a 43% yield of luotonin A 132a.
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9 (Me3Sn),, t-BuPh, Y O R=H; 43% 133
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! )\\N R=H, 21% N R=H; 54%

132b, R=0OH, Luotonin B
132c, R=OMe, Luotonin E

O
131 _ P‘m NN
132a, R=H, Luotonm_A PhH, air, UV N/ | CN
133

Scheme 22. Iminyl radical mediated syntheses of luotonin A [105,107,143].

The same research team also discovered an organotin-free protocol employing the same
N-acyl-N-(2-iodobenzyl)cyanamide 133 [107]. When this was UV photolyzed with pyridine (5 equiv.)
in refluxing benzene, in air, luotonin A (132a) was obtained in an improved yield of 54%.

Chiba and co-workers successfully adapted their dihydro-1,2,4-oxadiazole method for preparations
of several bio-active compounds. Rutaecarpine (sometimes rutecarpine) is an indoloquinazoline
alkaloid that has been isolated from Euodia plants of the Rutaceae family and has non-steroidal
anti-inflammatory drug (NSAID) activity [152]. The related 2-methoxy-13-methyl-rutaecarpine 136
has antimalarial activity and has been obtained from Araliopsis tabouensis, an African perennial
tree [153]. In their synthesis, Chiba and co-workers prepared dihydro-1,2,4-oxadiazole 135 in two
steps from indolyl imino methylthioether 134 [111]. Then on heating this as a DMSO solution in air
the 2-methoxy-13-methylrutaecarpine 136 was obtained in 62% yield (Scheme 23).

DMSO
120°C
135

136, 62% oM

OH ) KL >—©— I ) KLJj@\ )Br]ff;jij\m

dry air

;\:/z 8 NH,
Me

137 138 139, 62% (87% ee) Ispinesib, 140

Scheme 23. Syntheses of rutaecarpine and ispinesib derivatives via dihydro-1,2,4-oxadiazoles [111].

Ispinesib 140 is a synthetic quinazolinone that is under study as a potential anti-cancer
agent [154,155]. A similar strategy was employed in a short iminyl radical-mediated synthesis [111].
Alkylated phthalimide 137 was prepared from L-valine and thence to dihydro-1,2,4-oxadiazole 138
as a mixture of diastereoisomers in three steps. On heating one stereoisomer in aerated DMSO the
quinazoline derivative 139, which is a key precursor for ispinesib, was obtained in moderate yield
though with some racemization [156]. These dihydro-1,2,4-oxadiazole rearrangements provide a
benign, metal-free and atom-economical protocol with great promise as a general synthetic tool for the
incorporation of quinazolinone units.
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6. Conclusions

Five- and six-membered ring aza-arenes are hugely important in nutrition, medicine and
pharmacology because of their many useful therapeutic properties. Short, mild and atom-efficient
synthetic methods for compounds containing these units are clearly provided by iminyl radical
mediated systems. Although iminyl radicals can be accessed by a variety of ways, carbonyl oximes
and oxime ethers are particularly effective non-toxic precursors with long shelf lives. These starting
materials lend themselves to ‘clean’ preparative protocols, free of harsh acid/base or redox reagents,
and employing photolysis, pwave irradiation or photoredox catalysis. Iminyl radicals generated by
these means and suitably substituted with acceptor units facilitate syntheses of a large variety of
such compounds. Suitable acceptor groups include aromatics, heteroarenes, alkenes and alkynes.
Reproducible and efficient syntheses of good scope and impressive generality have thereby been
devised for diverse families of heterocycles. Significantly, iminyl radical based steps have been chosen
for natural products and bioactive molecules containing phenanthridine, indole and quinazoline core
units. It seems certain that further variations of these methods will be devised and find additional
roles and applications. It can be reliably concluded that iminyl-radical based synthetic methods form a
most valuable toolkit to expedite the exploration of ‘drug-like” chemical space.
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