
1

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:14322  | https://doi.org/10.1038/s41598-020-71255-9

www.nature.com/scientificreports

Applied machine learning 
for predicting the lanthanide‑ligand 
binding affinities
Suryanaman Chaube, Sriram Goverapet Srinivasan* & Beena Rai

Binding affinities of metal–ligand complexes are central to a multitude of applications like drug design, 
chelation therapy, designing reagents for solvent extraction etc. While state-of-the-art molecular 
modelling approaches are usually employed to gather structural and chemical insights about the 
metal complexation with ligands, their computational cost and the limited ability to predict metal–
ligand stability constants with reasonable accuracy, renders them impractical to screen large chemical 
spaces. In this context, leveraging vast amounts of experimental data to learn the metal-binding 
affinities of ligands becomes a promising alternative. Here, we develop a machine learning framework 
for predicting binding affinities (logK1) of lanthanide cations with several structurally diverse molecular 
ligands. Six supervised machine learning algorithms—Random Forest (RF), k-Nearest Neighbours 
(KNN), Support Vector Machines (SVM), Kernel Ridge Regression (KRR), Multi Layered Perceptrons 
(MLP) and Adaptive Boosting (AdaBoost)—were trained on a dataset comprising thousands of 
experimental values of logK1 and validated in an external 10-folds cross-validation procedure. This was 
followed by a thorough feature engineering and feature importance analysis to identify the molecular, 
metallic and solvent features most relevant to binding affinity prediction, along with an evaluation of 
performance metrics against the dimensionality of feature space. Having demonstrated the excellent 
predictive ability of our framework, we utilized the best performing AdaBoost model to predict 
the logK1 values of lanthanide cations with nearly 71 million compounds present in the PubChem 
database. Our methodology opens up an opportunity for significantly accelerating screening and 
design of ligands for various targeted applications, from vast chemical spaces.

Rare Earth Elements (REEs), that constitute the lanthanide block of the periodic table, together with Yttrium 
and Scandium, lie at the heart of many modern technologies in diverse fields ranging from health care to clean 
energy  applications1. With increasing adoption of clean and energy efficient technologies, the demand for REEs 
is expected to grow manifold in the coming  years2. Although conventional mining remains the primary source 
of global REE supply  currently3, owing to the huge quantities of electronic waste (e-waste) generated, REE 
recovery from e-wastes becomes a promising secondary source of these critical  elements4. Much of the metal 
processing industry relies upon hydrometallurgical operations such as liquid–liquid extraction (LLE) to recover 
the target  element5. The success of an LLE operation depends critically on the choice of ligands that can selec-
tively bind to one or more target metal ions and transport them into an oil phase in contact with an aqueous 
phase which originally contained the metal ions. Thus, successful recovery of REEs from e-wastes calls for the 
design of ligands with a high affinity for one or more target lanthanide ions. The binding strength of a ligand to 
a metal ion depends on a number of factors including the nature of the molecule and the metal ion themselves, 
the solvent media, ionic strength of the media etc. For ligands that bind via a cation exchange mechanism (such 
phosphoric acid ligands), pH of the medium further becomes an important factor in determining the binding 
affinity, since deprotonation of the ligand is a necessary condition for the formation of an M-L  complex6. Then, 
any successful design of ligand must necessarily incorporate information about the experimental conditions in 
addition to the nature of the metal ion itself.

A number of works in the past have attempted to predict the binding affinities of various ligands with differ-
ent metal ions as well as design ligands that can preferentially bind to one or more target metal  ions7–22. While 
molecular modeling using density functional theory could give important chemical insights in addition to 
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binding affinities, the associated computational cost renders this method impractical to screen vast chemical 
spaces. In such a scenario, leveraging available experimental data on the M-L binding constants to build ‘data-
based’ predictive models becomes a promising alternative. Prior works along these lines have predominantly 
employed Quantitative Structure Property Relations (QSPR) techniques such as Multiple Linear Regression 
(MLR) to build predictive models for M-L binding constants (Ref.12 and the references therein). The ligands were 
mostly described using the Substructural Molecular Fragments (SMF)  descriptors8,23,24 and consensus models 
were developed for each metal ion  separately7–15. In addition, these works did not consider any properties of the 
metal ion or the medium while developing the QSPR models. Furthermore, these models were built for either a 
limited class of ligands or metal ions only. Owing to these restrictions, the errors in these models were relatively 
high, limiting their generalizability to predict M-L binding constants across vastly different ligand  chemistries7–15.

In view these limitations, our work employs a machine learning (ML) approach for predicting binding con-
stants of diverse lanthanide-ligand complexes under varied experimental conditions. A total of 698 organic 
and inorganic ligands were involved in the modelling along with 15 lanthanide cations and 8 solvent media. 
A host of supervised ML algorithms—Random Forest (RF), k-Nearest Neighbours (KNN), Support Vector 
Machines (SVM), Kernel Ridge Regression (KRR), Multi Layered Perceptron (MLP) and Adaptive Boosting 
(AdaBoost)—were trained on an experimental dataset containing 5,266 logK1 values, validated using a tenfold 
cross-validation procedure and tested on 1,317 independent logK1 values. Unlike most previous QSPR studies 
that have primarily relied on SMF descriptors, the molecular descriptors used in the study comprised both physi-
ochemical (eg. molecular weight) and topological descriptors (eg. topological indices). Also, these descriptors 
were augmented with properties of metal cation and the solvent medium to factor in experimental conditions, 
thus enabling better model predictability. A rigorous feature engineering analysis was performed to identify 
the most relevant features based on three approaches and the findings have been discussed. Subsequently, an 
out-of-sample model validation was performed on six nitrogen donor ligands with known binding affinity val-
ues. Having tested the generalizability of our framework, we employed the best performing regression model 
to predict binding constants of lanthanide metals with nearly 71 million molecules in the PubChem database, 
falling within the applicability domain of our models. The demonstrated framework underpins the potential of 
statistical learning models in accelerating the discovery and development of novel molecular ligands for a target 
metal extraction from vast chemical spaces.

Methods
Dataset generation. The dataset for training our models was generated using the International Union 
of Pure and Applied Chemistry (IUPAC) Stability Constants Database (SC-database) (provided by Dr. Leslie 
Pettit). The database contains dissociation/binding/stability constants (in log units) of several metal ions bind-
ing with various ligand molecules from reported experimental literature. To begin with, the stability constants 
(logK1) for all M-L pairs (M—lanthanide cation, L—ligand, logK1 =

[ML]
[M][L]

 ) were collected and curated from 
the SC-database. In the subsequent step, we filtered datapoints with available experimental conditions namely 
temperature, ionic strength and solvent medium, resulting in a total of 6,583 entries. These entries contained 698 
unique (ligand) molecules, 15 lanthanide cations—Ce3+,  Ce4+,  Pr3+,  Nd3+,  Pm3+,  Sm3+,  Eu3+,  Gd3+, Tb,3+  Dy3+, 
 Ho3+,  Er3+,  Tm3+,  Yb3+ and  Lu3+—and 8 solvent media—alcohol, dioxane, KCl,  KNO3, NaCl,  NaClO4,  NaNO3 
and  R4NX. To generate the machine learning descriptors, the corresponding 2D molecular structure files (for all 
698 ligands) were downloaded from SC-Database, converted into 3D molecular-data files (‘mol’ format) and fed 
into RDKit, an open-source cross-platform chemoinformatics  toolkit25. The tool has a built-in functionality for 
generating both compositional descriptors like MolWt, NumValenceElectrons, NumHDonor etc. and topologi-
cal molecular descriptors like BalabanJ, FpDensityMorgan1, PEOE_VSA1 etc. Each 3D molecular structure was 
optimized using the general purpose UFF force  field26; the optimized files were then read by the Chem.Descrip-
tors module of RDKit to compute nearly 200 available molecular descriptors for each molecule in the database. 
Out of these, a number of descriptors were removed which were either redundant or null-valued for most of 
the entries. Some examples include descriptors like fr_Ar_COO, fr_Ar_OH, fr_COO2 etc. which only count 
the number of functional groups of a certain type, an information captured in other compositional descriptors 
like MolWt, HeavyAtomMolWt, NumValenceElectrons etc. as well. Post this screening, 83 molecular descriptors 
remained, which were augmented with 14 readily available properties of metal atoms (atomic number, outer 
shell electrons, ionization energies I–III, electron affinity, atomic radius, covalent radius, ionic radius, Pauling 
electronegativity, melting point, boiling point, density and standard entropy), 3 properties of solvent medium 
(density, molar mass and melting point) and experimental conditions, namely temperature and ionic concentra-
tion. Octanol and methylammonium chloride were used to represent the alcohol and  R4NX media, respectively. 
Like other works in the  past7–12,14–16, no descriptors based on the structural features of the metal–ligand (M-L) 
complex (such as denticity, coordination geometry etc.) were included since models built using such features 
will be inapplicable to predict the  logK1 values in cases (such as predicting binding affinities across vast chemi-
cal spaces) where the M-L structure is unavailable. Thus, the final dataset for training had 102 descriptors for 
6,583 datapoints containing known experimental log  K1 values. The same has been uploaded in the supporting 
information.

For preprocessing, we implemented six scaling techniques inbuilt in the scikit-learn machine learning library 
of  Python27. Subsequently, a host of ML models, namely RF, KNN, SVM, KRR, MLP and AdaBoost were trained 
on the dataset in view of the recent successes of neural networks and kernel-based methods in accelerated mate-
rial property  predictions28–33. The details on preprocessing and model training are provided in the supporting 
information.
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Results
Figure 1 depicts the Pearson correlation coefficient matrix representing all 102 features plotted using the Seaborn 
library of  Python34. The features, largely speaking, are not highly correlated with understandable exceptions like 
a few subtypes of the same molecular descriptors, e.g. Chi (features 3–14), Lipinski parameters (features 40–50) 
etc. and certain correlated metal properties, e.g. atomic number, outer shell electrons, ionization energies (fea-
tures 82–90) etc.

Evaluation of different models and feature engineering. Table 1 lists the optimized model param-
eters, the corresponding error metrics—Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and the 
coefficient of determination  (R2)—and the normalization method employed. It could be inferred that the Ada-
Boost model demonstrated an exceptional performance on the test dataset (MAE = 0.39, RMSE = 0.91,  R2 = 0.98) 
followed closely by the KRR (Laplacian) and RF models (MAE = 0.43 and MAE = 0.44, respectively). Interestingly, 
either (a) augmenting the features by incorporation of fragment descriptors that were initially eliminated (like 
fr_Ar_COO, fr_Ar_OH, fr_COO2 etc.), or (b) using the fragment descriptors alone instead of the current set of 
molecular descriptors, or (c) using a subset of the 102 descriptors obtained via LASSO (L1)-based sparse feature 
selection technique (implemented using the SelectFromModel module of sci-kit learn with default parameters), 
made the model performance significantly worse (with MAE > 0.6 logK1 units with AdaBoost) thereby establish-
ing that the original 102 descriptors were optimal in mapping the features to the target property. In fact, upon 
using the LASSO (L1) sparse feature selection technique, the retained subset of descriptors neither included the 
most important features (see the next sub-section for feature importance analysis) nor the metal and medium 
related properties. Details of the LASSO (L1) feature selection are provided in the supporting information. The 
other ML algorithms exhibited comparable performances with test MAE in the range of 0.50 to 0.65 logK1 units. 
The only exceptions were SVM (linear) and KRR (linear) having average test MAE of 1.80 and 1.82 logK1 units, 
respectively. This highlights the limitation of linear regressors in modelling dependencies between the covariates 

Figure 1.  Pearson correlation map depicting the correlation between the features.

Table 1.  Evaluation of the ten ML models employed in this work.

Model used Test  R2 Test RMSE Test MAE Optimized parameters Normalization

Random forest 0.97 0.94 0.44 n_estimators = 60, max_depth = 40, min_samples_leaf = 2 Normal quantile

KNN 0.95 1.31 0.62 n_neighbours = 2, p = 2 Robust

SVM (linear) 0.80 2.64 1.80 C = 48 Minmax

SVR (RBF) 0.95 1.25 0.57 C = 450, γ = 0.073 Uniform quantile

KRR (linear) 0.82 2.51 1.82 α = 0.25 Robust

KRR (polynomial) 0.96 1.17 0.60 α = 0.030, γ = 0.082 Uniform quantile

KRR (RBF) 0.96 1.17 0.53 α = 0.002, γ = 0.006 Robust

KRR (Laplacian) 0.98 0.86 0.43 α = 0.001, γ = 0.012 Uniform quantile

MLP 0.96 1.15 0.62 n1 = 700, n2 = 800 Normal quantile

AdaBoost 0.98 0.91 0.39 n_estimators = 20, max_depth = 40 Normal quantile
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and response variables on such complex datasets. In fact, an earlier study on protein–ligand binding affinity also 
exhibited that predictions based on RF and decision trees consistently outperformed linear regression  models35.

In order to further augment the predictive power of our models, we implemented an automated feature engi-
neering and selection using the autofeat library of  python36. It is a framework inspired by the SISSO  algorithm37 
that automatically generates a large number of non-linear features from the input descriptors and then selects 
the most informative of them as additional features. The non-linear features are generated in an iterative fashion 
using algebraic combinations of features with different operators (e.g. + , − ) and filtered using the FeatureSelec-
tor class of autofeat by imposing a significance threshold of univariate feature score. Here, we employed the 
autofeat package on our dataset normalized using the NormalQuantile method, as it gave the best results with 
AdaBoost. A 2-step feature engineering was performed to generate a total of 255,255 non-linear features, fol-
lowed by 1-step feature selection that culminated in 330 final features getting selected (including 102 original 
features), after correlation and noise filtering. However, when the transformed input feature space was fed into 
AdaBoost model, barely any improvement was observed in the test MAE (0.38 versus 0.39 for untransformed 
features). Same trend was observed in the case of RF and KRR models. The R2 for linear regression, however, 
increased considerably from 0.80 to 0.96. This is rather expected considering that even on benchmark datasets, 
the model showed remarkable improvements on linear regression tasks but could not outperform the state-of-
the-art RF regression  models36.

Furthermore, a Principal component Analysis (PCA) was carried out which revealed that 18 and 34 principal 
components captured 95 and 99% of the variance in data, respectively. However, the computed error metrics 
were significantly worse with all 34 principal components for both decision tree and kernel-based approaches. 
Therefore, going ahead, we included all 102 original features in our ML computations. Details of the descriptors 
used were provided in the Methods section.

Feature importance analysis. A feature importance analysis was carried out to obtain the feature rank-
ings of 102 features that were used to train the models. Figure 2a–c show the feature importance scores of ten 
highest-ranked descriptors using a variety of approaches, namely, Random Forest, Permutation Importance and 
AdaBoost. Normally, the ensemble methods and decision trees (e.g. Random Forest, AdaBoost) are faster and 

Figure 2:.  Top 10 highest ranked descriptors based on a variety of feature importance methods: (a) random 
forest; (b) permutation importance; and (c) AdaBoost.
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easier to implement compared to other approaches like  LIME38. These approaches weigh each feature accord-
ing to the corresponding mean decrease in impurity, which for regression tasks is the variance. Permutation 
Importance method provides a different measure of feature importance by incorporating random shuffling and 
eliminating bias towards high cardinality features in tree-based models. Being model agnostic, it provides a more 
reliable estimate of the feature rankings.

From the plots Fig. 2a–c, it follows that the RF, Permutation Importance and AdaBoost feature rankings 
are largely similar with PEOE_VSA2 and NumHAcceptors as the two highest-ranked features. The descriptor 
BalabanJ appears in Fig. 2a–c while descriptors like Kappa2, FpDensityMorgan1, SMR_VSA1 etc. are common 
to Fig. 2a,c. These are 2-D topological/topochemical properties which provide useful information about the 
molecular surface and its potential interactions with the binding species. For instance, PEOE_VSA and SMR_VSA 
capture the atomic contributions based on partial total charge (PEOE) and molar refractivity (SMR) to the Van 
der Waals surface area (VSA)39. Similarly, Balaban’s J and Kappa are topological indices that come from chemi-
cal graph  theory40,41 while FpDensityMorgan generates the similarity fingerprints using certain chemical and 
connectivity attributes of  atoms42. Besides molecular descriptors, two other properties—temperature and ionic 
concentration—ranked among 20 highest-ranked features (not shown in the plots) underlining the importance 
of experimental conditions in predicting the metal–ligand binding affinity.

Data distribution and performance on test dataset. The distribution of the number of data points 
per lanthanide cation and experimental values of logK1 for complexation of metal ions with diverse ligands have 
been plotted in Fig. 3a,b. Except for Pm containing only 21 entries, all metal cations have more than 300 entries 
in the dataset. The logK1 values for all M-L complexes (Fig. 3b) lie in the range of − 1.4 to 30.7 with maximum 
number of data points lying between 2 and 4 logK1 units. Almost 70% of the values lie between 0 and 10 logK1 
units, while around 25% and 0.04% of values are in the range of 10 to 20 and 20 to 30 logK1 units, respectively.

Figure 4a,b show the AdaBoost predictions on the train and test datasets as a parity plot between the experi-
mental and predicted logK1 values. It can be inferred that a small number of large margin outliers fall in the 
spectrum of high logK1 values, which is expected considering the skewness in data (Fig. 3b), with only 269 
values above 20 logK1 units. The predictions are further quantified in Fig. 4c, where the percentage of examples 
has been plotted against the absolute prediction error. Clearly, more than 95% of the test (train) examples have 
prediction errors of less than 1.5 (0.5) log K units, demonstrating excellent predictability of our model. The test 
MAE (RMSE) for individual metal cations shown in Fig. 4d varies in the 0.2–0.6 (0.3 to 1.4) logK1 units range, 
implying that the variation is not too large.

Figure 5 depicts the computed performance metrics using AdaBoost for the train and the test data set, with 
increasing number of descriptor dimensions. The features were arranged in the descending order of AdaBoost 
importance scores and the AdaBoost model with best parameters (listed in Table 1) was employed to evaluate 
MAE against the dimensionality of feature space. As can be seen, the test MAE reduced to 0.4 logK1 units while 
the train MAE dropped down to less than 0.1 logK1 units, with just 50 top-ranked descriptors. Interestingly, 
steep reductions in MAE are observed after physically relevant medium and metal properties get included in 
the model, like ionic concentration (feature 17) and the number of ‘f ‘ electrons in metal (feature 32). Beyond 50 
descriptors, no significant improvements were observed in the train/test MAE. However, we retained all physi-
cally meaningful descriptors like the metal ionization energies, molecular charge and a few topological molecular 
descriptors, in the interest of better model generalizability and robustness.

The MAE and RMSE values of the predicted selectivities of ligands for adjacent pairs of lanthanide cations 
have been shown in Fig. 6. For any given pair of cations A and B, the higher the difference between logK1 values 
for a ligand, the more preferentially it binds to the metal with higher logK1. Very few ligands have available 
selectivity data for adjacent pairs of metal cations with the same experimental conditions, i.e. temperature, con-
centration and solvent medium. Also, the Pr–Dy and Er–Tb pairs were considered despite the cations not lying 
adjacent to each other, owing to their relevance vis-à-vis recovery of rare earth metals from or e-wastes43. Since 

Figure 3.  The distribution of data points in the initial lanthanides dataset based on: (a) the metal cation and (b) 
the range of logK1 values.
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Figure 4.  Model predictions on the training and test dataset: (a,b) show the parity plot between the predicted 
and experimental logK1 values, (c) shows the regression error curve and (d) shows the MAE and RMSE values 
for individual cations.

Figure 5.  Computed error metrices for the train and test dataset as a function of the dimensionality of the 
descriptor space.



7

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:14322  | https://doi.org/10.1038/s41598-020-71255-9

www.nature.com/scientificreports/

no common experimental conditions were available for Nd and Dy, the Nd–Dy pair was excluded. Clearly, the 
predicted values of selectivity show a good match with experimental data, as is evident from the range of MAE 
(RMSE) values (Fig. 6)—0.11 (0.17) logK1 units for Tb–Dy and 0.34 (0.44) logK1 units for Ce–Pr. This is encour-
aging considering that all MAE (RMSE) values are less than their respective test set values of 0.39 (0.91) logK1 
units. Besides, the models were trained on individual values of logK1 and not on selectivities, which requires that 
common experimental conditions be present for a ligand binding with any pair of metal cations.

For testing the generalizability of our model, out-of-sample validation was also performed on six well-known 
nitrogen donor ligands, the results of which are presented in Table 2. A predicted MAE of 0.95 logK1 units on 
this data set points to the good generalizability of our model.

Predictions on PubChem dataset. Having established the predictive power of our framework, we uti-
lized the optimized AdaBoost model for predicting binding affinities of each lanthanide cation with the com-
pounds in the PubChem  database51. PubChem is a public repository containing the structures of a large number 
of molecules. To start with, the structure of the molecules was downloaded in the SDF file format from the 
compound_3D PubChem FTP  site52. Only one conformation per compound was considered. After eliminating 
duplicate entries and charged molecules, the structure of the remaining compounds (~ 77 million) was opti-
mized with RDKit and their molecular properties were generated using the procedure outlined in Methods 
section. Next, we eliminated compounds that fell outside of the applicability domain (AD)53 of our ML model. 
The AD represents a chemical space from which the models are derived and is an important tool for reliable 
application of ML/QSAR models. While a number of approaches exist to build the  AD54, we chose a bound-
ing box technique owing to its simplicity. To define the AD, the maximum and minimum values of each of 
the molecular descriptors for the molecules in our training set was first tabulated. Then, a molecule from the 
PubChem database was considered to lie within the AD if the value of each of its descriptors lie within the range 
of the tabulated values of the corresponding descriptor. ~ 71 million molecules from the PubChem dataset were 
found to lie within the AD of our model. Standard experimental conditions, i.e. a temperature of 298 K, an ionic 
strength of 0.1 M and a perchlorate medium were assumed for the purpose of predicting logK1. The final dataset 
was generated by merging the molecular, metallic and medium properties and was normalized using the Nor-
malQuantile approach, which yielded the best test MAE with AdaBoost. The binding affinity predictions on the 
pubchem data can be obtained from the authors upon request. The distribution of the predicted logK1 values for 
each of the 15 cations is uploaded in the supplementary information.

Discussion
An often-overlooked aspect during the training of ML models is the choice of the normalization method. Of 
the six normalization methods implemented in this study—MinMax, Standardized, MaxAbs, Robust, Normal-
Quantile and UniformQuantile—the first three methods are common but are very sensitive to the presence of 
 outliers27. The latter three methods, on the other hand, rely on percentile scores or transformation operations to 
make the data more Gaussian-like. As a result, they are less influenced by a few numbers of very large-marginal 
outliers. On the current dataset, we clearly see (Table 1) that the quantile normalization method, which trans-
forms the features to follow a uniform/normal distribution, yielded the best results on most of our ML models.

Also, the demonstrated ML framework is a significant advancement over the previous reports on two counts. 
One, the performance achieved with AdaBoost model (MAE = 0.39 logK1 units, RMSE = 0.91 logK1 units, 
 R2 = 0.98) is better in comparison to most of the previous related  works7,10–15,55,56. For instance, Solov’ev et al.7 
obtained a test RMSE of greater than 1 logK1 units for M-L complexes of 6 metal cations using the Substructure 
Molecular Fragment (SMF) descriptors. In a related  study10, ensemble modeling of the stability constants of 17 
lanthanide and transition metal ions (M) with various organic ligands (L) was performed and the best MAE 
reported on the six largest datasets was greater than 0.6. Secondly, the individual values of MAE for the lanthanide 
cations are low, in the range of 0.2 to 0.6 logK1 units (Fig. 4d), implying good generalizability of our framework. 

Figure 6.  Computed MAE and RMSE in the selectivities of several adjacent lanthanide metal ion pairs.
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Ligand Cation logK1 (predicted) logK1 (experimental)

ADPTZ45

Ce3+ 4.82 4.28

Pr3+ 4.76 4.43

Nd3+ 4.82 4.62

Sm3+ 4.82 4.62

Eu3+ 4.69 4.51

Gd3+ 4.69 4.29

Tb3+ 4.76 4.15

Dy3+ 4.69 4.07

Ho3+ 4.69 4.05

Er3+ 4.69 4.1

Tm3+ 4.62 4.23

Yb3+ 4.69 4.3

Lu3+ 4.74 4.4

MePhPTA46

Eu3+ 6.7 6.95

Phen46

Eu3+ 4.84 4.23

TERPY

Gd3+47 3.85 2.6

Lu3+48 3.5 2.8

Eu3+48 4.15 2.4

Me-BTP49
Nd3+ 3.46 2.9

Eu3+ 3.81 2.9

PDAM50

Ce3+ 5.94 4.06

Pr3+ 5.93 4.09

Nd3+ 6.3 4.09

Sm3+ 6.32 4.27

Eu3+ 6.32 4.17

Gd3+ 6.28 4.3

Tb3+ 6.26 3.93

Dy3+ 6.15 4.05

Ho3+ 4.69 3.89

Er3+ 4.65 3.84

Tm3+ 3.76 3.88

Yb3+ 4.66 4.08

Lu3+ 4.74 3.8

Table 2.  Comparison of experimental versus predicted logK1 values for nitrogen donor ligands. Carbon, 
Nitrogen, Hydrogen and Oxygen atoms are shown in cyan, blue, white and red colors, respectively. The molecular 
images were generated using the VMD 1.9.3 (https ://www.ks.uiuc.edu/Resea rch/vmd/vmd-1.9.3)  software44.

https://www.ks.uiuc.edu/Research/vmd/vmd-1.9.3
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In contrast, the earlier reported QSPR models were trained on available logK1 values for individual metal cati-
ons. While this approach may be feasible for a small number of cations, it is impractical to build one model for 
each metal ion in the periodic table and given experimental conditions. Moreover, we have in this study a large 
experimental dataset comprising 6,583 logK1 values, that encompasses diverse sets of ligands, metal ions and 
experimental conditions, i.e. temperature and ionic strength. Both these quantities influence the logK1 values, an 
example being the abrupt reduction in MAE using AdaBoost after inclusion of ionic concentration as a feature 
(feature 17 in Fig. 5). The above QSPR  studies7,10–15,55,56, in comparison, were performed at constant values of 
temperature (298 K) and ionic strength. To that effect, incorporating the experimental conditions that affect 
the metal–ligand binding boosts the predictive power as well as the reliability of our framework. Furthermore, 
it is interesting to note that AdaBoost, with decision trees as the base regressor outperformed other linear and 
kernel-based ML models in this study, while most of the earlier QSPR studies have relied primarily on Multiple 
Linear  Regression7,10–15 for binding affinity predictions. The performance improvement with decision trees is 
expected considering that they were observed to exploit more structural features and the non-linearity in data 
in a related  study57–59. More recently, a study on protein–ligand binding affinity further established that the use 
of RF-Score with RDKit molecular descriptors improves the predictability of ML scoring  functions35.

Adding to this discussion, the choice of features vis-à-vis selection of relevant molecular descriptors is critical 
to the performance of ML models. In that context, our predicted feature rankings (Fig. 2a–c) have a meaning-
ful interpretation. The highest-ranked descriptor based on three of the methods is the PEOE_VSA2 descriptor. 
This descriptor computes the sum of van der Waals surface areas of atoms whose partial charges lie in the range 
of − 0.30 to − 0.25. The partial charges are computed using the Partial Equalization of Orbital Electronegativities 
(PEOE)  method60. Similarly, SMR_VSA and NumHAcceptors properties appear in the top ten highest-ranked 
features. The former sums the van der Waals surface of atoms based on molar refractivity contributions while the 
latter quantifies the number of available binding sites in molecule for protonation or deprotonation. In essence, 
these descriptors capture the topological and physical information pertaining to the ligand molecules. On the 
contrary, the preferred descriptors in most QSPR studies have been the Substructure Molecular Fragments 
(SMF)8,23,24, which only capture molecular topological information by splitting a molecule into fragments and 
representing atom/bond sequences. Therefore, by combining both topological and physical features, we improve 
the predictive power and robustness of our models. This observation resonates with the computed MAE values 
using (a) the current set of descriptors (0.39 logK1 units) and (b) only the molecular fragment descriptors of 
RDKit (0.68 logK1 units).

Finally, we leveraged the performance of AdaBoost model to predict binding affinities of around 71 million 
ligands in the PubChem database with all lanthanide metals. As a result of the sheer volume and diversity of the 
chemical structures in the database, we obtained a continuum of predicted logK1 values. Supplementary Fig. S1 
in the supplementary information shows the distribution of predicted logK1 values for the binding of lanthanide 
ions with these ligands. For all cations, the maximum number of values lie in the range of 4–6 logK1 units with 
hardly any values above 20 logK1 units. No logK1 value was predicted to be negative. Furthermore, all adjacent 
lanthanide-metal pairs have very similar distributions, which is consistent with the experimentally known small 
differences in their selectivities.

To our knowledge, no previous QSPR studies have carried out logK1 predictions on such a large scale. On 
that account, the sheer volume of the generated data makes it a great resource for enabling rapid screening and 
design of new metal binders, thus overcoming large costs associated with experiments and conventional molecu-
lar modelling techniques. It must be emphasized though that while this work addresses an important problem 
in Cheminformatics, it suffers from a few limitations. Firstly, the models have been trained on a dataset of 14 
lanthanide metals (15 cations including  Ce3+ and  Ce4+) with various ligands, thus limiting their applicability to 
other metal cations. Secondly, in solvent extraction, often one or more ligands bind to a metal ion resulting in a 
neutral extracted complex stoichiometry of M(L)n (n ≥ 1). Neutral ligands such as PDAM or Phen accomplish this 
by co-extracting counter-ions (for example nitrate ions) from the aqueous phase to maintain charge neutrality of 
the extracted complex. On the other hand, acidic ligands (such as D2EHPA (bis-2-ethylhexyl phosphoric acid)) 
can deprotonate to form charge neutral M(L)3 type complexes. Thus, in addition to the logK1 values, successive 
binding affinities (logK2, logK3 etc.) and the acid dissociation constants for acidic ligands are other important 
factors in screening metal binders. In a future study, we plan to apply deep transfer learning in order to train 
models for predicting successive binding constants as well as selectivities, on a much larger dataset, comprising 
all metal cations in the periodic table. Through this, we can further improve the model transferability and guide 
future efforts in the screening and development of novel metal binders for various applications.

Data availability
The data used to fit the ML models is provided as an MS-Excel file in the Supplementary Material. The predicted 
binding affinities of the lanthanide ions with compounds in the pubchem database can be obtained from the 
authors upon request.
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