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Abstract

Integrated taxonomy uses evidence from a number of different character types to delimit species and other natural
groupings. While this approach has been advocated recently, and should be of particular utility in the case of diminutive
insect parasitoids, there are relatively few examples of its application in these taxa. Here, we use an integrated framework to
delimit independent lineages in Encyrtus sasakii (Hymenoptera: Chalcidoidea: Encyrtidae), a parasitoid morphospecies
previously considered a host generalist. Sequence variation at the DNA barcode (cytochrome c oxidase I, COI) and nuclear
28S rDNA loci were compared to morphometric recordings and mating compatibility tests, among samples of this species
complex collected from its four scale insect hosts, covering a broad geographic range of northern and central China. Our
results reveal that Encyrtus sasakii comprises three lineages that, while sharing a similar morphology, are highly divergent at
the molecular level. At the barcode locus, the median K2P molecular distance between individuals from three primary
populations was found to be 11.3%, well outside the divergence usually observed between Chalcidoidea conspecifics
(0.5%). Corroborative evidence that the genetic lineages represent independent species was found from mating tests,
where compatibility was observed only within populations, and morphometric analysis, which found that despite apparent
morphological homogeneity, populations clustered according to forewing shape. The independent lineages defined by the
integrated analysis correspond to the three scale insect hosts, suggesting the presence of host specific cryptic species. The
finding of hidden host specificity in this species complex demonstrates the critical role that DNA barcoding will increasingly
play in revealing hidden biodiversity in taxa that present difficulties for traditional taxonomic approaches.
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Introduction

Parasitoids are insects that feed upon arthropod hosts during

larval development [1]. They represent a key division of terrestrial

food webs [2,3,4], and yet knowledge, particularly on their species

richness, is severely limited [5,6]. This situation is understandable

given the lack of morphological differentiation in many sibling

species, and the methodological difficulties posed in rearing due to

the presence of multiple tropic levels, and complex life cycle [7],

but must be addressed if factual estimates of insect diversity and

host-specificity are to be known. Parasitoids represent a substantial

proportion of biodiversity, with about 8.5% of described insect

species [2], yet this figure does not take into account current

thinking on the constraints of host parasite relationships [3,8,9,10],

meaning the diversity of parasitoids may be a substantial un-

derestimation.

The discovery of cryptic species is proliferating in no small part

due to the adoption of molecular data into taxonomic study. In

particular, a new tool has been developed and is widely adopted

and tested, that is providing invaluable information about species

identities in such difficult to study taxa. DNA barcoding typically

uses universal primers to sequence a standardized segment of the

mitochondrial COI gene [11]. The resulting data can be used in i)

assigning taxon names to newly sequenced individuals, by

reference to a barcode library, and more controversially, ii)

delimiting species boundaries and thus assigning new species.

Considerable investment has been made to the barcoding

endeavor, with the barcode of life database (BOLD) currently

holding over 110,000 species, with the eventual aim to obtain 106
coverage for all , 10 million animal species [12]. The ease and

rate at which barcode sequences are being obtained and analyzed

mean they have been of great utility in highlighting possible cases

of cryptic speciation, often prompting further taxonomic work

[13,14,15,16,17,18,19,20]. In the case of cryptic parasitic species,

it is often found that the sibling populations correspond to differing

hosts species [21,22,23], suggesting that host generalism has been
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assumed where it is unwarranted. Theory suggests generalism

(host generalism and otherwise) is unlikely to be maintained

though speciation [10], meaning apparent examples of generalism

are illusory, and thus current biodiversity estimates are an

underestimation [24]. Given the breadth of inquiries and bi-

ological endeavors that may be sensitive to the accurate de-

scription of species, and the power of DNA barcoding to provide

extensive divergence information with little expertise or taxon

specific knowledge, it seems inevitable that taxonomic description

will incorporate barcoding-like approaches, and that patterns in

host-parasite relationships will be better resolved.

While DNA barcode datasets sweep through biodiversity, few

would advocate replacing current species descriptions with

groupings defined by sequence variation from a single fragment

of mitochondrial DNA. No particular approach to taxonomy is

without complication, and the theoretic causes of incongruence

between mitochondrial variation and a species tree are well

known [25]. There is intuitive benefit in taking a whole evidence,

or ‘integrative’ approach to taxonomy [26], and consult evidence

from different disciplines in order to avoid pitfalls associated with

a single approach. Incongruence between methods arises from

various aspects. Firstly, while a general consensus is emerging on

a definition of the species [27], disagreements remain on the

degree of divergence at which separately evolving populations are

regarded as different species [28,29]. In addition, the evolution-

ary processes resulting in population divergence are heteroge-

neous [30]. The integrative taxonomy approach uses numerous

such lines of evidence to corroborate taxonomic hypotheses,

without ruling out that a single delineation criterion may

correctly indicate the species [26]. Commonly used delimitation

criteria include phenotypic distinctiveness, ecological niche

divergence [31], reciprocal monophyly [32] and clustering of

molecular data [33]. For example, extensive mitochondrial

variation alone cannot be used to infer species, where re-

productive compatibility is still present [34]. In the current paper

we take an integrative approach to delineate species in the

E. sasakii complex. E. sasakii are endoparasitic Hymenoptera

belonging to the hyperdiverse wasp family, Encyrtidae (Hyme-

noptera: Chalcidcoidea). The hosts of E. sasakii are scale insects

(of the Coccoidea superfamily), specifically, Rhodococcus sariuoni,

Takahashia japonica, Eulecanium kuwanai and Eulecanium gigiantea

[35,36,37,38,39,40]. We find evidence of extensive molecular

variation at the barcode locus among E. sasakii populations

inhabiting different hosts, and find corroboration in the form of

reproductive and morphometric characteristics.

Methods

Collection of Host Populations
In view of the broad range of hosts recorded for E. sasakii in the

literature (see above), a survey of the hosts yielding E. sasakii was

carried out during the period 2006–2010. However, only the host

species Eulecanium kuwanai (Kuwana), Eulecanium giganteum (Shinji),

Takahashia japonica (Cockerell) and Rhodococcus sariuoni generated the

E. sasakii parasitoid. These host species are distributed in central

and northern China, Japan (T. japonica) and Korea (E. kuwanai). In

total, 18 populations of the host species were collected from host

plants (Sophora japonica, Lorpetalum chinense, Ulmus sp. etc), through-

out their continental range (Figure 1). Twigs from scale insect

infested plants were returned to the lab and parasitoids segregated

upon emergence. ,2000 E. sasakii individuals were lab reared.

Parasitoids were identified by author Yan-Zhou Zhang. The host

scale insects were identified by an experienced taxonomist,

Professor San-An Wu.

Ethics Statement
No specific permits were required for the described field studies.

DNA Extraction, PCR and Sequencing
DNA was extracted from adult specimens using the DNeasy

Blood & Tissue Kit (Qiagen) according to the manufacturer’s

protocols. All PCRs were performed on an Eppendorf thermal

cycler, using 50 mL reaction volume as follows: 5 mL DNA

template, 5 mL 106 Buffer (Takara), 25 mM MgCl2, 2.5 mM

dNTP mixture, 10 pmol of each primer, and 1 unit of ExTaq

DNA polymerase (Takara). To amplify 28S ribosomal gene D2

expansion segment, the primers D2-3549 [F] 59-

AGTCGTGTTGCTTGATAGTGCAG -39 [41] and D2-

Figure 1. Host sampling sites.
doi:10.1371/journal.pone.0037655.g001
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4068[R] 59-TTGGTCCGTGTTTCAAGACGGG-39 [42] were

used. PCR cycles were as follows: 3 min at 94uC; 30 cycles of

1 min at 94uC, 45 s at 58C, 1 min at 72uC; followed by 6 min at

72uC. The mitochondrial cytochrome oxidase I (COI) gene was

amplified using the universal DNA barcoding primers LCO1490

(59-GGTCAACAAATCATAAAGATATTGG-39), and

HCO2198 (59-TAAACTTCAGGGTGACCA) [43]. The PCR

program was as follows: 1 cycle of 3 min at 94uC, 5 cycles of 1 min

at 94uC, 1 min at 45uC, and 1.5 min at 72uC, followed by 30

cycles of 1 min at 94uC, 1 min at 50uC, and 1 min at 72uC, with

a final step of 5 min at 72uC. PCR products were electrophoresed

through agarose gel (1%) then sequenced using BigDye v3.1 on an

ABI PRISM 37306l DNA Analyzer.

Analysis of Molecular Data
Sequence alignment was unambiguous, and carried out

manually using BioEdit [44]. Model testing was performed on

individual partitions, and the concatenated matrix, using MrAIC

v1.4.3 [45] and PhyML v2.4.4 [46]. Phylogenies were then

inferred under the optimal evolutionary model using MrBayes

v3.1.2 [47]. Evolutionary parameters (state frequencies, sub-

stitution rates, alpha and the proportion of invariant sites) were

allowed to vary amongst four partitions; 28 s, and the three codon

positions of COI. Two independent runs were performed, both

with one cold and seven heated chains, and sampled at intervals of

10,000. Runs were terminated when the standard deviation of split

frequencies dropped below 0.01, then the parameter distributions

checked using Tracer v1.5 [48]. Neighbor joining trees were also

generated under the optimal model, using Paup*4b [49]. The

branch-lengths on the Bayesian phylogeny and the NJ phylogram

were adjusted by non-parametric rate smoothing [50] to form an

ultrametric tree for analysis of branch waiting times. Branch rate

smoothing was carried out using the r8s program [51], fixing the

age of the root node at an arbitrary value of 1.0. The evolutionary

units on the ultrametric trees were then inferred using the general

mixed Yule coalescent approach (GMYC) [52], with a likelihood

ratio test performed of a GMYC model against a null model

whereby a single coalescent population was fit upon the tree.

The molecular distances between individuals from different

populations were calculated by the standard K2P measure for

DNA barcodes, using Paup*4b, and characters diagnosing the

populations identified using the Caos software [53]. The

distribution of molecular divergences found between the popula-

tions was compared to divergences in Chalcidoidea as a whole,

using i) intraspecific divergences, and ii) congeneric divergences.

All Chalcidoidea DNA sequences were downloaded from

Genbank, and searched locally using software from the Blast+
toolkit [54]. A Chalcidoidea database was created with make-

blastdb, and queried using one of the newly sequenced E. sasakii

COI sequences (JS06A). The blastn method was used for

homology searching, with a strict e-value cutoff of 1e-5, and the

tabular output format invoked (option: -outfmt 6) to aid parsing.

The hit sequences were then extracted and a fasta file formed,

using a Perl script. The COI barcode sequences were then aligned

using the protein version of BlastAlign [55], against the translated

JS06A sequence. The aligned Chalcidoidea sequences were

checked by eye and the edges trimmed, using BioEdit. Where

species were fully identified (where the species string in the

description line matched the typical binomial format), the K2P

distances were calculated as previously. The molecular distances

were then split into intraspecific observations, and congeneric

observations. The E. sasakii and Chalcidoidea distances were read

into R for analysis [56].

Morphometric Analysis
Geometric morphometrics have been used to study various

insect taxa ranging from species level to analysis of a superfamily,

and have been informative in investigating relationships between

members of lower taxonomic levels [57]. In this study, the first

application of geometric morphometrics in Encyrtidae was carried

out. Although previous taxonomy of the genus Encyrtus [58,59] has

focused on the shape of both the antenna and its forewing, due to

high variation and the difficulty in preparing of slide mounted

antennae, here only the forewings are used. In total, 59 specimens

were prepared for geometric morphometric analysis, using

individuals randomly selected from those used for DNA extrac-

tion, and covering all populations. The specimens were dissected

and examined using a Leica MZ12.5 stereoscope. The micro-

photographs were taken from slide mounted specimens using an

EVOS f1 inverted microscope. Seven landmarks were selected to

describe variation in wing morphology (Figure 2). The landmarks

were as follows: 1, the beginning of submarginal vein; 2, the end

of submarginal vein/beginning of marginal vein; 3, the end of

marginal vein/beginning of post marginal vein/beginning of

stigmal vein; 4, the end of postmarginal vein; 5, the end of stigmal

vein; 6, the tip of forewing; 7, the tip of posterior margin of

forewing. Cartesian coordinates of the landmarks were digitized

with tps-DIG 2.05 [60]. In order to reduce the measurement error

Figure 2. Forewing of E. sasakii, showing positions of the seven landmarks used for morphometric analyses.
doi:10.1371/journal.pone.0037655.g002
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all specimens were digitized twice. The coordinates were analyzed

using tps-RELW 1.44 [61] to calculate eigen values for each

principal warp. Statistical analyses were performed using SPSS

version 16.0 for windows [62].

Mating Tests
The courtship and mating behaviors of E. sasakii intrapopulation

and interpopulation pairs were observed through reciprocal

crosses. Crosses were performed during the period of host

emergence overlap (May). Virgin individuals were paired in vials

(one male and one female per vial) and observed for 7 days, with

10 replicates performed for each of the nine possible reciprocal

population combinations. A solution of bee honey (50%) was

provided as food supply during the mating tests.

Results

Analysis of Molecular Data
Fragments for COI and 28S were successfully sequenced for 83

E. sasakii specimens, from 18 populations plus the outgroup

Encyrtus auranti shown as 0704, in Figures 3 and 4 (detailed

information see Table 1). After edge trimming, the data matrix

consisted of 631 base pairs for COI and 511 bases for 28S. The

28S gene was virtually invariant for the sequenced specimens,

however it contained a single base substitution (at site 205), with

the cytosine character unique to samples obtained from the host

R. sariuoni, and thymine for samples obtained from hosts T. japonica

and E. kuwanai. Typically for insect mitochondrial genes, the AT

content was high (68.8%), however, at the lower end of the range

compared to other parasitic wasps, e.g. 74.85% in Cynipidae [63],

Figure 3. Bayesian consensus phylogeny of E. sasakii. Node support is indicated by posterior probabilities, and is given where .80. The upper
(green), central (red), and lower (blue) clade represent specimens isolated from R. sariuoni, T. japonica, and E. kuwanai/E. gigiantea, respectively. First
two letters of terminal name indicate sampling locality, where QH=Qinhai, SD = Shandong, BJ = Beijing, SH= Shaanxi, HJ =Heilongjiang, JL = Jilin,
JS = Jiangsu, HN=Henan, SX= Shanxi.
doi:10.1371/journal.pone.0037655.g003
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74.0% in Apocrita [64], 72% in Eulophidae [65], 68% in

Braconidae [66].

The degree of genetic divergence in COI was found to be

particularly high between the three populations. The mean K2P

distance between pairs belong to different E. sasakii populations

was 11.24%, with 1.5% divergence within populations. In order to

determine if this was significantly high compared with species in

the superfamily as a whole, 2393 Chalcidoidea barcode sequences

(225 fully identified species and 77 genera) were downloaded from

Genbank and aligned, then K2P distances for two classes

(intraspecific and congeneric) were calculated. Figure 5 plots

K2P values for the Chalcidoidea, along with the divergences

between the three E. sasakii populations. While the E. sasakii

molecular divergences do not belong to either the intraspecific or

congeneric Chalcidoidea distributions (p,0.001 in both cases,

unpaired Wilcoxon signed rank test), the median E. sasakii

divergence (0.113) is over an order of magnitude higher than the

median Chalcidoidea intraspecific divergence (0.005), and well

within the same order of magnitude than the median Chalcidoidea

congeneric divergence (0.155), indicating the E. sasakii populations

show molecular variation more representative of congeners.

Characters diagnostic of the three main populations were

identified using Caos. 122 (19.4% of the COI positions) were

found diagnosing one or more of the populations, where all the

characters were classed as simple (non-compound). These 122 sites

were subdivided into 73 pure (unique to all members of the clade)

and 49 private (present in some clade members but absent in other

clade) positions. Figure 6 gives a graphic illustration of the 73 pure

diagnostic characters when isolated from the dataset, and a table

giving the total 298 characters (with population identity, diagnostic

character state, position and confidence value) is provided in the

supplementary file (File S1).

The molecular data were subject to evolutionary analyses using

NJ and Bayesian approaches. Due to the low number of

parameters and low variation in some partitions (28S in

particular), we used the AICc to determine the best fit model for

the un-partitioned dataset, which was found to be the general time

reversible with gamma distributed rates (d.f. 174, lnL -3156, AICc

6723, wAICc 0.71). Two independent MrBayes runs successfully

converged (the standard deviation of split frequencies ,0.01) after

12,950,000 generations. The parameters were checked in Tracer,

where the estimated sample sizes were .200 in virtually all cases.

The tree was summarized after discarding the burnin phase (25%),

and shown in Figure 3. Three monophyletic clades were recovered

corresponding to the three host populations, each with high

posterior probabilities, and long subtending branch lengths. The

host specificity was found to be complete in that all specimens

within a clade were reared from the same host, without exception.

We next determined whether the pattern of branch lengths in

the trees were characteristic of both within and between species

Figure 4. GMYC groups on the ultrametric NJ tree, generated from 31 unique haplotypes. Three clusters (shown in highlighted boxes)
and one singleton (BJ0893A) are found as significant GMYC entities.
doi:10.1371/journal.pone.0037655.g004
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branching events. For the Bayesian tree, we found no significant

shift between Yule and Coalescent branch waiting times (lnL of

GMYC model = 393.5, lnL of null model = 392.8, likelihood

ratio = 1.44, p = 0.70). We also performed this analysis on a NJ

tree; unique haplotypes were isolated from the dataset, and a NJ

tree generated under the GTR gamma model. As shown in

Figure 4, the three significant GMYC clusters corresponded to the

host associated groups apart from one sequence (BJ0893A)

excluded from the E. kuwanai associated cluster (the lower blue

colored clade in Figure 4). The GMYC model was a significant

improvement in fit, over the null model of a single coalescent

cluster (null lnL = 104, GMYC lnL = 110, likelihood ration = 12,

p = 0.007), indicating the shift to longer branches separating the

E. sasakii populations are characteristic of a change to interspecies

branch waiting times.

Morphometric Analysis
The relative warps analysis and cluster analysis of forewing

shape revealed a trend dividing the populations into three host

associated groups (Figure 7). The contribution of the 1st, 2nd, 3rd

and 4th canonical variates to the total variance was 26.8, 20.57,

17.4 and 13.02 percent, respectively. To ensure reliability of the

results, the first ten canonical variates were used for cluster analysis

in SPSS 16.0. Analysis of Variance (ANOVA) tests were

performed to determine population differences in forewing shapes.

The three host clusters were significantly distinct in the first

(p,0.01; F = 43.117; d.f. = 2), second (P,0.05; F = 3.527; d.f. = 2),

and third variates (p,0.01; F = 13.56, d.f. = 2).

Mating Test
Courtship and mating behavior were recorded as they occurred,

in reciprocal crosses for all combinations of the three E. sasakii

populations. Typical receptive behavior consisted of antennal

contact followed by copulation [67], and repellence fighting

occurred when the female was unreceptive. Courtship and mating

behavior were observed in intra-population crosses only, never in

Table 1. Specimens information on the sequences used in
molecular analyses.

ID Insect Host Sampled Location Plant Host

704 soft scale Hainan, Danzhou Hibiscus rosa-sinensis

BJE1 E. kuwanai Beijing, Haidian Sophora japonica

BJE2 E. kuwanai Beijing, Haidian Sophora japonica

BJ0893A E. kuwanai Beijing, Xiangshan Sophora japonica

BJ0893B E. kuwanai Beijing, Xiangshan Sophora japonica

BJ0894A E. kuwanai Beijing, Xiangshan Sophora japonica

BJ0894B E. kuwanai Beijing, Xiangshan Sophora japonica

HJ012A E. kuwanai Heilongjiang, Harbin Ulmus sp.

HJ012B E. kuwanai Heilongjiang, Harbin Ulmus sp.

HJ012C E. kuwanai Heilongjiang, Harbin Ulmus sp.

HJ012D E. kuwanai Heilongjiang, Harbin Ulmus sp.

HNE1 E. kuwanai Henan: Zhengzhou Sophora japonica

HNE2 E. kuwanai Henan: Zhengzhou Sophora japonica

HNE3 E. kuwanai Henan: Zhengzhou Sophora japonica

HNE4 E. kuwanai Henan: Zhengzhou Sophora japonica

HNE5 E. kuwanai Henan: Zhengzhou Sophora japonica

SDE1 E. kuwanai Henan: Zhengzhou Sophora japonica

SDE2 E. kuwanai Shandong: Taian Sophora japonica

SDE3 E. kuwanai Shandong: Taian Sophora japonica

SDE4 E. kuwanai Shandong: Taian Sophora japonica

SDE5 E. kuwanai Shandong: Taian Sophora japonica

SDE6 E. kuwanai Shandong: Taian Sophora japonica

SDE7 E. kuwanai Shandong: Taian Sophora japonica

SDE8 E. kuwanai Shandong: Taian Sophora japonica

SDEG1 E. gigantean Shandong: Taian Albizzia julibrissn

SDEG2 E. gigantean Shandong: Taian Albizzia julibrissn

SDEG3 E. gigantean Shandong: Taian Albizzia julibrissn

SDEG4 E. gigantean Shandong: Taian Albizzia julibrissn

SDEG5 E. gigantean Shandong: Taian Albizzia julibrissn

SXE1 E. kuwanai Shanxi: Taiyuan Sophora japonica

SXE2 E. kuwanai Shanxi: Taiyuan Sophora japonica

SXE3 E. kuwanai Shanxi: Taiyuan Sophora japonica

SXE4 E. kuwanai Shanxi: Taiyuan Sophora japonica

SXE5 E. kuwanai Shanxi: Taiyuan Sophora japonica

SXE6 E. kuwanai Shanxi: Taiyuan Sophora japonica

SXE7 E. kuwanai Shanxi: Taiyuan Sophora japonica

SXE8 E. kuwanai Shanxi: Taiyuan Sophora japonica

SXE9 E. kuwanai Shanxi: Taiyuan Sophora japonica

SXE10 E. kuwanai Shanxi: Taiyuan Sophora japonica

SXR1 E. kuwanai Shanxi: Taiyuan Sophora japonica

SXR2 E. kuwanai Shanxi: Taiyuan Sophora japonica

JS06A T. japonica Jiangsu, Nanjing Albizzia julibrissn

JS06B T. japonica Jiangsu, Nanjing Albizzia julibrissn

JS06C T. japonica Jiangsu, Nanjing Albizzia julibrissn

JS06D T. japonica Jiangsu, Nanjing Albizzia julibrissn

JS13A T. japonica Zhejiang, Ningbo Lorpetalum chinense

JS13B T. japonica Zhejiang, Ningbo Lorpetalum chinense

JS13C T. japonica Zhejiang, Ningbo Lorpetalum chinense

Figure 5. Boxplot giving pair-wise molecular distances be-
tween, (upper) individuals from different species of the same
genus in the Chalcidoidea, (central) different members of the
same species in the Chalcidoidea, (lower) individuals belong-
ing to different E. sasakii host-related populations.
doi:10.1371/journal.pone.0037655.g005
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inter-population crosses (Table 2), indicating pre-copulatory

barriers to gene flow between host-specific populations.

Discussion

Barcode Divergence, Molecular Delineation and
Identification

The likely case of cryptic speciation in E. sasakii was initially

made apparent during routine DNA barcode sequencing, and the

molecular evidence supporting the promotion of the host-specific

populations to species level remains particularly striking. The

degree of molecular divergences at the COI barcode locus, fell well

outside the expected distribution for individuals of the same

species (Figure 5). The inter-population divergence (11.24%) was

found to be an order of magnitude higher than within-population

divergence (1.5%), consistent with the barcode species criterion

given by Hebert et al. [13]. But the major advantage of quantifying

absolute level of divergence for COI in particular is the

comprehensive benchmarks available in the literature. Hebert

et al. [11], reported K2P divergence for Lepidoptera families as

0.17–0.33% for within species and 5.8–9.1% within genera. Ball et

al. [68] gave 1.1% for within species and 18.1% for congeners in

mayflies. Molbo et al. [69] discovered cryptic species where

molecular divergence was 4.2–6.6% (amongst other lines of

evidence). In a comprehensive analysis of barcode divergence

using a number of mined insect datasets, Meier et al. [70] reported

mean intraspecific/interspecific divergences as 2/11.2 for Co-

leoptera, 1.3/10.1 in the Diptera, 1.8/9.3 for Hymenoptera, and

0.7/6.2 for Lepidoptera, amongst others. While the intraspecific

and congeneric divergences appear somewhat limited in their

ability to vary across taxonomic groups, we thought it prudent to

calculate specific values for the inclusive clade in which sufficient

data were available. Figure 5 shows that the divergences between

Figure 6. The 73 pure diagnostic characters isolated from the COI alignment.
doi:10.1371/journal.pone.0037655.g006

Figure 7. Three-D scatter plots constructed from principal component analyses of the landmark data set. In the scatter plots the first,
second and third principal components were plotted on the x (RW1), y (RW2) and z (RW3) axis respectively.
doi:10.1371/journal.pone.0037655.g007
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populations of E. sasakii are more representative of congeneric

Chalcidoidea than intraspecific.

Given the molecular divergences, and the other advantages of

barcode identification (e.g. ease of sequencing and non-require-

ment of taxon specific expertise), we suggest it warrants the

adoption of molecular identification in this species complex. It has

been demonstrated here that the properties of COI make it

amenable to a number of proposed barcoding methods. The

structuring of genetic variation makes the COI barcode an ideal

marker for identification in this species complex, both due to the

amount of divergence (Figure 5), and the robust reciprocal

monophyly of the populations (Figure 3). The diagnostic

characters given in the File S1 provide the rules for assignment

of future query sequences to the newly proposed species. When

used with algorithms such as Caos [53], such identification can be

rapid and automatable.

Further analysis of the combined molecular data revealed that

the three populations were recovered as robust monophyletic

groups. Reciprocal monophyly requires fixation of divergent

characters, these being typical of the later stages of lineage

evolution [29]. However, further analysis of the shape of

branching patterns was less clear-cut. The GMYC model tests

for the presence of a shift from Yule (between species) to coalescent

(within species) branch-lengths in an ultrametric tree, but was

found significant for the NJ tree only. However, the choice of tree

building method is likely a confounding factor for this test.

Monaghan et al. [71] has previously noted the circularity of testing

for a shift in branching pattern, on a tree that has been inferred

under one of the very models being tested for. The imposition of

root to tip branch length pattern during a tree search is very

apparent using for example, the Beast software [48], where the

default setting for branch-length model is coalescent, with

additional options of Yule and birth-death. Preliminary analyses

(not shown) were performed using this software, but these models

has a clear bias on the resulting tree-shapes. A preferable approach

would be tree inference independent of such models. In the

current paper we applied the GMYC to a tree inferred under

a Bayesian model in which branch lengths were unconstrained

(non-clock), which precludes the imposition of root to tip

branching model (which in the MrBayes clock trees include

uniform, birth-death and coalescent), although the branch-lengths

are sampled from a specified distribution (uniform or exponential).

In an attempt to avoid all possible imposition of branch length bias

we repeated the GMYC using a simple NJ tree, which was found

to give significant GMYC groups. The analysis highlighted that

where the aim is to analyze shift in these different types of

branching it may be advisable to consult simpler tree building

approaches, which may avoid some confounding effects.

Integrative Taxonomy
Where the sample is limited (for example considering key

species complexes), variance in the pattern of intra/inter species

divergence appears greater [72], meaning the host correlated

divergence observed in E. sasakii may simply represent a local

increase in intraspecific variation. Confirmation that high di-

vergence is the result of independent evolution should be obtained

by reference to other character types. If other characters do not

covary with molecular divergence, then it is not necessarily the

case that multiple species are present [73]. The integrative

approach to taxonomy overcomes biases associated individual

lines of evidence and increases the information on which

taxonomic hypotheses are tested [74]. Where corroborative

evidence has been found from independent sources that support

an alternative hypothesis, ‘breaking out’ of the current taxonomy

is deemed reasonable [75]. Independent evidence may come from

a number of sources, including various forms of molecular data,

morphology, ecology, behavior, geography, and reproductive

capacity [69,74,75,76,77]. Here, in addition to the molecular

evidence, we show that i) the molecular clusters correspond to

three clusters formed from certain morphometric characteristics,

ii) these three putative taxonomic units inhabit differing niches

(hosts), and iii) individuals from different hosts, when paired, show

no mating capacity.

The hypothesis of cryptic species was further tested using

morphometrics of the forewing. Forewing shape has been

proposed as a morphometric-based population/species diagnostic

character in the Hymenoptera, due to ease of slide preparation

and high discriminatory power [78,79,80,81,82,83]. In the current

study we find the phenetic clusters based on the forewing shape are

generally consistent with the phylogenetic classification, with both

methods indicating differentiation according to host species. The

populations isolated from the three hosts showed partially

overlapping variation in wing pattern, reflecting the difficulties

commonly encountered when analyzing morphological characters

in sibling species groups [8]. However, the molecular divergence

(Figure 5) and lack of courting or mating behavior between the

R. sariuoni and T. japonica populations (Table 2) indicate these

entities would be regarded as different species, according to many

definitions of the concept. The unified species concept requires

any method of delineation conforming to a single species concept

in order to infer a species boundary, but where a delineation is

congruent under multiple concepts (here for example, certainly the

phylogenetic species concept and the biological species concept

apply), the hypothesis can only be considered more robust [27].

Cryptic Species and Host Specificity
There is an increasing number of cases where the initial analysis

of molecular data has led to the discovery of previously unknown

divergent features, but where parasitic taxa are under study,

divergent populations usually corresponds to host specific races

[84]. In E. sasakii, the three divergent genetic clusters (Figure 3)

correspond to scale insect hosts, with geographic separation

unlikely to have a substantial contribution to the molecular

differentiation, since within clades, geographic sampling is widely

ranged. For example the basal R. sariuoni associated clade (upper,

green clade in Figure 3) contains samples obtained from regions

ranging from central to far eastern China, covering areas

sympatric with that of E. kuwanai associated parasitoids. This

indicates the recent distribution of E. sasakii across much of the

sampled range, whereas gene flow is prevented across different

Table 2. Mating tests.

Female Male

RS EK TJ

RS + – –

EK – + –

TJ – – +

RS, population of Encyrtus sasakii reared from R. sariuoni, EK, population of
Encyrtus sasakii reared from E. kuwanai, TJ, population of Encyrtus sasakii reared
from T. japonica; ‘‘+’’ indicates the observation of courtship and mating
behavior in at least one replicate, ‘‘–’’ indicates no courtship or mating behavior
observed throughout the testing period. Diagonals give intra-population
crosses, with inter-population crosses otherwise.
doi:10.1371/journal.pone.0037655.t002
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host groups, with all members of the basal clade isolated from

a single scale insect species. While general conclusions can not be

drawn based on this single species complex, there is a growing

body of research indicating such host specificity is much more

prevalent than previous diversity estimates suggest

[10,15,18,85,86,87,88,89,90]. However, the route towards accu-

rate estimates of diversity will be hindered by naive application of

molecular sampling. As observed in E. sasakii, the presence of

sympatric host races means informed approaches (particularly,

using host identities) to the barcode sampling strategy are required

to capture the diversity.

Supporting Information

File S1 COI diagnosing character states for E. sasakii
populations. Column ‘group’ gives population, ‘pos’ is COI site

position, ‘state’ is diagnostic character state, and ‘conf’, confidence

value.
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